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Abstract. Let A ∈ B(H) be a rank-one operator, solutions of the Yang-Baxter-like operator equation
AXA = XAX on Hilbert spaces are investigated. We derive necessary and sufficient conditions for an
operator X ∈ B(H) being a solution of the equation. Further, a necessary and sufficient condition that the
equation has a rank-one solution is obtained for an arbitrary operator A.

1. Introduction

Let B(H) stand for the set of all bounded linear operators on Hilbert spaceH . Let A ∈ B(H) be a given
operator, the quadratic operator equation

AXA = XAX (1)

is called the Yang-Baxter-like operator equation, where X ∈ B(H) is the unknown operator to be determined.
In the finite space, the equation (1) is the Yang-Baxter-like matrix equation, which arises from the classical
Yang-Baxter equation[1, 12].

For the Yang-Baxter-like matrix equation, its all solutions are not easy to be found for an arbitrary
matrix A. Using eigenvalues and the corresponding generalized eigenspaces, authors in [4] and [5] obtain
infinitely many commuting spectral solutions of the equation if eigenvalues of the matrix A are semi-simple
and non-semisimple, respectively. Further, the results are extended to an arbitrary square matrix A[14],
and explicit commuting spectral solutions are constructed. When A is a general singular matrix, infinitely
many solutions of the equation are found in [6] by splitting the equation into the system of linear matrix
equations. Moreover, by the generalized inverses, infinitely many new nontrivial non-commuting solutions
are also derived in [2] for both regular and singular matrix A. When A2 = I and A is a square matrix with
general Jordan structure forms, methods of solving all commuting solutions (AX = XA) to the equation
are proposed in [8] and [10], respectively. When A is a rank-one matrix, all solutions of the equation are
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constructed by utilizing the special structures of the Jordan canonical forms of A in [11], and all solutions
are also expressed concisely based on the sufficient and necessary conditions derived for a matrix to be
a solution of the equation in [7]. Moreover, when A is an idempotent matrix and rank-two matrix, the
equation is completely solved in [9, 13].

The main aim of the present article is to study nontrivial solutions (X , 0,A) of the operator equation
(1) on Hilbert spaces, which is inspired by the work of [7]. It is easy to see that X = 0,A are solutions of
the equation, and we call them trivial solution. In this paper, we present some necessary and sufficient
conditions for an operator X ∈ B(H) being a solution of the equation (1) when A is a rank-one operator.
Further, the necessary and sufficient condition that the equation has nontrivial solutions is obtained for the
rank-one operator A. Based on the characteristic of the equation, we also give a necessary and sufficient
condition that the equation (1) has rank-one solutions for an arbitrary operator A ∈ B(H).

We first give the definition and properties of the rank-one operator.

Definition 1.1. Let A ∈ B(H). If dimR(A) < ∞, then we say that A is of finite rank. In particular, A is
called a rank-one operator if dimR(A) = 1.

Note that a rank-one operator is always of the form f ⊗1 for nonzero vectors f , 1 inH . Here, the operator
f ⊗ 1 is defined by

( f ⊗ 1)h = ⟨h, 1⟩ f , for all h ∈ H .

Lemma 1.2. Let A ∈ B(H), f , 1, f1, f2 ∈ H , and a, b are complex numbers, then the following holds.
(1) A( f ⊗ 1) = (A f ) ⊗ 1, ( f ⊗ 1)A = f ⊗ (A∗1);
(2) (a f1 + b f2) ⊗ 1 = a( f1 ⊗ 1) + b( f2 ⊗ 1), 1 ⊗ (a f1 + b f2) = a(1 ⊗ f1) + b(1 ⊗ f2);
(3) f ⊗ 1 = 0 if and only if f = 0 or 1 = 0.

2. Solutions of the equation AXA = XAX for the rank-one operator A

This section is devoted to investigate necessary and sufficient conditions for an operator X ∈ B(H)
being a solution of the equation AXA = XAX when A is a rank-one operator.

Theorem 2.1. Let A = f ⊗ 1, where f , 1 are nonzero vectors inH . If ⟨X f , 1⟩ = 0 for an operator X ∈ B(H),
then X is a solution of the equation AXA = XAX if and only if X f = 0 or X∗1 = 0.

Proof Sufficiency. If X f = 0, then

AXA = ( f ⊗ 1)X( f ⊗ 1) = ( f ⊗ 1)((X f ) ⊗ 1) = 0,
XAX = X( f ⊗ 1)X = ((X f ) ⊗ 1)X = 0.

If X∗1 = 0, then

AXA = ( f ⊗ (X∗1))( f ⊗ 1) = 0,
XAX = X( f ⊗ (X∗1)) = 0.

It is obvious that we get AXA = XAX if X f = 0 or X∗1 = 0.
Necessity. If X is a solution of the equation AXA = XAX, then, for any h ∈ H , we have AXAh = XAXh,

i.e., ( f ⊗ 1)X( f ⊗ 1)h = X( f ⊗ 1)Xh. According to Lemma 1.2, it follows that

( f ⊗ 1)X( f ⊗ 1)h = ( f ⊗ 1)((X f ) ⊗ 1)h
= ⟨h, 1⟩( f ⊗ 1)X f
= ⟨h, 1⟩⟨X f , 1⟩ f ,

and

X( f ⊗ 1)Xh = ⟨Xh, 1⟩X f .
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Thus,

⟨Xh, 1⟩X f = ⟨h, 1⟩⟨X f , 1⟩ f . (2)

From the assumption ⟨X f , 1⟩ = 0, we obtain that ⟨Xh, 1⟩X f = 0, which shows X f = 0 or ⟨Xh, 1⟩ = 0. Since h
is arbitrary, it follows that X∗1 = 0. We complete the proof. □

Corollary 2.2. Let A = f ⊗ 1, where f , 1 are nonzero vectors inH . If ⟨X f , 1⟩ = 0 for an operator X ∈ B(H),
then X is a solution of the equation AXA = XAX if and only if X has the eigenpair (0, f ) or X∗ has the
eigenpair (0, 1).

Theorem 2.3. Let A = f ⊗ 1, where f , 1 are nonzero vectors inH . If ⟨X f , 1⟩ = 0 for an operator X ∈ B(H),
then

(1) X is a commuting solution of the equation AXA = XAX if and only if X f = 0 and X∗1 = 0.
(2) X is a non-commuting solution of the equation AXA = XAX if and only if one and only one of the

equalities X f = 0 and X∗1 = 0 is satisfied.

Proof We only prove (1), and (2) is similar.
Sufficiency. If X f = 0 and X∗1 = 0, then X is a solution of the equation AXA = XAX from Theorem 2.1.

Note that

AX = ( f ⊗ 1)X = f ⊗ (X∗1) = 0,
XA = X( f ⊗ 1) = (X f ) ⊗ 1 = 0,

which show that AX = XA, and hence, X is a commuting solution of the equation AXA = XAX.
Necessity. If X is a commuting solution of the equation AXA = XAX, then, by Theorem 2.1, we know

X f = 0 or X∗1 = 0. Now, assume that X f = 0 and X∗1 , 0, and then

AX = ( f ⊗ 1)X = f ⊗ (X∗1) , 0

since f , 0, and
XA = X( f ⊗ 1) = (X f ) ⊗ 1 = 0.

It is clear that AX , XA, a contradiction. Similarly, assume that X∗1 = 0 and X f , 0, we also obtain a
contradiction. We complete the proof. □

Theorem 2.4. Let A = f ⊗1, where f , 1 are nonzero vectors inH . If the solution of the equation AXA = XAX
satisfies ⟨X f , 1⟩ , 0, then ⟨ f , 1⟩ , 0.

Proof If X ∈ B(H) is a solution of AXA = XAX, then, by (2), it follows that

⟨Xh, 1⟩⟨X f , 1⟩ = ⟨h, 1⟩⟨X f , 1⟩⟨ f , 1⟩

for any h ∈ H . We take h = f , then ⟨ f , 1⟩ , 0 is obtained since ⟨X f , 1⟩ , 0. □

Theorem 2.5. Let A = f ⊗ 1, where f , 1 are nonzero vectors inH . If ⟨X f , 1⟩ , 0 for an operator X ∈ B(H),
then X is a solution of the equation AXA = XAX if and only if X f = ⟨ f , 1⟩ f and X∗1 = ⟨1, f ⟩1.

Proof Sufficiency. Assume X f = ⟨ f , 1⟩ f and X∗1 = ⟨1, f ⟩1. Then, by ⟨ f , 1⟩ f = ( f ⊗ 1) f , ⟨1, f ⟩1 = (1 ⊗ f )1,
and Lemma 1.2,

AXA = ( f ⊗ 1)((X f ) ⊗ 1)
= ⟨ f , 1⟩( f ⊗ 1)( f ⊗ 1)

= (⟨ f , 1⟩)2( f ⊗ 1)
= (⟨ f , 1⟩ f ) ⊗ (⟨1, f ⟩1)
= (X f ) ⊗ (X∗1)
= X( f ⊗ 1)X
= XAX.
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So, X is a solution of the equation AXA = XAX .
Necessity. Assume that X is a solution of the equation AXA = XAX. We take h = f in (2), then we have

⟨X f , 1⟩X f = ⟨ f , 1⟩⟨X f , 1⟩ f .

This yields X f = ⟨ f , 1⟩ f since ⟨X f , 1⟩ , 0. Now, substituting X f = ⟨ f , 1⟩ f into (2), it deduces

⟨Xh, 1⟩⟨ f , 1⟩ f = ⟨h, 1⟩⟨ f , 1⟩⟨ f , 1⟩ f .

According to Theorem 2.4, ⟨ f , 1⟩ , 0. Thus,

⟨Xh, 1⟩ f = ⟨h, 1⟩⟨ f , 1⟩ f ,

This gives
⟨h,X∗1 − ⟨1, f ⟩1⟩ f = 0,

Since h is arbitrary and f , 0, X∗1 = ⟨1, f ⟩1 is followed. The proof is completed. □

Corollary 2.6. Let A = f ⊗ 1, where f , 1 are nonzero vectors inH . If ⟨X f , 1⟩ , 0 for an operator X ∈ B(H),
then X is a solution of the equation AXA = XAX if and only if X and X∗ have eigenpairs (⟨ f , 1⟩, f ) and
(⟨1, f ⟩, 1), respectively.

Remark 2.7. In fact, in Theorem 2.5, the solution is commuting solution of the equation AXA = XAX since

AX = ( f ⊗ 1)X = f ⊗ (X∗1) = ⟨ f , 1⟩ f ⊗ 1 = (X f ) ⊗ 1 = X( f ⊗ 1) = XA.

Theorem 2.1 and Theorem 2.5 give the necessary and sufficient condition for existence of the nontrivial
solution of the equation AXA = XAX.

Theorem 2.8. Let A = f ⊗ 1, where f , 1 are nonzero vectors in H . Then the equation AXA = XAX has a
nontrivial solution X ∈ B(H) if and only if one of the following conditions holds for X , 0,A:

(1) 0 ∈ σp(X) and f is the eigenvector corresponding to 0, or 0 ∈ σp(X∗) and 1 is the eigenvector
corresponding to 0;

(2) ⟨ f , 1⟩ ∈ σp(X) ∩ σp(X∗), and f , 1 are eigenvectors of X and X∗ corresponding to ⟨ f , 1⟩, respectively.

One interesting question arises: is X possibly a rank-one, and A is not? Note that the characteristic of
the operator equation AXA = XAX, we give the following result on rank-one solutions by Theorem 2.8.

Theorem 2.9. Let A ∈ B(H). Then the equation AXA = XAX has a rank-one solution if and only if one of
the following conditions holds:

(1) 0 ∈ σp(A), or 0 ∈ σp(A∗);
(2) there exist nonzero vectors f , 1 ∈ H such that ⟨ f , 1⟩ ∈ σp(A) ∩ σp(A∗), and f , 1 are eigenvectors of A

and A∗ corresponding to ⟨ f , 1⟩, respectively.
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