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Best proximity point theorems via measure of noncompactness and
application to a system of Caputo fractional differential equations
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Abstract. In this article, we establish the best proximity point (pair) theorems for condensing operators
defined on some new class of functions using the measure of noncompactness. Our theorems extend the
Darbo type fixed point theorem and some recent investigations in this direction. We apply our results to
the study of optimum solutions for a system of Caputo fractional differential equations.

1. Introduction

Many physical problems have been discussed using fractional calculus in the last three decades [1, 14,
17]. Due to science’s adaptability, precision, and usefulness, it becomes very attractive for researchers
[24]. Furthermore, depending on the nature of the problem, it becomes a method of reformulation and
reconstruction. Fractional calculus has straightforward applications in various fields. Solvability for
fractional differential equations has been extensively studied by many researchers [13, 15, 20] using the
technique of measure of noncompactness and fixed point theory. Many fractional differential equations
exist in the literature, but Caputo sense fractional differential equations are the simplest to solve. The main
feature of the Caputo derivative is that it has a zero derivative of the constant function, whereas most other
fractional derivatives do not. This characteristic helps the application of fixed point theorems to initial
value problems.

The problem of determining points that minimize distances to a particular point or subset is one of the
central problems in approximation theory. Analysts have always been drawn to the best approximation
because it can be extended, mainly when using the functional analytic technique in nonlinear analysis. It
was found in the middle of the 20th century that the existence of fixed points can be used to demonstrate
the existence of the best approximation [4]. In the case of self-mapping, the best approximation is known
as an invariant approximation. The measure of noncompactness and best proximity theory have various
applications in solving different types of differential and integral equations, see for instance [7, 11, 22, 23].
Gabeleh et al. [12] established the best proximity point results for noncyclic φ-condensing operators in
strictly convex Banach spaces by using a measure of noncompactness. Nashine et al. [21] discussed the
best proximity results for cyclic and noncyclic FG-contractive operators in strictly convex Banach spaces
via measure of noncompactness.
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In this article, we discuss the best proximity point results for cyclic and noncyclic mappings using
measure of noncompactness and class of functions defined in [3, 16, 19]. The results of the paper generalize
various results of the articles in [6, 12].

2. Preliminaries

Let (Y, ∥ · ∥) be a Banach space and R+ := [0,∞). Suppose S ⊂ Y, then by S and conv(S), we denote the
closure and the closed convex hull of S, respectively. LetMY be the family of nonempty bounded subsets
of Y andNY its subfamily consisting of all relatively compact subsets of Y.

2.1. Best proximity points
A pair (C,D) of subsets of Banach space Y satisfies a property if both C and D satisfy that property. For

example, (C,D) ⊆ (P,Q) ⇔ C ⊆ P,D ⊆ Q; (C,D) is convex if and only if both C and D are convex. For the
pair (C,D), we define

dist(C,D) = inf{∥x − y∥ : x ∈ C and y ∈ D},
C0 = {x ∈ C : ∃ y′ ∈ D | ∥x − y′∥ = dist(C,D)},
D0 = {y ∈ D : ∃ x′ ∈ C | ∥x′ − y∥ = dist(C,D)}.

We discuss that if (C,D) is a pair of nonempty, convex and weakly compact pair in Banach space Y, then
the pair (C0,D0) is of same kind.

Definition 2.1. A nonempty pair (C,D) in a normed linear space Y is said to be proximinal if C = C0 and D = D0.

Example 2.2. Let Y be the Euclidean space R2 with the standard norm, and let

C = {(x, y) ∈ R2 : x ≥ 0, y = 0},

D = {(x, y) ∈ R2 : x = 0, y ≥ 0}.

Here, C and D are nonempty subsets of Y and C0 includes all points in C with y = 0, which is the entire nonnegative
x-axis, and D0 includes all points in D with x = 0, which is the entire nonnegative y-axis. So, C = C0 and D = D0,
hence (C,D) is a proximinal pair.

A mapping L : C ∪D→ C ∪D with L(C) ⊆ D, L(D) ⊆ C and ∥Lx − Ly∥ ≤ ∥x − y∥ for all x ∈ C and y ∈ D
is known as cyclic relatively nonexpansive. If C = D, then L is a nonexpansive self-mapping.
A point x∗ ∈ C ∪D is said to be the best proximity point of the mapping L if

∥x∗ − Lx∗∥ = dist(C,D) =: inf
{
∥x − y∥ : x ∈ C, y ∈ D

}
.

In fact, best proximity point theorems have been studied to find the necessary conditions for the minimiza-
tion problem

min
x∈C∪D

∥x − Lx∥, (1)

to have at least one solution.

Theorem 2.3. [9] Consider (C,D) is nonempty, compact and convex pair in a Banach space Y. If L : C∪D→ C∪D
is cyclic relatively nonexpansive mapping, then L admits a best proximity point.

A function L : C ∪ D → C ∪ D with L(C) ⊆ C, L(D) ⊆ D and ∥Lx − Ly∥ ≤ ∥x − y∥ for all x ∈ C and y ∈ D
is known as noncyclic relatively nonexpansive. Clearly, the class of noncyclic relatively nonexpansive
functions contains all the nonexpansive functions. A noncyclic relatively nonexpansive functions need not
be continuous. A point (u, v) ∈ C × D is called a best proximity pair if this is a solution of the following
minimization problem:

min
x∈C
∥x − Lx∥, min

y∈D
∥y − Ly∥, and min

(x,y)∈C×D
∥x − y∥. (2)

Clearly, (x, y) ∈ C ×D is a solution of the problem (2) if and only if u = Lu, v = Lv and ∥u − v∥ = dist(C,D).
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Theorem 2.4. [9] Consider (C,D) is nonempty, compact and convex pair in a strictly convex Banach space Y. If
L : C ∪D→ C ∪D is noncyclic relatively nonexpansive mapping, then L admits a best proximity point.

Definition 2.5. [10] Let C and D be nonempty subsets of a Banach space Y. A function L : C ∪D→ C ∪D is said
to be a relatively u-continuous function if it satisfies:
For each ϵ > 0, there exists a δ > 0 such that ∥Lx − Ly∥ < ϵ + dist(C,D), whenever ∥x − y∥ < δ + dist(C,D), ∀ x ∈
C, y ∈ D.
Note that every relatively nonexpansive mapping is a relatively u-continuous mapping. The following example shows
that the converse is not true.

Example 2.6. Let us take (R2, ∥.∥2) and C = {(0, t) : 0 ≤ t ≤ 1} and D = {(1, t) : 0 ≤ t ≤ 1}. Define L : C∪D→ C∪D
by

L(x, y) =

(1,
√

y) if x = 0,
(0,
√

y) if x = 1.
Then L is a relatively u-continuous mapping but not a relatively nonexpansive mapping.

Theorem 2.7. [12] Suppose (C,D) is nonempty, bounded, closed and convex pair in a strictly convex Banach space
Y such that C0 is nonempty. If L : C ∪D→ C ∪D is noncyclic relatively u-continuous and compact mapping, then
L admits a best proximity point.

Theorem 2.8. [12] Let (C,D) be nonempty, bounded, closed and convex pair in a strictly convex Banach space Y
such that C0 is nonempty. If L : C ∪ D → C ∪ D is cyclic relatively nonexpansive and compact mapping, then L
admits a best proximity point.

2.2. Measure of noncompactness

For a bounded subset B of a metric space Y, Kuratowski [18] measure of noncompactness is defined as:

α(B) = inf{ϵ > 0 : B =
n⋃

k=1

Bk, diam(Bk) ≤ ϵ, 1 ≤ k ≤ n < ∞},

where diam(Bk) denotes the diameter of the set Bk ⊂ Y.

Definition 2.9. [2] LetMY be a family of bounded subsets of Y. A mapping ν :MY → [0,∞) is called a measure of
noncompactness in Y if

(A1) ν(S) = 0 if and only if S is relatively compact;

(A2) ν(S) = ν(S);
(A3) ν(S1 ∪ S2) = max{ν(S1), ν(S2)}, for all S1,S2 ∈ MY.

The Hausdorff (or ball) measure of noncompactness for B is defined as follows:

χ(B) = inf{ϵ > 0 : B has a finite ϵ-net in Y}.

Darbo gave the following result using the concept of measure of noncompactness.

Theorem 2.10. [2, Darbo] Suppose D is a nonempty, bounded, closed, and convex subset of a Banach space Y. Let
L : D→ D be a continuous function, and there is a constant m ∈ [0, 1) such that χ(LD) ≤ mχ(D). Then L admits at
least one fixed point in the set D.

Gabeleh et al. established the following best proximity theorems:
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Theorem 2.11. [12] Let Y be a strictly convex Banach space, and (C,D) be a nonempty, bounded, closed, and convex
pair in Y such that C0 is nonempty. Assume L : C ∪D→ C ∪D is noncyclic, relatively u-continuous such that for
any nonempty, convex, closed, proximinal, and L-invariant pair (Q1,Q2) ⊆ (C,D) with dist(Q1,Q2) = dist(C,D),

ν(L(Q1) ∪ L(Q2)) ≤ θ(ν(Q1 ∪Q2))ν(Q1 ∪Q2), (3)

where ν is an arbitrary measure of noncompactness on Y, θ ∈ ∆, and ∆ is a class of functions θ : (0,∞) → (1,∞)
satisfying the following condition:

For each {tn} ⊂ (0,∞), lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+. Then L admits a best proximity point.

Theorem 2.12. [12] Let Y be a strictly convex Banach space, and (C,D) be a nonempty, bounded, closed, and convex
pair in Y such that C0 is nonempty. Assume L : C∪D→ C∪D is a cyclic relatively nonexpansive mapping such that
for any nonempty, convex, closed, proximinal, and L-invariant pair (Q1,Q2) ⊆ (C,D) with dist(Q1,Q2) = dist(C,D),

ν(L(Q1) ∪ L(Q1)) ≤ θ(ν(Q1 ∪Q2))ν(Q1 ∪Q2), (4)

where ν is an arbitrary measure of noncompactness on Y, θ ∈ ∆, and ∆ is defined in the above theorem. Then L has
the best proximity point.

Definition 2.13. [16] Let F be the family of the functions F : R+ ×R+ → R+ satisfying the following conditions:

(F1) max{τ, µ} ≤ F(τ, µ) for τ, µ ≥ 0;
(F2) F is continuous and nondecreasing;
(F3) F(τ1 + µ1, τ2 + µ2) ≤ F(τ1, τ2) + F(µ1, µ2).

For example, F(τ, µ) = τ + µ.

Definition 2.14. [19] Let Φ be the class of functions ϕ : R+ → R+ such that

(Φ1) ϕ is nondecreasing;
(Φ2) limk→∞ ϕ(tk) = 0⇐⇒limk→∞tk = 0 for all {tk} ⊂ (0,∞);
(Φ3) ϕ is continuous.

Definition 2.15. [3] Let Ξ be the set of mappings ξ : R+ → R+ satisfying:

(Ξ1) ξ is monotone increasing;
(Ξ2) lim

k→∞
ξk(t) = 0, ∀ t > 0.

Such a class of mappings is known as a comparison function.
Examples of comparison functions:

(i) ξ1(t) = λt, λ ∈ (0, 1), ∀ t > 0;

(ii) ξ2(t) =

 t
2 , 0 < t < 1
t
3 , t ≥ 1;

(iii) ξ3(t) = t
t+1 , for all t > 0.

3. Main Results

Theorem 3.1. Let Y be a strictly convex Banach space, and (C,D) be a nonempty, bounded, closed, and convex pair
in Y such that C0 is nonempty. Assume L : C ∪ D → C ∪ D is noncyclic relatively u-continuous such that for any
nonempty, bounded, convex, closed, proximinal, and L-invariant pair (P,Q) ⊆ (C,D) with dist(P,Q) = dist(C,D),

ϕ
[
F
(
ν((LP) ∪ (LQ)), β(ν((LP) ∪ (LQ)))

)]
≤ ξ[ϕ(F(ν(P ∪Q), β(ν(P ∪Q)))]β(ν(P ∪Q)), (5)

where ν is an arbitrary measure of noncompactness, ϕ ∈ Φ, ξ ∈ Ξ, F ∈ F , and β : R+ → R+ is a continuous function.
Then L admits the best proximity point.
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Proof. Let (C0,D0) be nonempty, closed, convex, and proximinal, and let x ∈ C0. Then there exists y ∈ D0
such that ∥x − y∥ = dist(C,D). As L is relatively u-continuous, ∥L(x) − L(y)∥ = dist(C,D), and so Lx ∈ C0.
Thus L(C0) ⊆ C0. Similarly, L(D0) ⊆ D0. Hence (C0,D0) is L-invariant.
Let us start by assuming P0 = C0 and Q0 = D0 and, for all k ∈N, define

Pk = conv(L(Pk−1)), Qk = conv(L(Qk−1)),

we have

P1 = conv(L(P0)) = conv(L(C0)) ⊆ C0 = P0.

Continuing in this pattern and by induction, we obtain Pk−1
⊇ Pk for all k ∈ N. Similarly, Qk−1

⊇ Qk for
all k ∈ N. If there exists an integer l ∈ N such that max{ν(Pl), ν(Ql)} = 0, then (Pl,Ql) is a compact pair
and L(Pl) ⊆ conv(L(Pl)) = Pl+1

⊆ Pl. Similarly, we can see that L(Ql) ⊆ Ql, and so L is noncyclic relatively
u-continuous on Pl

∪ Ql, where (Pl,Ql) is a compact and convex pair in a strictly convex Banach space Y.
Hence, Theorem 2.7 yields that L has a best proximity pair.
So, we suppose that max{ν(Pk), ν(Qk)} > 0 for all k ∈ N. If there exist m1,m2 ∈ N with m1 < m2 such
that ν(Pm1 ) = ν(Qm2 ) = 0, since the sequence {Pk

}k∈N∪{0} is a decreasing sequence, we have Pm2 ⊆ Pm1 , and
so ν(Pm2 ) ≤ ν(Pm1 ), which leads to ν(Pm2 ) = 0. Hence, max{ν(Pm2 ), ν(Qm2 )} = 0, which is a contradiction.
Therefore, min{ν(Pk), ν(Qk)} > 0 for all k ∈N ∪ {0}.

As L is noncyclic relatively u-continuous, hence for the pair (x, y) ∈ P0
×Q0 with ∥x− y∥ = dist(C,D), we

have ∥Lk(x) − Lk(y)∥ = dist(C,D) for all k ∈ N. By the definition of the pair (Pk,Qk), we have (Lk(x),Lk(y)) ∈
Pk
×Qk, which implies that

dist(Pk,Qk) = dist(C,D), ∀ k ∈N.

Now assume that u ∈ P1 = conv(L(P0)), then u =
∑n

i ciL(ui), where ui ∈ P0 for all 1 ≤ i ≤ n such
that ci ≥ 0 and

∑n
i ci = 1. Since (P0,Q0) is proximinal, for all 1 ≤ i ≤ n, there exist vi ∈ Q0 such that

∥ui − vi∥ = dist(P0,Q0) = dist(C,D). Put v =
∑n

i ciL(vi). Then v ∈ Q1 and

∥u − v∥ =

∥∥∥∥∥∥∥
n∑
i

ciL(ui) −
n∑
i

ciL(vi)

∥∥∥∥∥∥∥ ≤
n∑
i

∥L(ui) − L(vi)∥

=dist(C,D).

Hence, the pair (P1,Q1) is proximinal. By a similar argument, we obtained that the pair (Pk,Qk) is proximinal
for all k ∈N∪{0}. Thus (Pk,Qk) is nonempty, bounded, convex, closed, proximinal pair, which is L-invariant.

By equation (5),

ϕ
[
F
(
ν
(
Pk+1

∪Qk+1
)
, β

(
ν
(
Pk+1

∪Qk+1
)))]

≤ ξk+1
[
ϕ

(
F
(
ν
(
P0
∪Q0

)
, β

(
ν
(
P0
∪Q0

))))]
× β

(
ν
(
P0
∪Q0

))
· · · β

(
ν
(
Pk−1

∪Qk−1
))
β
(
ν
(
Pk
∪Qk

))
.

Thus, we have

ϕ
[
F
(
ν
(
Pk+1

∪Qk+1
)
, β

(
ν
(
Pk+1

∪Qk+1
)))]

≤ ξk+1
[
ϕ

(
F(ν(P0

∪Q0), β(ν(P0
∪Q0))

)]
β
(
ν
(
P0
∪Q0

))
· · · β

(
ν
(
Pk−1

∪Qk−1
))
β
(
ν
(
Pk
∪Qk

))
. (6)

Letting k→∞ in (6) and applying (Ξ2), we have

ϕ
[
F
(
ν
(
Pk+1

∪Qk+1
)
, β

(
ν
(
Pk+1

∪Qk+1
)))]
= 0
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as k→∞, which implies from (Φ2) that

lim
k→∞

[
F
(
ν
(
Pk+1

∪Qk+1
)
, β

(
ν
(
Pk+1

∪Qk+1
)))]
= 0.

It gives

lim
k→∞

ν(Pk+1
∪Qk+1) = 0 = lim

k→∞
β(ν(Pk+1

∪Qk+1)).

It follows from the condition of (A6) in Definition 2.9 that the pair (P∞,Q∞) is nonempty, convex, and
closed, which is L-invariant, where P∞ = ∩∞k=0Pk and Q∞ = ∩∞k=0Qk. Furthermore, dist(P∞,Q∞) = dist(C,D),
and it is easy to see that (P∞,Q∞) is proximinal. On the other hand, max{ν(P∞), ν(Q∞)} = 0, which ensures
that the pair (P∞,Q∞) is compact. Now from Theorem 2.7, L has a best proximity point.

Remark 3.2. We get Theorem 2.11 if we take F(x, y) = x, ϕ(t) = t, ξ(t) = λt, and β = θ(t)
λ , λ ∈ (0, 1) in Theorem 3.1.

Example 3.3. Consider Y = R2 with the Euclidean norm. Let C and D be defined as follows:

C = {(x, y) ∈ R2 : x ≥ 0, y = 0},

D = {(x, y) ∈ R2 : x = 0, y ≥ 0}.

These sets are nonempty, bounded, closed, and convex. C0 includes all points in C with y = 0, which is the entire
nonnegative x-axis, and D0 includes all points in D with x = 0, which is the entire nonnegative y-axis. So, (C,D) is
a proximinal pair. Let L : C ∪D→ C ∪D be defined as

L(x, y) =

(1,
√

y) if (x, y) ∈ C,
(
√

x, 1) if (x, y) ∈ D.

This mapping L is noncyclic relatively u-continuous. For functions F(x, y) = x, ϕ(t) = t, ξ(t) = 1
2 t, and β = t

2 ,
t ∈ (0,∞), it is easy to see that L satisfies all the conditions of Theorem 3.1, ensuring that L admits the best proximity
point.

We can see that L does not satisfy the equation (3), hence Theorem 2.11 does not apply to this example.

Theorem 3.4. Let Y be a strictly convex Banach space and (C,D) be a nonempty, bounded, closed, and convex pair
in Y such that C0 is nonempty. Assume L : C∪D→ C∪D is a cyclic relatively nonexpansive function such that for
any nonempty, convex, closed, proximinal, and L-invariant pair (P,Q) ⊆ (C,D) with dist(P,Q) = dist(C,D),

ϕ
[
F
(
ν(L(P) ∪ (LQ)), β(ν(L(P) ∪ (LQ)))

)]
≤ ξ

[
ϕ

(
F
(
ν (P ∪Q) , β (ν (P ∪Q))

))]
β (ν (P ∪Q)) , (7)

where ν is an arbitrary measure of noncompactness, ϕ ∈ Φ, ξ ∈ Ξ, F ∈ F , and β : R+ → R+ is a continuous
mapping. Then L admits a best proximity point.

Proof. In a similar way to Theorem 3.1, we obtain that (C0,D0) is nonempty, closed, convex, proximinal,
and L-invariant, that is L(C0) ⊆ D0 and L(D0) ⊆ C0. Set P0 = C0 and Q0 = D0 and, for all k ∈N, define

Pk = conv(L(Pk−1)), Qk = conv(L(Qk−1)),

then we have

P1 = conv(L(P0)) = conv(L(C0)) ⊆ D0 = Q0,

and so, L(P1) ⊆ L(Q0), which implies that

P2 = conv(L(P1)) ⊆ L(Q0) = Q1.
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Continuing this pattern, we obtain Pk+1
⊆ Qk. Also, we have

Q1 = conv(L(Q0)) = conv(L(D0)) ⊆ C0 = P0,

and hence, L(Q1) ⊆ L(P0). Thus,

Q2 = conv(L(Q1)) ⊆ L(P0) = P1.

By induction, we obtained Qk
⊆ Pk−1 for all k ∈N. Hence,

Pk+2
⊆ Qk+1

⊆ Pk
⊆ Qk−1

∀ k ∈N.

Therefore, {(P2k,Q2k)}k≥0 is a decreasing sequence of nonempty, bounded, closed, and convex pairs in C0×D0.
Furthermore, for all k ∈N ∪ {0}, we have

L(Q2k) ⊆ L(P2k−1) ⊆ conv(P2k−1) = P2k,

L(P2k) ⊆ L(Q2k−1) ⊆ conv(Q2k−1) = Q2k.

So, we deduce that (P2k,Q2k) is L-invariant. As L is relatively nonexpansive, for (w, y) ∈ P0
× Q0 with

∥w−y∥ = dist(C,D), we have dist(P2k,Q2k) ≤ ∥L2kw−L2ky∥ ≤ ∥w−y∥ = dist(C,D). Also, (L2kw,L2ky) ∈ P2k
×Q2k.

Similar to Theorem 3.1, we can see that (P2k,Q2k) is also proximinal for all k ∈ N. If max{ν(P2k), ν(Q2k)} = 0
for some k ∈N, then the result follows from Theorem 2.8. So we assume that max{ν(P2k), ν(Q2k)} > 0 for all
k ∈N. Again using a similar discussion of Theorem 3.1, we conclude that min{ν(P2k), ν(Q2k)} > 0.
By using (7), we have
ϕ

[
F(ν(P2k+2

∪Q2k+2), β(ν(P2k+2
∪Q2k+2))

]
= ϕ

[
F(max{ν(P2k+2), ν(Q2k+2)}, β(max{ν(P2k+2), ν(Q2k+2)})

]
≤ ϕ

[
F(max{ν(Q2k+1), ν(P2k+1)}, β(max{ν(Q2k+1), ν(P2k+1)})

]
= ϕ

[
F(max{ν(conv(LP2k)), ν(conv(LQ2k))}, β(max{ν(conv(LP2k), ν(conv(LQ2k))})

]
= ϕ

[
F(max{(ν(LP2k), ν(LQ2k)}, β(max{(ν(LP2k), ν(LQ2k)})

]
= ϕ

[
F(ν((LP2k) ∪ (LQ2k)), β(ν((LP2k) ∪ (LQ2k)))

]
≤ ξ

[
ϕ

(
F
(
ν
(
P2k
∪Q2k

)
, β

(
ν
(
P2k
∪Q2k

))))
β
(
ν
(
P2k
∪Q2k

))]
≤ ξ2

[
ϕ

(
F
(
ν
(
P2k−2

∪Q2k−2
)
, β

(
ν
(
P2k−2

∪Q2k−2
))))

β(ν(P2k−1
∪Q2k−1))β(ν(P2k

∪Q2k))
]

...

≤ ξk+1
[
ϕ

(
F
(
ν
(
P0
∪Q0

)
, β

(
ν
(
P0
∪Q0

))))
β
(
ν
(
P0
∪Q0

))
· · · β

(
ν
(
P2k−1

∪Q2k−1
))
β
(
ν
(
P2k
∪Q2k

))]
.

Thus, we have

ϕ
[
F(ν(P2k+2

∪Q2k+2), β(ν(P2k+2
∪Q2k+2))

]
≤ ξk+1(ϕ[F(ν(P0

∪Q0), β(ν(P0
∪Q0)))]β(ν(P0

∪Q0))...β(ν(P2k−1
∪Q2k−1))β(ν(P2k

∪Q2k)). (8)

Letting k→∞ in (8) and applying (Ξ2), we have
ϕ

[
F
(
ν
(
P2k+2

∪Q2k+2
)
, β

(
ν
(
P2k+2

∪Q2k+2
)))]
= 0 as k→∞,

which implies from (Φ2) that
lim
k→∞

[
F
(
ν
(
P2k+2

∪Q2k+2
)
, β

(
ν
(
P2k+2

∪Q2k+2
)))]
= 0.

It gives lim
k→∞

ν
(
P2k+2

∪Q2k+2
)
= 0 = lim

k→∞
β
(
ν
(
P2k+2

∪Q2k+2
))
. So, max

{
lim
k→∞

ν
(
P2k+2

)
, lim

k→∞
ν
(
Q2k+2

)}
= 0.
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It follows from the condition of (A6) in Definition 2.9 that the pair (P∞,Q∞) is nonempty, closed, and convex,
which is L-invariant, where P∞ = ∩∞k=0P2k and Q∞ = ∩∞k=0Q2k. Furthermore, dist(P∞,Q∞) = dist(C,D), and
it is easy to see that (P∞,Q∞) is proximinal. On the other hand, max{ν(P∞), ν(Q∞)} = 0, which ensures that
the pair (P∞,Q∞) is compact. Now from Theorem 2.8, L has a best proximity point.

Remark 3.5. We get Theorem 2.12 if we take F(w, y) = w, ϕ(t) = t, ξ(t) = λt, and β = θ(t)
λ , λ ∈ (0, 1) in Theorem

3.4.

Remark 3.6. We get Theorem 2.10 if we take F(w, y) = w, ϕ(t) = t, ξ(t) = λt, λ ∈ (0, 1) and β = 1, and P = Q in
Theorem 3.4.

Example 3.7. Consider Y = R2 with the Euclidean norm. Let C and D be defined as follows:

C = {(x, 0) ∈ R2 : x ≥ 0}

D = {(0, y) ∈ R2 : y ≥ 0}.

These sets are nonempty, bounded, closed, and convex. C0 includes all points in C with y = 0, which is the entire
nonnegative x-axis, and D0 includes all points in D with x = 0, which is the entire nonnegative y-axis. So, (C,D) is
a proximinal pair. Let L : C ∪D→ C ∪D be defined as

L(x, y) =

(0,
√

x) if x > 0,
(
√

y, 0) if y > 0.

This mapping L is cyclic and relatively nonexpansive. For the functions ϕ(t) = t, ξ(t) = λt for some λ ∈ (0, 1),
F(τ, µ) = τ+µ, and β(t) = t, it is easy to see that L satisfies all the conditions of Theorem 3.4 , ensuring that L admits
the best proximity point.

We can see that L does not satisfy the equation (4), and conditions of Theorem 2.10, hence Theorem 2.10 and
Theorem 2.12 do not apply to this example.

4. Application to optimal solution of Caputo’s fractional differential equations

In this section, we apply our main results to study the existence of optimum solutions for a system of
Caputo fractional differential equations with initial conditions featuring integral order derivatives.
Let J = [0, τ], τ > 0 and (Y, ∥ · ∥) be a Banach space. Let V1 = B(u0, κ) and V2 = B(v0, κ) be closed balls in Y,
where κ is real number and u0, v0 ∈ Y. Assume that f : J×V1 → Y, 1 : J×V2 → Y are continuous functions.
Let us take the following system of Caputo fractional differential equations of arbitrary order featuring
initial conditions at integer derivatives [8]:cDγ

0 u(t) = f (t,u(t)),
u(0) = u(0)

0 , u′(0) = u(1)
0 , ...,u

m−1(0) = u(m−1)
0 ;

(9)

cDγ
0 v(t) = 1(t, v(t)),

v(0) = v0
0, v′(0) = v(1)

0 , ..., v
m−1(0) = v(m−1)

0 ,
(10)

where m = ⌈γ⌉ denotes the integer such that γ− 1 < m ≤ γ; cDγ
0 is the Caputo fractional differential operator

of order γ > 0 with cDγ
0 h := Dγ

0 [h − Tm−1[h; 0]]; Dγ
0 is Riemann-Liouville fractional differential operator of

order γ > 0; Tm−1[h; 0] denotes the Taylor polynomial of degree m − 1 for the function h, centred at 0.

Lemma 4.1. [8, Lemma 6.2] The initial value problem (9) is equivalent to the following integral equation:

u(t) =
m−1∑
i=0

tiu(i)
0

i!
+

1
Γ(γ)

t∫
0

(t − r)γ−1 f (r,u(r))dr, t ∈ I.
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Let I ⊆ J and S = C(I,Y) be Banach space of continuous functions from I into Y with supremum norm. Let

S1 := C(I,V1) = {u ∈ C(I,Y) : u(0) = u(0)
0 , u′(0) = u(1)

0 , ...,u
m−1(0) = u(m−1)

0 },

S2 := C(I,V2) = {v ∈ C(I,Y) : v(0) = v0
(0), v′(0) = v(1)

0 , ..., v
m−1(0) = v(m−1)

0 }.

So, (S1,S2) is nonempty, bounded, closed and convex pair in S × S. Now for every p ∈ S1 and q ∈ S2, we
have ∥p − q∥ = sup ∥p(r) − q(r)∥ ≥ ∥u(0)

0 − v(0)
0 ∥, so dist(S1,S2) = ∥u(0)

0 − v(0)
0 ∥.

Now, let us define the operator L : S1 ∪ S2 → S as follows:

Lu(t) =


m−1∑
i=0

tiv(i)
0

i! +
1
Γ(γ)

t∫
0

(t − r)γ−11(r,u(r))dr, u ∈ S1,

m−1∑
i=0

tiu(i)
0

i! +
1
Γ(γ)

t∫
0

(t − r)γ−1 f (r,u(r))dr, u ∈ S2.

(11)

Lemma 4.2. [22] The operator L : S1 ∪ S2 → S defined by (11) is cyclic if

max

m−1∑
i=0

tiv(i)
0

i!
+

M1τγ

Γ(γ + 1)
,

m−1∑
i=0

tiu(i)
0

i!
+

M2τγ

Γ(γ + 1)

 ≤ η,
where M1 = sup{| f (r,u(r))| : r ∈ I,u ∈ S1} and M2 = sup{|1(r,u(r))| : r ∈ I,u ∈ S2}.

Assumptions:

(N1) For any bounded pair (P1,P2) ⊆ (V1,V2),

ϕ
[
F
(
ν( f (I × P2)) ∪ ν(1(I × P1)), β(ν( f (I × P2) ∪ (ν(1(I × P1))))

)]
≤ ξ(ϕ[F(ν(P1 ∪ P2), β(ν(P1 ∪ P2)))]β(ν(P1 ∪ P2))).

(N2) There exists ρ ≥ 0 such that∣∣∣∣∣∣∣
m−1∑
i=0

ti
(
u(i)

0 − v(i)
0

)
i!

∣∣∣∣∣∣∣ ≤ ρ, ∀ t ∈ I,

and ∥ f (t,u(t)) − 1(t, v(t))∥ ≤ (Γ(γ+1))
τγ (∥u(t) − v(t)∥ − ρ), for all (u, v) ∈ S1 × S2.

For fractional differential, we recall the Mean-Value Theorem.

Theorem 4.3. [5] Let f be integrable on I and let M and m be the supremum and infimum of f respectively on I.
Then there exists a point ξ in I such that

1
Γ(γ)

t∫
0

(t − r)γ−1 f (r,u(r))dr =
tγ−1

Γ(γ)
f (ζ,u(ζ)). (12)

Theorem 4.4. Under the hypothesis of Lemma 4.2, hypotheses (N1) and (N2), the system in (9)-(10) has an optimum
solution whenever tγ−1

Γ(γ) ≤ 1.

Proof. By using Lemma 4.2, L is a cyclic operator. It is easy to see that L(S1) is bounded subset of S2. We
prove that L(S1) is also an equicontinuous subset of S2.
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For γ ∈ [0, 1] and for t1, t2 ∈ I with t1 < t2 and u ∈ S1, we have

∥Lu(t1) − Lu(t2)∥ =

∥∥∥∥∥∥∥∥ 1
Γ(γ)

t1∫
0

(t1 − r)γ−11(r,u(r)) dr −
1
Γ(γ)

t2∫
0

(t2 − r)γ−11(r,u(r)) dr

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥ 1
Γ(γ)

t1∫
0

((t1 − r)γ−1
− (t2 − r)γ−1)1(r,u(r)) dr −

1
Γ(γ)

t2∫
t1

(t2 − r)γ−11(r,u(r)) dr

∥∥∥∥∥∥∥∥
≤ [2(t2 − t1)γ + tγ1 − tγ2 ]

M1

Γ(γ + 1)

≤ (t2 − t1)γ
M1

Γ(γ + 1)
.

If γ > 1, then the polynomial
m−1∑
i=0

tiv(i)
0

i! has uniformly bounded and continuous derivatives on I, and there

exists K > 0 such that∣∣∣∣∣∣∣
m−1∑
i=0

ti
1v(i)

0

i!
−

m−1∑
i=0

ti
2v(i)

0

i!

∣∣∣∣∣∣∣ ≤ K|t1 − t2|.

Thus, for γ > 1 and for any t1, t2 ∈ I with t1 ≤ t2 and (t2 − t1) ≤ 1, we have

∥Lu(t1) − Lu(t2)∥ =

∥∥∥∥∥∥∥∥
m−1∑
i=0

ti
1v(i)

0

i!
−

m−1∑
i=0

ti
2v(i)

0

i!
+

1
Γ(γ)

t1∫
0

(t1 − r)γ−11(r,u(r))dr −
1
Γ(γ)

t2∫
0

(t2 − r)γ−11(r,u(r))dr

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
m−1∑
i=0

ti
1v(i)

0

i!
−

m−1∑
i=0

ti
2v(i)

0

i!

∥∥∥∥∥∥∥ +
∥∥∥∥∥∥∥∥ 1
Γ(γ)

t1∫
0

(t1 − r)γ−11(r,u(r))dr −
1
Γ(γ)

t2∫
0

(t2 − r)γ−11(r,u(r))dr

∥∥∥∥∥∥∥∥
= sup

∣∣∣∣∣∣∣
m−1∑
i=0

ti
1v(i)

0

i!
−

m−1∑
i=0

ti
2v(i)

0

i!

∣∣∣∣∣∣∣+
sup

∣∣∣∣∣∣∣∣ 1
Γ(γ)

t1∫
0

(t1 − r)γ−11(r,u(r))dr −
1
Γ(γ)

t2∫
0

(t2 − r)γ−11(r,u(r))dr

∣∣∣∣∣∣∣∣
≤ K sup |t1 − t2| + sup[2(t2 − t1)γ + tγ1 − tγ2 ]

M1

Γ(γ + 1)

≤ sup |t1 − t2|

(
K +

2M1

Γ(γ + 1)

)
=

(
K +

2M1

Γ(γ + 1)

)
∥t2 − t1∥.

Now, for given ϵ > 0, we may choose δ = ϵΓ(γ+1)
KΓ(γ+1)+2M1

, then we have
∥Lu(t1)−Lu(t2)∥ < ϵwhenever ∥t2− t1∥ < δ. Thus, L(S1) is equicontinuous. Similarly, we can prove that L(S2)
is bounded and equicontinuous subset of S1. Thus, by using Arzela-Ascoli theorem, (S1,S2) is relatively
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compact. Now we prove that L is relatively nonexpansive. For any (u, v) ∈ S1 × S2, we have

∥Lu(t) − Lv(t)∥ =

∥∥∥∥∥∥∥∥


m−1∑
i=0

tiv(i)
0

i!
+

1
Γ(γ)

t∫
0

(t − r)γ−11(r,u(r))dr

 −


m−1∑
i=0

tiu(i)
0

i!
+

1
Γ(γ)

t∫
0

(t − r)γ−1 f (r, v(r))dr


∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
m−1∑
i=0

tiv(i)
0

i!
−

m−1∑
i=0

tiu(i)
0

i!

∥∥∥∥∥∥∥ +
∥∥∥∥∥∥∥∥ 1
Γ(γ)

t∫
0

(t − r)γ−11(r,u(r))dr −
1
Γ(γ)

t∫
0

(t − r)γ−1 f (r, v(r))dr

∥∥∥∥∥∥∥∥
≤ ρ +

1
Γ(γ)

(Γ(γ + 1))
τγ

t∫
0

(t − r)γ−1(∥u(r) − v(r)∥ − ρ)ds (by assumption (N2))

≤ ρ + (∥u(t) − v(t)∥ − ρ) = ∥u(t) − v(t)∥.

Hence, ∥Lu(t) − Lv(t)∥ ≤ ∥u(t) − v(t)∥. Therefore, L is relatively nonexpansive.

Now, we shall show L satisfies condition (5). Suppose that (R1,R2) ⊆ (S1,S2) is nonempty, bounded,
convex, closed, proximinal pair which is L-invariant and such that dist(R1,R2) = dist(S1,S2) = ∥x0 − y0∥.
Now

ϕ
[
F
(
ν((LR1) ∪ (LR2)), β(ν(LR1) ∪ (LR2))

)]
= ϕ

[
F
(
max{ν(LR1), ν(LR2)}), β(max{ν(LR1), ν(LR2)})

)]
.

Using theorem 2.11 of [25] and assumption (N1), we have

max{ν(LR1), ν(LR2)} = max
{

sup
t∈I
{ν(Lu(t) : u ∈ R1)}, sup

t∈I
{ν(Lv(t) : v ∈ R2)}

}

= max
{
sup

t∈I

{
ν
(m−1∑

i=0

tiv(i)
0

i!
+

1
Γ(γ)

t∫
0

(t − r)γ−11(r,u(r))ds : u ∈ R1

)}
,

sup
t∈I

{
ν
(m−1∑

i=0

tiu(i)
0

i!
+

1
Γ(γ)

t∫
0

(t − r)γ−1 f (r, v(r))dr : v ∈ R2

)}}
.

From Theorem 4.3, it follows that

max{ν(LR1), ν(LR2)}

≤ max
{
sup

t∈I

{
ν
(m−1∑

i=0

tiv(i)
0

i!
+

sγ−1

Γ(γ)
1(ζ,u(ζ)) : u ∈ R1, ζ ∈ [0, t]

)}
,

sup
t∈I

{
ν
(m−1∑

i=0

tiu(i)
0

i!
+

sγ−1

Γ(γ)
f (ζ, v(ζ)) : v ∈ R2, ζ ∈ [0, s]

)}}
= max

{
sγ−1

Γ(γ)
ν
(
1(I × R1)

)
,

sγ−1

Γ(γ)
ν
(

f (I × R2)
)}

=
sγ−1

Γ(γ)
{
ν
(
1(I × R1) ∪ f (I × R2)

)}
≤

{
ν
(
1(I × R1) ∪ f (I × R2)

)}
.
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Hence,

ϕ
[
F
(
ν((LR1) ∪ (LR2)), β(ν(LR1) ∪ (LR2))

)]
≤ ϕ

[
F
({
ν
(
1(I × R1) ∪ f (I × R2)

)}
), β(

{
ν
(
1(I × R1) ∪ f (I × R2)

)})]
≤ ξ

[
ϕ

(
F
(
ν (R1 ∪ R2) , β (ν (R1 ∪ R2))

))]
β (ν (R1 ∪ R2)) (by assumption N1).

Therefore, L satisfies all the conditions of Theorem 3.4. Hence L admits a best proximity point y ∈ S1∪S2
which is an optimal solution for the system (9) and (10).

5. Conclusion

In this work, we introduced a new condensing operator and extended the results given by Gabeleh
and Markin that every cyclic (noncyclic) relatively nonexpansive mapping, which is condensing, has the
best proximity point (pair) (Theorems 2.11, 2.12). We have extended these theorems by considering some
appropriate class of functions defined in [3, 16, 19] and applying it to find the optimum solution for systems
of Caputo fractional differential equations.
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