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New results on finite-time stability of nonlinear fractional-order
multi-time delay systems: Delayed Gronwall inequality approach
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Abstract. In this paper, finite time stability (FTS) analysis of fractional-order nonlinear multi-time delay
systems is studied. By use of a fractional Gronwall inequality with time delay, new FTS criteria for proposed
systems are established. Two numerical examples are given to illustrate the effectiveness of the obtained
theoretical results.

1. Introduction

During past decades, a substantial effort has been made to study the stability and stabilization problem
for nonlinear systems with time delays. In practice, there is not only an interest in system stability (e.g. in
the sense of Lyapunov), but also in the bounds of system trajectories, (known as non-Lyaponov stability
- finite time stability (FTS)). For a system, it is said to be FTS once a time interval is fixed, if its state does
not exceed some bounds during this time interval, [1]. Control design and stability issues of time-delay
systems (TDS) were widely studied due to the effect of delay phenomena on system dynamics, which it
often leads to poor performance or even instability, [25],[9]. Recently, the use of fractional calculus methods
has been quite prominent in mathematical modeling and control of various processes and phenomena.
Also, fractional order dynamical systems have drawn much attention from researchers and engineers over
the past few decades, particularly for different kinds of stability, [17]. Stability analysis of the time delay
systems of fractional order is more complicated than that of ordinary fractional differential equations,
because fractional derivatives are nonlocal and have weakly singular kernels that usually have complicated
structures, [18],[10].

Here, we are interested in FTS, where checking the FTS of time-delay fractional-order systems is initially
suggested and presented in [11],[12] using (generalized) Gronwall inequality (GGI), and later in [15],[13].
Namely, Gronwall-type inequalities, also known as Gronwall–Bellman inequalities, are essential tools for
analysis of the behavior of solution of differential equations with integer/fractional order and serve to check
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the boundedness property of the considered system, [22],[19],[24],[2],[20],[3],[16]. Recently, authors [4],[5]
introduced and applied a fractional Gronwall inequality with time delay (FGIT).

To the best of our knowledge, the problem of finding conditions of the FTS for the nonstationary
nonlinear fractional-order system with state and control time delays using FGIT has not been considered
yet. In this contribution, motivated from the above, we were inspired to study, for the first time, the FTS of
a single term 0 < α < 1 and two term 0 < β < α < 1 fractional order system with time delay in state and control,
via fractional Gronwall inequality with time delay approach.

The core contributions and novelties of this paper can be stated as follows:

• So far, there are very few research papers on nonlinear nonstationary two term fractional order systems
with time delays in the state. Particularly, we consider the case of FOTDS with time delays in state
and control.

• By implementing a fractional Gronwall inequality with time delay we derive the FTS conditions, i.e.
new criteria are obtained for nonlinear a single term 0 < α < 1 and two term 0 < β < α < 1 fractional
order system with time delays.

• The formulated FTS conditions can be easily validated by two numerical examples.

The rest of this contribution is organized as follows. Some basic definitions and lemmas on fractional
calculus as well as on nonlinear time-delay systems of fractional order are given in Section 2. In Section 3,
a new criteria of robust FTS of nonstationary nonlinear fractional-order system with state and control time
delays is established. Two numerical examples are presented to illustrate the application and verify the
effectiveness of theoretical results in Section 4. Finally, this paper ends with a conclusion in Section 5.

2. Preliminaries and problem statement

2.1. Preliminaries
For completeness, this section provides system formulation and some useful properties to derive our

required results. The norm ∥ (·) ∥ will denote any vector norm, i.e. ∥ (·) ∥1, ∥ (·) ∥2, or ∥ (·) ∥∞, or the cor-
responding matrix norm induced by the equivalent vector norm, i.e. 1-, 2-, or ∞- norm, respectively.
Also, we introduce some basic notations, definitions of the Caputo and Riemann–Liouville (RL) fractional
derivatives, special functions, as well as basic lemmas.

Definition 2.1. The Riemann–Liouville fractional integral of order α for an integrable function f (t) : [t0,∞) → R
is defined as [18]:

RL
t0

D−αt f (t) ≡ t0 Iαt f (t) =
1
Γ(α)

∫ t

t0

(t − s)α−1 f (s)ds, t ≥ t0, α ∈ C, t > 0, Re(α) > 0, (1)

where Γ(·) is the Gamma function, Γ(ξ) =
∫
∞

0 sξ−1e−sds.

Definition 2.2. [18] The left Caputo fractional derivative of order α, (n − 1 ≤ α < n ∈ Z+) of the function f (t) is:

CDαt0,t f (t) =
1

Γ(n − α)

∫ t

t0

(t − τ)n−α−1 f (n)(τ)dτ, (2)

where f (n)(τ) = dn f (τ)
dτn .

Definition 2.3. [10] The Mittag-Leffler function with one parameter is given as:

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, (α = 1, E1(z) = ez) , α > 0, z ∈ C. (3)
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Definition 2.4. [10] The Beta function can be defined as follows:

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt =

Γ(p) · Γ(q)
Γ(p + q)

, (4)

where p, q > 0.

Lemma 2.5. [10]

0Iαt
(

cDα0 x(t)
)
= x(t) −

n−1∑
k=0

tk

k!
x(k)(0), n − 1 < α < n, t < 0. (5)

Lemma 2.6. Let α > β > 0, n − 1 < β < n and x(t) ∈ ACn[a, b]. Then

0Iαt
(

cDα0 x(t)
)
= 0Iα−βt x(t) −

n−1∑
k=0

tk+α−β

Γ(α − β + k + 1)
x(k)(0). (6)

Lemma 2.7. (Generalized Gronwall Inequality) Suppose α > 0, z(t) ν(t) are nonnegative and local integrable on
0 ≤ t ≤ T, T ≤ +∞ and 1(t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t ≤ T, 1(t) ≤ M =
const, α > 0 with

z(t) ≤ ν(t) + 1(t)
∫ t

0
(t − s)α−1z(s)ds (7)

on this interval. Then

z(t) ≤ ν(t) +
∫ t

0

 ∞∑
n=1

(
1(t)Γ(α)

)n

Γ(nα)
(t − s)nα−1a(s)

 ds, 0 ≤ t < T (8)

Corollary 2.8. Under the hypothesis of Lemma 2.7, let ν(t) be a nondecreasing function on [0,T). Then it holds:

z(t) ≤ ν(t)Eα
(
1(t)Γ(α)tα

)
(9)

where Eα is the Mittag-Leffler function.

Lemma 2.9. (extended from the GGI), [21] Suppose non-integer orders α > 0, β > 0, ν(t) is a nonnegative func-
tion locally integrable on [0,T), 11(t) and 12(t) are nonnegative, nondecreasing, continuous functions defined on
[0,T), 11(t) ≤ N1, 12(t) ≤ N2, (N1,N2 = const). Suppose z(t) is nonnegative and locally integrable on [0,T) with

z(t) ≤ ν(t) + 11(t)
∫ t

0
(t − s)α−1z(s)ds + 12(t)

∫ t

0
(t − s)β−1z(s)ds, t ∈ [0,T). (10)

It follows,

z(t) ≤ ν(t) +
∫ t

0

∞∑
n=1

[
1(t)

]n
·

n∑
k=0

Ck
n [Γ(α)]n−k [Γ(β)]k

Γ
(
(n − k)α + kβ

) (t − s)(n−k)α+kβ−1ν(s)ds, t ∈ [0,T), (11)

where 1(t) = 11(t) + 12(t) and Ck
n =

n(n−1)(n−1)···(n−k+1)
k! .

Corollary 2.10. Under the hypothesis of Lemma 2.9, let ν(t) be a nondecreasing function on [0,T). Then

z(t) ≤ ν(t)Eω
[
1(t)

(
Γ(α)tα + Γ(β)tβ

)]
, ω = min (α, β). (12)
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Lemma 2.11. [5] (Fractional-Order Gronwall Integral Inequality With Time Delay): FOGITD - single case. Assume
that z(t), c(t), d(t), h(t) and k(t) are continuous, nonnegative functions on [t0,T] , Ψ(t) is continuous, nonnegative
function on [t0 − l,T] with

z(t) ≤ c(t) +
d(t)
Γ(γ)

∫ t

t0

(t − s)γ−1 [h(s)z(s) + k(s)z(s − l)] ds, t ∈ [t0,T] ,

z(t) ≤ φ(t), t ∈ [t0 − l, t0] .
(13)

Then

z(t) ≤
{

F(t) + G(t)
∫ t

t0

exp
(∫ t

r
G(s)H(s)ds

)
[H(r)F(r) + K(r)Ψ(r − l)] dr

} 1
q

, (14)

for [t0, t0 + l] and

z(t) ≤


F(t) + G(t)

∫ t0+l

t0
exp

(∫ t0+l

r G(s)H(s)ds
)

[H(r)F(r) + K(r)Ψ(r − l)] dr

exp
[∫ t0

t0+l [K(r)G(r − l) + G(r)H(r)] dr
]

+G(t)
∫ t

t0+l exp
[∫ t

r [K(s)G(s − l) +H(s)G(s)] ds
]

[F(r)H(r) + K(r)F(r − l)] dr


1
q

, (15)

for [t0 + l,T]. Furthermore, if c(t), d(t) and Psi(t) are nondecreasing functions, c(t), d(t) andΨ(t), c(t0) = Ψ(t0)

z(t) ≤ F
1
q (t) exp

(
G(t)

q

∫ t

t0

[K(s) +H(s)] ds
)
. (16)

For t ∈ [t0,T] where G(t) = 3q−1 d(t)(t−t0)
γ−1

q(
Γ(γ)(p(γ−1)+1)

1
p
)q , F(t) = 3q−1cq(t), H(t) = hq(t) and K(t) = kq(t), p, q > 1 satisfying

γ > 1
q and 1

q +
1
p = 1.

Lemma 2.12. [6], FOGITD with two different orders. Assume that c(t), d(t), f (t), k1(t), k2(t), h1(t), h2(t) ∈
AB ([0,T] ,R+) , (0 < T,∞) , γ, λ > 0 are continuous, nonnegative functions on [0,T] , φ(t) is continuous, nonneg-
ative function on [−l,T] , φ(t) ∈ AB ([−l, 0] ,R+) , c(0) = φ(0) and z(t) ∈ AB ([−l,T] ,R+)

z(t) ≤ c(t) +
d(t)
Γ(γ)

∫ t

0
(t − s)γ−1 [h1(s)z(s) + k1(s)z(s − l)] ds

+
f (t)
Γ(λ)

∫ t

0
(t − s)λ−1 [h2(s)z(s) + k2(s)z(s − l)] ds, t ∈ [0,T]

z(t) ≤ φ(t), t ∈ [−l, 0]

(17)

Then

z(t) ≤ F
1
q (t) exp

(
G(t) ·

2t
q

)
, t ∈ [0,T] (18)

where

Q(t) = 3q−1

 d(t)
Γ(γ)

tγ−
1
q · h1(t)(

p(γ − 1) + 1
) 1

p

+
f (t)
Γ(λ)

tλ−
1
q · h2(t)(

p(λ − 1) + 1
) 1

p


q

, (19)

R(t) = 3q−1

 d(t)
Γ(γ)

tγ−
1
q · k1(t)(

p(γ − 1) + 1
) 1

p

+
f (t)
Γ(λ)

tλ−
1
q · k2(t)(

p(λ − 1) + 1
) 1

p


q

, (20)

G(t) = max {R(t),Q(t)}, p, q > 0, F(t) = 3q−1
· cq(t), p, q > 0 satisfying 1

p +
1
q = 1, γ > 1

q and λ < 1
q .
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Corollary 2.13. [6], FOGITD with multiple different orders. Assume that c(t), di(t), ki(t), hi(t) ∈ AB ([0,T] ,R+),
(0 < T < ∞) , λi > 0, i = 1, 2, ...,n, nondecreasing functions, φ(t) ∈ AB ([−l, 0] ,R+), c(0) = φ(0) and z(t) ∈
AB ([0,T] ,R+) with

z(t) ≤ c(t) +
n∑

i=1

di(t)
Γ(λi)

∫ t

0
(t − s)λi−1 [hi(s)z(s) + ki(s)z(s − l)] ds,

z(t) ≤ φ(t), t ∈ [−l, 0] .

(21)

Then,

z(t) ≤ F
1
q (t) exp

(
G(t) ·

2t
q

)
, t ∈ [0,T] (22)

where

Q(t) = (n + 1)q−1

 n∑
i=1

di(t)
Γ(λi)

tλi−
1
q · hi(t)

(p(λi − 1) + 1)
1
p


q

,R(t) = (n + 1)q−1

 n∑
i=1

di(t)
Γ(λi)

tλi−
1
q · ki(t)

(p(λi − 1) + 1)
1
p


q

(23)

G(t) = max {R(t),Q(t)}, p, q > 0, F(t) = (n + 1)q−1
· cq(t), p, q > 0 satisfying 1

p +
1
q = 1, and λi =

1
q .

Lemma 2.14. [7], (Theorem 1.) Let λ > 0, (0 < T < ∞), c(t), d(t), k(t), h(t), z(t), be nonnegative continuous
functions defined on [t0,T], as well as φ(t) be a nonnegative continuous function defined on [t0 − l, t0] and suppose

z(t) ≤ c(t) +
d(t)
Γ(λ)

∫ t

t0

(t − s)λ−1 [h(s)z(s) + k(s)z(s − l)] ds, t ∈ [t0,T] ,

z(t) ≤ φ(t), t ∈ [t0 − l, t0] .
(24)

Furthermore, if c(t), d(t), φ(t) are nondecreasing, c(t0) = φ(t0) then

z(t) ≤ c(t)

1 + (
exp

(∫ t

t0

2q−1Bq(t) (h(s) + k(s))q ds
)
− 1

) 1
q
 , t ∈ [t0,T] , (25)

where p, q > 0 such that λ > 1
q ,

1
p +

1
q = 1 and

B(t) =
d(t)(t − t0)λ−

1
q

Γ(λ)
(
p(λ − 1) + 1

) 1
p

. (26)

Lemma 2.15. [8], (Theorem 1.) Assume that λ > 0, (0 < T < ∞), c(t), k(t), h(t), z(t) ∈ C ([0,T] ,R+), as well as
φ(t) ∈ C ([−l, 0] ,R+) and c(t), φ(t) be nondecreasing, with c(0) = φ(0). If c(t) ∈ C ([−l,T] ,R+) and

z(t) ≤ c(t) +
1
Γ(λ)

∫ t

0
(t − s)λ−1 [h(s)z(s) + k(s)z(s − l)] ds,

z(t) ≤ φ(t), t ∈ [−l, 0]
(27)

then

z(t) ≤
[
F(t) exp

(∫ t

0
(Q(s) + R(s)) ds

)]ζ
, t ∈ [0,T] , (28)

where

R(t) =
4

1
ζ−1

Γ
1
ζ (ζ)

(
B
(
ξ − ζ
1 − ζ

)
,

1 − ξ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · k

1
ζ (t), Q(t) =

4
1
ζ−1

Γ
1
ζ (ζ)

(
B
(
ξ − ζ
1 − ζ

)
,

1 − ξ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · h

1
ζ (t), (29)

F(t) = 2
1
ζ−1
· c

1
ζ , 0 < ζ < ξ < 1 and B(·, ·) is the Beta function, defined by (4).
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2.2. Problem statement

a) Case: one term 0 < α < 1
We first consider the following nonstationary nonlinear fractional-order 0 < α < 1 delay system with

state and control time delays given by the following equation:

cDαt x(t) = A0(t)x(t) + A1(t)x(t − lx) + B0u(t) + B1u(t − lu) +Dw(t) + g(t, x(t), x(t − lx),w(t)) (30)

with associated continuous functions of initial state and input (control):

x(t) =Ψx(t), t ∈ [−lx, 0] , u(t) =Ψu(t), t ∈ [−lu, 0] , (31)

where lu is the time input delay, lx is the time state delay; x(t) ∈ Rn is the state vector and u(t) ∈ Rm is
the control input; A0(t),A1(t), are time-varying matrices as well as B0,B1,D denote constant matrices with
appropriate dimensions. Behavior of system (30) with given initial function (32) is observed over time
interval J = [t0, t0 + T] ∈ R, where T may be either a real positive number or symbol ∞. The w(t) ∈ Rn

is the disturbance vector, which has the upper bound as follows: ∥w(t)∥ < χw, χw = const > 0,∀t ∈
J. Ψx(t) ∈ C ([−lx, 0] ,Rn) is the initial function of x(t) with the norm ∥Ψx∥C = sup

−l≤s≤0 ∥Ψx(s)∥. Here,
the following assumption for the nonlinear perturbation g(·) is introduced. The nonlinear perturbation
g (t, x(t), x(t − lx),w(t)) satisfies the condition, i.e. there is a continuous function M(t) on [0,+∞] such that

∥g(t, x(t), x(t − lx),w(t))∥ ≤M(t) (∥x(t)∥ + ∥x(t − lx)∥ + ∥w(t)∥) (32)

Also, matrices A0(t),A1(t) contain time-varying structural uncertainties∆Ai(t), i = 1, 2 satisfying the follow-
ing

A0(t) = A0 + ∆A0(t), A1(t) = A1 + ∆A1(t), (33)

where A0,A1 are known constant matrices. The norm ∥x(t)∥∞ will be used here as well

sup
t∈[0,T]

∥∆A0(t)∥ = ∆a0, sup
t∈[0,T]

∥∆A1(t)∥ = ∆a1,

sup
t∈[0,T]

∥A0(t)∥ + ∥A1(t)∥ < ∞, sup
t∈[0,T]

∥G(t)∥ = 1, sup
t∈[0,T]

∥M(t)∥ = m.
(34)

Definition 2.16. [12],[14]: The nonlinear fractional-order 0 < α < 1 delay system with state and control time
delays given by nonhomogenous state equation (30) satisfying initial conditions (31) is finite-time stable w.r.t.
{δ, ε, t0, χu, χ0, J, ∥(·)∥} , 0 < δ < ε, if and only if:

∥Ψx∥C < δ, ∥Ψu∥C < χ0,
∥u(t)∥ < χu, ∀t ∈ J,

}
⇒ ∥x(t)∥ < ε, ∀t ∈ J. (35)

where χ0, χu are positive constants.

Definition 2.17. [12]: The nonlinear fractional-order 0 < α < 1 delay system with state delays given by homogeneous
state equation (30) u(t) ≡ 0,u(t− lu) ≡ 0, satisfying initial conditions (31) is finite-time stable w.r.t. {δ, ε, t0, J, ∥(·)∥},
0 < δ < ε, if and only if:

∥Ψx∥C < δ ⇒ ∥x(t)∥ < ε, ∀t ∈ J. (36)

Definition 2.18. [12]: The nonlinear fractional-order 0 < α < 1 delay system with state delays given by homogeneous
state equation (30) u(t − lu) ≡ 0, satisfying initial conditions (31) is finite-time stable w.r.t. {δ, ε, t0, χu, J, ∥(·)∥},
0 < δ < ε, if and only if:

∥Ψx∥C < δ, ∥u(t)∥ < χu ⇒ ∥x(t)∥ < ε, ∀t ∈ J. (37)
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b) Case: two-term 0 < β < α < 1 FOTDS
Further, we will consider the nonstationary nonlinear fractional-order two-term 0 < β < α < 1 delay

system with state and control time delays given by the following equation:

cDαt x(t) = A0(t)x(t) + A1(t)x(t − lx) + AN2(t)cDβt x(t − lxn2) + B0u(t) + B1u(t − lu)
+ g(t, x(t), x(t − lx),w(t))

(38)

with associated continuous functions of initial state and input (control):

x(t) =Ψx(t), t ∈ [−l, 0] , u(t) =Ψu(t), t ∈ [−lu, 0] , (39)

where lu is the time input delay, lx, ln2 are the time state delays, and without losing generality it is assumed
that lx = ln2 = l.

3. Main results

3.1. Robust FTS of one-term 0 < α < 1 nonlinear fractional-order multi-time delay system
Theorem 3.1. The nonstationary nonlinear one-term fractional order time-varying delay system (30) satisfying
initial conditions (31) is finite-time stable w.r.t. {δ, ε, t0, χu, χ0, J, ∥(·)∥}, δ < ε if the following condition holds:

3
q−1

q exp
[

G(t)
q

(
aq

om + aq
1m

)
t
]
+
χ∗0u|t|

α

Γ(α + 1)
+
χ∗10lαu
Γ(α + 1)

+
χ∗mw|t|α

Γ(α + 1)
+
χ∗1u|t − lu|α

Γ(α + 1)
≤
ε
δ

(40)

where χ∗0u =
b0χu
δ , χ∗10 =

b1χ0
δ , χ∗1u =

b1χu
δ , χ∗mw =

dmχw
δ , ∥A0∥ = a0, ∥A1∥ = a1, ∥B0∥ = b0, ∥B1∥ = b1, ∥D∥ = d,

G(t) = 3q−1t
α−1

q(
Γ(α)(p(α−1)+1)

1
p
)q

Proof: The fractional order satisfies 0 < α < 1, and solution can be obtained in the form of the equivalent
Volterra integral equation, where is t0, lx = l

x(t) = Ψx(0) +
1
Γ(α)

∫ t

0
(t − s)α−1

[
A0(s)x(s) + A1(s)x(s − l) + B0u(s)
+B1u(s − lu) +Dw(s) + g(s, x(s), x(t − l),w(s))

]
ds. (41)

Applying the norm ∥(·)∥ and previous assumptions to the previous expression it follows:

∥x(t)∥ ≤ ∥Ψx(0)∥ +
1
Γ(α)

∫ t

0
|t − s|α−1

[
∥A0(s)∥∥x(s)∥ + ∥A1(s)∥∥x(s − l)∥ + ∥B0∥∥u(s)∥ + ∥B1∥∥u(s − lu)∥
+∥D∥∥w(s)∥ +M(s) (∥x(s)∥ + ∥x(s − l)∥ + ∥w(s)∥)

]
ds.

(42)

On the other hand, there are:∥∥∥A0(t)x(t) + A1(t)x(t − l) + B0u(t) + B1u(t − lu) +Dw(t) + g(t, x(t), x(t − l),w(t))
∥∥∥

≤ ∥A0(t)∥∥x(t)∥ + ∥A1(t)∥∥x(t − l)∥ + ∥B0∥∥u(t)∥
+ ∥B1∥∥u(t − lu)∥ + ∥D∥∥w(t)∥ +M(t) (∥x(t)∥ + ∥x(t − l)∥ + ∥w(t)∥)
≤ (a0 + ∆a0 +m) ∥x(t)∥ + (a1 + ∆a1 +m) ∥x(t − l)∥ + b1∥u(t − lu)∥ + (d +m)∥w(t)∥
= aom∥x(t)∥ + a1m∥x(t − l)∥ + b0∥u(t)∥ + b1∥u(t − lu)∥ + dm∥w(t)∥.

(43)

Combining the previous two expressions, taking into account ∥u(t)∥ < χu, ∥w(t)∥ < χw, ∀t ∈ J, it yields:

∥x(t)∥ ≤ ∥Ψx∥C +
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds

+
b1

Γ(α)

∫ t

lu
|t − s|α−1 [∥u(s − lu)∥] ds +

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)

(44)
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or

∥x(t)∥ ≤ ∥Ψx∥C +
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds

+
b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)

(45)

Let t0 = 0, c(t) = ∥Ψx∥C, d(t) = 1, z(t) = ∥x(t)∥, φ(t) = ∥Ψx∥C, h(t) = a0m, k(t) = a1m. It is obvious that
c(0) = φ(0) = ∥Ψx∥C and c(t), d(t) and φ(t) are nondecreasing functions. Applying Lemma 2.11, on the
inequality (45) one can gain the following inequality

∥x(t)∥ ≤ 3
q−1

q c(t) ·exp
(

G(t)
q

∫ t

0
(K(s) +H(s)) ds

)
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T] (46)

where are G(t) = 3q−1t
α−1

q(
Γ(α)(p(α−1)+1)

1
p
)q , H(t) = aq

om and K(t) = aq
1m, p, q > 1 satisfying α > 1

q and 1
q +

1
p = 1. Therefore,

one has

∥x(t)∥ ≤ 3
q−1

q ∥Ψx∥C exp
[

G(t)
q

(
aq

om + aq
1m

)
t
]
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T]. (47)

Finally, using the basic condition of Theorem 3.1, and ∥Ψx∥C < δ, we can obtain the required FTS condition:
∥x(t)∥ < ε, ∀t ∈ J.

Theorem 3.2. The nonstationary nonlinear one-term fractional order time-varying delay system (30) satisfying
initial conditions (31) is finite-time stable w.r.t. {δ, ε, t0, χu, χ0, J, ∥(·)∥}, δ < ε if the following condition holds:1 + (

exp
(∫ t

0
2q−1Bq(t) (h(s) + k(s))q ds

)
− 1

) 1
q
 + χ∗0u|t|

α

Γ(α + 1)
+
χ∗10lαu
Γ(α + 1)

+
χ∗mw|t|α

Γ(α + 1)
+
χ∗1u|t − lu|α

Γ(α + 1)
≤
ε
δ

(48)

where χ∗0u =
b0χu
δ , χ∗10 =

b1χ0
δ , χ∗1u =

b1χu
δ , χ∗mw =

dmχw
δ , ∥A0∥ = a0, ∥A1∥ = a1, ∥B0∥ = b0, ∥B1∥ = b1, ∥D∥ = d,

B(t) = t
α−1

q

Γ(α)(p(α−1)+1)
1
p

, p, q > 0, α > 1
q , 1

p +
1
q = 1.

Proof: Applying same procedure from Proof of Theorem 3.1, t0 = 0, lx = l, we can easily get

∥x(t)∥ ≤ ∥Ψx∥C +
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds

+
b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
.

(49)

Let z(t) = ∥x(t)∥, c(t) = φ(t) = ∥Ψx∥C, d(t) = 1, h(t) = a0m, k(t) = a1m, t0 = 0. One may conclude that
c(0) = φ(0) = ∥Ψx∥C and c(t), d(t), φ(t) are nondecreasing functions. So, using condition of the Lemma 2.14
we obtain:

∥x(t)∥ ≤ ∥Ψx∥C

1 + (
exp

(∫ t

t0

2q−1Bq(t) (h(s) + k(s))q ds
)
− 1

) 1
q


+
b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T].

(50)

Based on Definition 2.17 and the condition of the Theorem 3.2, finally lead us to infer: ∥x(t)∥ < ε, ∀t ∈ J.
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Remark 3.3. Let us consider the system (51), [12],[15], which is a special case og the system (30), where B1 = 0,
D = 0, g(·) = 0, A0(t) = A0, A1(t) = A1, B0 = B, lx = τ, a0m = a0 = ∥A0∥, a1m = a1 = ∥A1∥

cDαt x(t) = A0x(t) + A1x(t − τ) + Bu(t). (51)

Corollary 3.4. In this case one can obtain the nonhomogenous system (51) is finite-time stable w.r.t. {δ, ε, t0, χu, J, ∥(·)∥},
0 < δ < ε, if1 + (

exp
(∫ t

0
2q−1Bq(t) (a0 + a1)q ds

)
− 1

) 1
q
 + b0χu|t|α

δ · Γ(α + 1)
≤
ε
δ

(52)

where satisfying α > 1
q and 1

q +
1
p = 1. The previous condition can be written as follows:1 +

exp

2q−1 tαq
· (a0 + a1)q[

Γ(α)
(
1 + p(α − 1)

) 1
p

]q

 − 1


1
q
 + b0χu|t|α

δ · Γ(α + 1)
≤
ε
δ

(53)

In the homogenous case, we obtain from Theorem 3.2 the following FTS condition

Corollary 3.5. The homogenous system (51), u(t) ≡ 0, is finite-time stable w.r.t. {δ, ε, t0, J, ∥(·)∥}, 0 < δ < ε, if1 +
exp

2q−1 tαq
· (a0 + a1)q[

Γ(α)
(
1 + p(α − 1)

) 1
p

]q

 − 1


1
q
 ≤ εδ (54)

satisfying α > 1
q and 1

q +
1
p = 1.

Theorem 3.6. The nonstationary nonlinear fractional order time-varying delay system (30) satisfying initial condi-
tions (31) is finite-time stable w.r.t. {δ, ε, t0, χu, χ0, J, ∥(·)∥}, δ < ε, if the following condition holds:

21−ζ exp

ζ2

λ
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

,
1 − λ
1 − ζ

)) 1−ζ
ζ

t
λ
ζ

(
a

1
ζ
om + a

1
ζ

1m

)
+
χ∗0u|t|

α

Γ(α + 1)
+
χ∗10lαu
Γ(α + 1)

+
χ∗mw|t|α

Γ(α + 1)
+
χ∗1u|t − lu|α

Γ(α + 1)
≤
ε
δ
, t ∈ [0,T]

(55)

where are: χ∗0u =
b0χu
δ , χ∗10 =

b1χ0
δ , χ∗1u =

b1χu
δ , χ∗mw =

dmχw
δ , 0 < ζ < ξ < 1 and

R(t) =
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

)
,

1 − λ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · a

1
ζ

1m, Q(t) =
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

)
,

1 − λ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · a

1
ζ
om. (56)

Proof: Applying a similar procedure from the previous proof, we have

∥x(t)∥ ≤ ∥Ψx∥C +
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds

+
b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
.

(57)

Using Lemma 2.15 we obtain:

∥x(t)∥ ≤
[
F(t) exp

(∫ t

0
(Q(s) + R(s)) ds

)]ζ
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T]. (58)
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where

F(t) = 2
1
ζ−1
· ∥Ψx∥

1
ζ

C , 0 < ζ < λ < 1,

R(t) =
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

)
,

1 − λ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · a

1
ζ

1m, Q(t) =
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

)
,

1 − λ
1 − ζ

) 1−ζ
ζ

t
λ−ζ
ζ · a

1
ζ
om

(59)

or

∥x(t)∥ ≤ ∥Ψx∥C · 21−ζ exp

ζ2

λ
4

1
ζ−1

Γ
1
ζ (λ)

(
B
(
λ − ζ
1 − ζ

,
1 − λ
1 − ζ

)) 1−ζ
ζ

t
λ
ζ

(
a

1
ζ
om + a

1
ζ

1m

)
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, 0 < ζ < λ < 1, t ∈ [0,T].

(60)

Based on Definition 2.4 and the condition of the Theorem 3.2 finally, it follows: ∥x(t)∥ < ε, ∀t ∈ J.

Theorem 3.7. The nonstationary nonlinear two-term fractional order time-varying delay system (38) satisfying
initial conditions (39) is finite-time stable w.r.t. {δ, ε, t0, χu, χ0, J, ∥(·)∥}, δ < ε, if the following condition holds:

3
q−1

q ·

[
1 +

an∆|t|α−β

Γ(α − β + 1)

]
· exp

[
G(t)

q
2t

]
+
χ∗0u|t|

α

Γ(α + 1)
+
χ∗10lαu
Γ(α + 1)

+
χ∗mw|t|α

Γ(α + 1)
+
χ∗1u|t − lu|α

Γ(α + 1)
≤
ε
δ
, (61)

where are: χ∗0u =
b0χu
δ , χ∗10 =

b1χ0
δ , χ∗1u =

b1χu
δ , χ∗mw =

dmχw
δ .

Proof: The fractional order satisfies and if an integral of non-order 0Iαt , t0 = 0 is applied on both sides,
taking into account Lemmas 2.5,2.6 and lxn2 = lx = l one can be obtained in the form of the equivalent
Volterra integral equation:

x(t) = Ψx(0) −Ψx(−l)
AN2(t) · tα−β

Γ(α − β + 1)
+

1
Γ(α − β)

∫ t

0
(t − s)α−β−1AN2(s)x(s − l)ds+

+
1
Γ(α)

∫ t

0
(t − s)α−1 (

A0(s)x(s) + A1(s)x(s − l) + B0u(s) + B1u(s − lu) +Dw(s) + g(s, x(s), x(s − l),w(s))
)

ds.
(62)

By employing the norm ∥(·)∥ on both sides of the previous expression, one gets

∥x(t)∥ ≤ ∥Ψx(0)∥C + ∥AN2(t)∥∥Ψx(−l)∥
|t|α−β

Γ(α − β + 1)
+

1
Γ(α − β)

∫ t

0
|t − s|α−β−1

∥AN2(t)∥∥x(s − l)∥ds

+
1
Γ(α)

∫ t

0
|t − s|α−1

∥A0(s)x(s) + A1(s)x(s − l) + B0u(s) + B1u(s − lu) +Dw(s) + g(s, x(s), x(s − l),w(s))∥ds.
(63)

Consequently, we have

∥x(t)∥ ≤ ∥Ψx∥C

[
1 +

an∆|t|α−β

Γ(α − β + 1)

]
+

an∆

Γ(α − β)

∫ t

0
|t − s|α−β−1

∥x(s − l)∥ds

+
1
Γ(α)

∫ t

0
|t − s|α−1

∥A0(s)x(s) + A1(s)x(s − l) + B0u(s) + B1u(s − lu) +Dw(s) + g(s, x(s), x(s − l),w(s))∥ds.

(64)

or, taking into account (43), it yields:

∥x(t)∥ ≤ ∥Ψx∥C

[
1 +

an∆|t|α−β

Γ(α − β + 1)

]
+

an∆

Γ(α − β)

∫ t

0
|t − s|α−β−1

∥x(s − l)∥ds

+
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds +

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
.

(65)
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In condensed form, we have

∥x(t)∥ ≤ c(t) +
an∆

Γ(α − β)

∫ t

0
|t − s|α−β−1

∥x(s − l)∥ds

+
1
Γ(α)

∫ t

0
|t − s|α−1 [a0m∥x(s)∥ + a1m∥x(s − l)∥] ds +

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
,

(66)

where is c(t) = ∥Ψx∥C

[
1 + an∆ |t|α−β

Γ(α−β+1)

]
. Let t0 = 0, c(0) = ∥Ψx∥C, d(t) = 1, f (t) = an∆, z(t) = ∥x(t)∥, φ(t) = ∥Ψx∥C,

h1(t) = a0m, k1(t) = a1m, h2(t) = 0, k2(t) = 1. It is obvious that c(0) = φ(0) = ∥Ψx∥C and c(t), d(t), f (t), hi(t), ki(t)
and φ(t) are nondecreasing functions. Using Lemma 2.12 on expression (66) one has

∥x(t)∥ ≤ F
1
q (t) exp

[
G(t)

q
2t

]
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T] (67)

where

F(t) = 3q−1
· cq(t), Q(t) = 3q−1

 1
Γ(α)

t
α−1

q · aom(
p(α − 1) + 1

) 1
p


q

,

R(t) = 3q−1

 1
Γ(α)

t
α−1

q · a1m(
p(α − 1) + 1

) 1
p

+
1

Γ(α − β)
t
α−β−1

q · an∆(
p(α − β − 1) + 1

) 1
p


q (68)

G(t) = max {R(t),Q(t)}, p, q > 0 satisfying α > 1
q and α − β > 1

q .

∥x(t)∥ ≤ ∥Ψx∥C3
q−1

q ·

[
1 +

an∆|t|α−β

Γ(α − β + 1)

]
· exp

[
G(t)

q
2t

]
+

b0χu|t|α

Γ(α + 1)
+

b1χ0lαu
Γ(α + 1)

+
dmχw|t|α

Γ(α + 1)
+

b1χu|t − lu|α

Γ(α + 1)
, t ∈ [0,T].

(69)

Referring to Definition 2.18 and the condition of Theorem 3.7 we can infer that the system exhibits finite-time
stability over the interval [−l,T].

4. Numerical examples

In this section, we will give the following two examples to demonstrate the previous theoretical time
delay in state and control:

Example 4.1. Let us consider the following nonlinear nonhomogenous fractional-order system with a constant the
constant time delay:

cDαt x(t) = (A0 + ∆A0(t)) x(t) + (A1 + ∆A1(t)) x(t − lx) + B0u(t) + B1u(t − lu) + g(t, x(t), x(t − lx)), (70)

where are:

A0 =

[
−0.2 0
−0.1 0.3

]
, ∆A0(t) =

[
−0.02 0.01 (1 − sin t)
−0.01 0.03 cos t

]
, B0 =

[
0 −3
1 0

]
,

A1 =

[
−0.2 0.1

0 −0.1

]
, ∆A1(t) =

[
−0.05 0.01 cos t

0.02 cos t −0.03

]
, B1 =

[
2 0
0 1

]
,

(71)

and g(t, x(t), x(t − lx)) = (−x1(t)x2(t − lx) − x2(t)x1(t − lx))T where are t0 = 0, lx = 0.1, lu = 0.04, χ0 = 0.2, χu = 1,
with associated functions:

x(t) = Ψx(t) = [0.05 0.05]T, t ∈ [t0 − lx, t0] = [−0.1, 0],

u(t) = Ψu(t) = [0.1 0]T, t ∈ [t0 − lu, t0] = [−0.04, 0].
(72)
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ε 50 100 150 200
Theorem 3.1 0.275 0.3 0.313 0.323
Theorem 3.2 0.475 0.505 0.518 0.53
Theorem 3.6 1.50 1.67 1.76 1.83

Table 1: The estimated times Te [s] for δ = 0.1 and ε varies in Example 1

It is easily checked that assuption (32) is satisfied for M = 1. From the initial functions and given state equation and
using norm ∥(·)∥∞ it follows:

∥Ψx∥C = max
t∈[−0.1,0]

∥Ψx(t)∥ = ∥Ψx∥ = 0.05 < δ = 0.1,

∥Ψu∥C = max
t∈[−0.04,0]

∥Ψu(t)∥ = ∥Ψu∥ = 0.1 < χ0 = 0.2.
(73)

Moreover, other values are calculated as follows: a0 = ∥A0∥ = 0.4, a1 = ∥A1∥ = 0.3, b0 = ∥B0∥ = 3, b1 = ∥B1∥ = 2,
∆a0 = supt∈[0,T] ∥∆A0(t)∥ = 0.04, ∆a1 = supt∈[0,T] ∥∆A1(t)∥ = 0.06, χ∗0u =

b0χu
δ = 30, χ∗10 =

b1χ0
δ = 6, χ∗1u =

b1χu
δ =

20, χ∗mw =
dmχw
δ = 0. For α = 0.9 < 1, one can choose q = 2 such that α > 1

q and by calculation from 1
q +

1
p = 1, one

obtains p = 2 (Theorem 3.1, Theorem 3.2), as well as parameter ζ = 0.8 < α (Theorem 3.6). The task is to analyze the
FTS with respect to {δ = 0.1, ε = 50, 100, 150, 200}.

Table 1 illustrates the effectiveness of obtained results in the system (30) for estimated times Te for different values
of ε. From the Table 1 one can conclude that the biggest value of estimated time Te can be obtained using criterion
from Theorem 3.6.

Example 4.2. Let us consider the following nonlinear fractional-order system 0 < β < α < 1, with a constant time
delay:

cDαt x(t) = A0(t)x(t) + A1(t)x(t − l) + A2(t)cDβt x(t) + B0u(t) + g(t, x(t), x(t − l)) +Dw(t) (74)

where

A0 =

[
−0.8 0

0 −0.5

]
, A1 =

[
0.1 0
0 0.3

]
, A2 =

[
0.3 −0.2
0.4 0.1

]
, B0 =

[
0

0.5

]
, D =

[
0.01
0.01

]
(75)

with the associated continuous function of initial state: Ψx(t) = [0.01, 0.02]T, t ∈ [−l, 0] and g(t, x(t), x(t − l)) =
(−x1(t)x2(t − l) − x2(t)x1(t − l))T, disturbance w(t) = sin t, time-delay l = 0.2 where upper bound γu = 0.2 and
α = 0.9, β = 0.1. Also, one can take q = 3

2 and by calculation from 1
q +

1
p = 1, one obtains p = 3. It is easily checked

that assumption (32) is satisfied for M = 1. Also, one can get ∥A0∥ = 0.8, ∥A1∥ = 0.3, ∥A2∥ = 0.5, ∥B0∥ = 0.5,
δ = 0.1 and ε = 100. Based on FTS criterion (61), Theorem 3.7, one can obtain the estimated time of FTS of the
system (74) is Te ≈ 0.122 s.

5. Conclusion

In this work, a new and robust FTS for nonstationary nonlinear fractional order time-delay systems
with 0 < β < α < 1 is studied. A novel FTS analysis has been derived by applying a fractional Gronwall
inequality with time delay. Then, sufficient conditions guaranteeing the FTS of considered systems in finite
time are obtained. Finally, two numerical examples have also been provided to illustrate the validity of the
proposed procedure and give the estimated time of the FTS.
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