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Abstract. In this article, we presented some necessary and sufficient conditions for elements in rings
with involution to be a partial isometry, strongly EP element and generalized inverse by using solutions of
equations.

1. Introduction

Throughout this article, R will be used to signify a unital ring with unit 1 and involution. An involution
in R is an anti-isomorphism ∗ : R→ R, a 7→ a∗ of degree 2, satisfying

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

for all a, b ∈ R.
An element a of a ring R is said to be group invertible if there exists a#

∈ R such that

aa# = a#a, a = aa#a, a# = a#aa#.

The element a# is called group inverse of a, which is uniquely determined by above equations (see [5,6,10]).
Denote by R# the set of all group invertible elements of R.

An element a+ is said to be the Moore-Penrose inverse (or MP-inverse) of a [8-10], if it satisfies the
following conditions:

(a+a)∗ = a+a, (aa+)∗ = aa+, a+aa+ = a+, aa+a = a.

If a+ exists, then it is unique. We denote by R+ the set of all Moore-Penrose invertible elements of R.
An element a ∈ R is called partial isometry if a = aa∗a. Obviously, a ∈ R+ is a partial isometry [3] if and

only if a∗ = a+. We denote by RPI the set of all partial isometries of R. An element a ∈ R is called EP [1,10]
if a ∈ R#

∩ R+ and a+ = a#. We denote by REP the set of all EP elements of R. Let a ∈ R#
∩ R+, then a is said

to be a strongly EP element if a ∈ REP is partial isometry. Also we denote by RSEP the set of all strongly EP
elements of R.
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Several authors [1-4,6,7,9,10,13] have studied the characteristics of partial isometry, EP elements, and
strongly EP elements in rings with involution.

Let a ∈ R#
∩ R+ and χa =

{
a, a#, a+, a∗, (a#)∗, (a+)∗

}
. We identify and investigate new properties of several

equations to be a partial isometry, strongly EP elements and generalized solutions of some equations.

2. Partial isometries and strongly EP elements

In this section, we establish and investigate new properties of partial isometries elements and strongly
EP elements.

The following lemmas are well-known and frequently used in the rest of the article.

Lemma 2.1. ([1, Theorem 2.1]) Let a ∈ R#
∩R+ and n ∈ N. Then a ∈ RPI if and only if one of the following equivalent

conditions holds:
(i) ana+ = ana∗;
(ii) a+an = a∗an.

Lemma 2.2. ([3, Theorem 2.3]) Assume that a ∈ R+. Then a ∈ RSEP if and only if a ∈ R# and one of the following
conditions holds:
(i) a∗ = a#;
(ii) aa∗ = a+a;
(iii) aa∗ = aa#;
(iv) a+a∗ = a#a+;
(v) a+a∗ = a+a#;
(vi) a∗a+ = a#a+;
(vii) a∗a+ = a+a#;
(viii) a∗a# = a#a+;
(ix) aa∗a+ = a+;
(x) aa∗a+ = a#;
(xi) a∗a# = a#a#;
(xii) aa+a∗ = a+;
(xiii) a∗a2 = a;
(xiv) a2a∗ = a;
(xv) aa+a∗ = a#;
(xvi) a∗a+a = a#.

Lemma 2.3. ([11, 12]) Let a ∈ R#
∩ R+. Then

1) (a+)∗aa# = (a+)∗ = a#a(a+)∗;
2) (a#)∗a∗a+ = a+a∗(a#)∗ = a+.

The following lemma follows from [14, Corollary 2.10 and Lemma 2.11].

Lemma 2.4. Let a ∈ R#
∩ R+.

(1) If a+a+a∗ = a+a+a+, then a ∈ RPI.
(2) If a∗a+a∗ = a∗a+a+, then a ∈ RPI.
(3) If a+a∗a∗ = a+a+a∗, then a ∈ RPI.
(4) If a+a+a∗a+ = a+a+a+a+, then a ∈ RPI.
(5) If a+a+a∗a∗ = a+a+a+a∗, then a ∈ RPI.

In ([4, Proposition 3.1]), we shown that if a ∈ R#
∩R+, then a ∈ RPI if and only if there is at least one solution

to the equation (2.1) in χa.

aa∗xa = xa. (1)
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Now, we modify the equation (2.1) as follows:

aa+xa = x(a+)∗. (2)

Theorem 2.5. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if there is at least one solution to the equation (2.2) in χa.

Proof. ′ ⇒′ Suppose that a ∈ RPI, then a = (a+)∗, which implies that x = (a+)∗ is a solution.
′
⇐
′ (1) If x = a, then aa+a2 = a(a+)∗, that is,

a2 = a(a+)∗.

Post-multiply a2 = a(a+)∗ by a∗, this leads to a2a∗ = a2a+. By Lemma 2.1, a ∈ RPI.
(2) If x = a#, then aa+a#a = a#(a+)∗, that is,

a#a = a#(a+)∗.

Pre-multiply a#a = a#(a+)∗ by a2, we can get a2 = a(a+)∗. By (1), a ∈ RPI.
(3) If x = a+, then aa+a+a = a+(a+)∗. Post-multiply aa+a+a = a+(a+)∗ by a∗, this leads to

aa+a∗ = a+.

By Lemma 2.2, a ∈ RPI.
(4) If x = a∗, then aa+a∗a = a∗(a+)∗, that is,

aa+a∗a = a+a.

Post-multiply aa+a∗a = a+a by a+, we can get aa+a∗ = a+. By Lemma 2.2, a ∈ RPI.
(5) If x = (a#)∗, then aa+(a#)∗a = (a#)∗(a+)∗. Apply the involution, this leads to

a∗a#aa+ = a+a#.

Post-multiply a∗a#aa+ = a+a# by a2, we can get a∗a = a+a. Hence, a ∈ RPI by [3, Theorem 2.1].
(6) If x = (a+)∗, then aa+(a+)∗a = (a+)∗(a+)∗, that is,

(a+)∗a = (a+)∗(a+)∗.

Apply the involution, this leads to a∗a+ = a+a+. we can infer a ∈ RPI by [14, Corollary 2.10].

We modify the equation (2.2) as follows:

a+axa = x(a+)∗. (3)

Theorem 2.6. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if there is at least one solution to the equation (2.3) in χa.

Proof. ′ ⇒′ Assume that a ∈ RPI, then a∗ = a+, which implies that x = a∗ is a solution.
′
⇐
′ (1) If x = a, then a+a3 = a(a+)∗. Pre-multiply a+a3 = a(a+)∗ by a#, one has a = (a+)∗. Hence, a ∈ RPI.

(2) If x = a#, then a+a = a#(a+)∗. Pre-multiply a+a = a#(a+)∗ by a, one has a = (a+)∗. Therefore, a ∈ RPI.
(3) If x = a+, then a+a = a+(a+)∗. Post-multiply a+a = a+(a+)∗ by a∗, one has a∗ = a+. Hence, a ∈ RPI.
(4) If x = a∗, then a∗a = a+a. Hence, a ∈ RPI by [3, Theorem 2.1].
(5) If x = (a#)∗, then (a#)∗a = (a#)∗(a+)∗. Apply the involution, one obtains a∗a# = a+a#. Therefore, a ∈ RPI by [3,
Theorem 2.2].
(6) If x = (a+)∗, then a+a(a+)∗a = (a+)∗(a+)∗. Apply the involution, one obtains a∗a+a+a = a+a+. Post-multiply
a∗a+a+a = a+a+ by a+a, one gets a∗a+a+a = a+a+a+a. Apply the involution, one yields a+a(a+)∗a = a+a(a+)∗(a+)∗.
Pre-multiply by a#a, one gives (a+)∗a = (a+)∗(a+)∗. Apply the involution, this leads to a∗a+ = a+a+. Hence, a ∈ RPI

by [2, Lemma 2.5].

We change the equation (2.3) as follows:

a+axa + a# = x(a+)∗ + a+. (4)
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Theorem 2.7. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if there is at least one solution to the equation (2.4) in χa.

Proof. ′ ⇒′ Suppose that a ∈ RSEP, then a∗ = a+ = a#. Hence, x = a is a solution.
′
⇐
′ (1) If x = a, then a+a3 + a# = a(a+)∗ + a+. Pre-multiply and post-multiply a+a3 + a# = a(a+)∗ + a+ by a, we have

a4 = a2(a+)∗a.

Pre-multiply and post-multiply a4 = a2(a+)∗a by a#, one yields

a2 = a(a+)∗.

Hence, a ∈ RPI by Theorem 2.1, so a = (a+)∗. Now we have

a+a3 + a# = a2 + a+.

Pre-multiply a+a3 + a# = a2 + a+ by a, we can deduce that aa# = aa+ = aa∗. By Lemma 2.2, a ∈ RSEP.
(2) If x = a#, then a+aa#a + a# = a#(a+)∗ + a+, that is,

a+a + a# = a#(a+)∗ + a+.

Pre-multiply and post-multiply a+a + a# = a#(a+)∗ + a+ by a, we have a2 = (a+)∗a. Hence, a ∈ RPI and so a# = a+.
Therefore, a ∈ RSEP.
(3) If x = a+, then a+aa+a + a# = a+(a+)∗ + a+, that is,

a+a + a# = a+(a+)∗ + a+.

Pre-multiply and post-multiply a+a + a# = a+(a+)∗ + a+ by a, this leads to a2 = (a+)∗a. Thus, a ∈ RPI, which implies
a = (a+)∗. Hence, we obtain a# = a+. Therefore, a ∈ RSEP.
(4) If x = a∗, then a+aa∗a + a# = a∗(a+)∗ + a+, that is,

a∗a + a# = a+a + a+.

Pre-multiply and post-multiply a∗a + a# = a+a + a+ by a, this leads to aa∗a2 = a2. Post-multiply aa∗a2 = a2 by a#, we
can deduce that aa∗a = a. Hence, a ∈ RPI. It follows that a# = a+ = a∗. Therefore, a ∈ RSEP.
(5) If x = (a#)∗, then a+a(a#)∗a + a# = (a#)∗(a+)∗ + a+, that is,

(a#)∗a + a# = (a#)∗(a+)∗ + a+.

Pre-multiply and post-multiply (a#)∗a + a# = (a#)∗(a+)∗ + a+ by a, we can infer

a(a#)∗a2 = a(a#)∗(a+)∗a.

Pre-multiply a(a#)∗a2 = a(a#)∗(a+)∗a by a+, one gets (a#)∗a2 = (a#)∗(a+)∗a. Apply the involution, one has

a∗a∗a# = a∗a+a#.

Post-multiply a∗a∗a# = a∗a+a# by a2a+, one obtains a∗a∗ = a∗a+. This infers a ∈ RPI by [14, Corollary 2.10]. Since
a∗ = a+, (a#)∗a + a# = (a#)∗(a∗)∗ + a∗, this gives a# = a∗. By Lemma 2.2, a ∈ RSEP.
(6) If x = (a+)∗, then a+a(a+)∗a+a# = (a+)∗(a+)∗+a+. Pre-multiply and post-multiply a+a(a+)∗a+a# = (a+)∗(a+)∗+a+

by a, this leads to
a(a+)∗a2 = a(a+)∗(a+)∗a.

Pre-multiply and post-multiply a(a+)∗a2 = a(a+)∗(a+)∗a by a#, we can deduce that (a+)∗a = (a+)∗(a+)∗. Apply the
involution, one has a+a+ = a∗a+. Hence, a ∈ RPI by [14, Corollary 2.10]. Since

a+a3 + a# = a2 + a+.

Pre-multiply a+a3 + a# = a2 + a+ by a, one yields aa# = aa+ = aa∗. By Lemma 2.2, a ∈ RSEP.
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Also revise the equation (2.1) as follows:

a∗axa = xa. (5)

Theorem 2.8. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if there is at least one solution to the equation (2.5) in χa.

Proof. ′ ⇒′ Suppose that a ∈ RPI, then a∗ = a+. Hence, we obtain x = a+ is a solution.
′
⇐
′ (1) If x = a, then a∗a3 = a2. Post-multiply a∗a3 = a2 by a#, this leads to

a∗a2 = a.

By Lemma 2.2, a ∈ RPI.
(2) If x = a#, then a∗aa#a = a#a, that is,

a∗a = a#a.

By Lemma 2.2, a ∈ RPI.
(3) If x = a+, then a∗aa+a = a+a, that is,

a∗a = a+a.

Therefore, a ∈ RPI by [3, Theorem 2.1] .
(4) If x = a∗, then a∗aa∗a = a∗a. Post-multiply a∗aa∗a = a∗a by a+(a+)∗, this leads to

a∗a = a+a.

Hence, we obtain a ∈ RPI by [3, Theorem 2.1].
(5) If x = (a#)∗, then a∗a(a#)∗a = (a#)∗a. Apply the involution, one has

a∗a#a∗a = a∗a#.

Pre-multiply a∗a#a∗a = a∗a# by (a+)∗, this leads to a#a∗a = a#. Hence, we obtain a ∈ RPI by [3, Theorem 2.2].
(6) If x = (a+)∗, then a∗a(a+)∗a = (a+)∗a. Apply the involution, one gets

a∗a+a∗a = a∗a+.

Post-multiply a∗a+a∗a = a∗a+ by a+, we get a∗a+a∗ = a∗a+a+. By Lemma 2.4, a ∈ RPI.

Revising the equation (2.5) as follows:

a∗ax(a+)∗ = x(a#)∗. (6)

Theorem 2.9. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if there is at least one solution to the equation (2.6) in χa.

Proof. ′ ⇒′ Suppose that a ∈ RSEP, then a∗ = a+ = a#. Hence, x = a is a solution.
′
⇐
′ (1) If x = a, then a∗a2(a+)∗ = a(a#)∗. Apply the involution, one obtains

a+a∗a∗a = a#a∗.

Post-multiply a+a∗a∗a = a#a∗ by (1 − a+a), one gets a#a∗(1 − a+a) = 0. Pre-multiply a#a∗(1 − a+a) = 0 by a+a2, one
has a∗ = a∗a+a. Apply the involution, one gets a+a2 = a. Hence, we obtain a ∈ REP by [11, Lemma 2.1]. It follows
that a∗a2(a+)∗ = a(a+)∗. Post-multiply by a∗a#a, we can infer a∗a2 = a. Therefore, a ∈ RSEP by Lemma 2.2.
(2) If x = a#, then a∗aa#(a+)∗ = a#(a#)∗. Post-multiply a∗aa#(a+)∗ = a#(a#)∗ by a∗a+, we can deduce that

a∗a+ = a#a+.

By Lemma 2.2, a ∈ RSEP.
(3) If x = a+, then a∗aa+(a+)∗ = a+(a#)∗, that is,

a+a = a+(a#)∗.



B. Gadelseed, J. Wei / Filomat 38:14 (2024), 4877–4891 4882

Post-multiply a+a = a+(a#)∗ by a∗, we can deduce that a∗ = a+. Hence, we obtain a ∈ RPI. Since a∗a = a∗(a#)∗. Apply
the involution, we can deduce that a∗a = a#a. By Theorem 2.4, a ∈ RSPE.
(4) If x = a∗, then a∗aa∗(a+)∗ = a∗(a#)∗, that is,

a∗a = a∗(a#)∗.

By (3) a ∈ RSEP .
(5) If x = (a#)∗, then a∗a(a#)∗(a+)∗ = (a#)∗(a#)∗. Apply the involution, one gets

a+a#a∗a = a#a#.

Pre-multiply a+a#a∗a = a#a# by a3, this leads to aa∗a = a. Thus, a ∈ RPI. Since

a∗a(a#)∗(a∗)∗ = (a#)∗(a#)∗.

Apply the involution, one obtains a∗a#a∗a = a#a#. Pre-multiply a∗a#a∗a = a#a# by a+a, one has a#a# = a+a#. Hence,
a ∈ REP. Therefore, a ∈ RSEP.
(6) If x = (a+)∗, then a∗a(a+)∗(a+)∗ = (a+)∗(a#)∗. Apply the involution, one has

a+a+a∗a = a#a+.

Post-multiply a+a+a∗a = a#a+ by (1 − a+a), one gets a#a+(1 − a+a) = 0. Pre-multiply a#a+(1 − a+a) = 0 by a+a2, this
leads to a+(1 − a+a) = 0. Hence, we obtain a ∈ REP by [11, Lemma 2.1]. Post-multiply a∗a(a+)∗(a+)∗ = (a+)∗(a+)∗ by
a∗aa#a∗a, one obtains a∗a2 = a. By Lemma 2.2, a ∈ RSEP.

We modify the equation (2.2) as follows:

x(a+)∗ = aa+xaa∗(a+)∗. (7)

Now, we change the equation (2.7) as follows:

a+axaa∗y = xy. (8)

Theorem 2.10. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if there is at least one solution to the equation (2.8) in

χ2
a = {(x, y)|x, y ∈ χa}.

Proof. ′ ⇒′ Suppose that a ∈ RPI, then a+ = a∗, we have (x, y) = (a+, a) is a solution.
′
⇐
′ (1) If (x, y) = (a, a), then a+a3a∗a = a2. Pre-multiply a+a3a∗a = a2 by a#, this leads to aa∗a = a. Thus a ∈ RPI.

(2) If (x, y) = (a#, a), then a+aa#aa∗a = a#a, that is,

a∗a = a#a.

By Theorem 2.4, a ∈ RPI.
(3) If (x, y) = (a+, a), then a+aa+aa∗a = a+a, that is,

a∗a = a+a.

Hence, we obtain a ∈ RPI by [3, Theorem 2.1].
(4) If (x, y) = (a∗, a), then a+aa∗aa∗a = a∗a, that is,

a∗aa∗a = a∗a.

By Theorem 2.4, a ∈ RPI.
(5) If (x, y) = ((a#)∗, a), then a+a(a#)∗aa∗a = (a#)∗a, that is,

(a#)∗aa∗a = (a#)∗a.

Pre-multiply (a#)∗aa∗a = (a#)∗a by aa+a∗, this leads to aa∗a = a. Hence, we obtain a ∈ RPI.
(6) If (x, y) = ((a+)∗, a), then a+a(a+)∗aa∗a = (a+)∗a, Pre-multiply a+a(a+)∗aa∗a = (a+)∗a by a#aa∗a#a, this leads to

aa∗a = a.
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Hence, we obtain a ∈ RPI.
(7) If (x, y) = (a, a#), then a+a3a∗a# = aa#. Post-multiply a+a3a∗a# = aa# by a2, one has

a+a3a∗a = a2.

Pre-multiply a+a3a∗a = a2 by a#, this leads to aa∗a = a. Hence, we obtain a ∈ RPI.
(8) If (x, y) = (a#, a#), then a+aa#aa∗a# = a#a#, that is,

a∗a# = a#a#.

By Lemma 2.2, a ∈ RPI.
(9) If (x, y) = (a+, a#), then a+aa+aa∗a# = a+a#, that is,

a∗a# = a+a#.

Hence, a ∈ RPI by [3, Theorem 2.2].
(10) If (x, y) = (a∗, a#), then a+aa∗aa∗a# = a∗a#, that is,

a∗aa∗a# = a∗a#.

Post-multiply a∗aa∗a# = a∗a# by a2, this leads to a∗aa∗a = a∗a. By Theorem 2.4, a ∈ RPI.
(11) If (x, y) = ((a#)∗, a#), then a+a(a#)∗aa∗a# = (a#)∗a#, that is,

(a#)∗aa∗a# = (a#)∗a#.

Post-multiply (a#)∗aa∗a# = (a#)∗a# by a2, we can deduce that (a#)∗aa∗a = (a#)∗a. Apply the involution, one obtains
a∗aa∗a# = a∗a#. Pre-multiply a∗aa∗a# = a∗a# by (a+)∗, we have that aa∗a# = a#. Hence, a ∈ RPI by [3, Theorem 2.2].
(12) If (x, y) = ((a+)∗, a#), then a+a(a+)∗aa∗a# = (a+)∗a#. Post-multiply a+a(a+)∗aa∗a# = (a+)∗a# by a2, this leads to

a+a(a+)∗aa∗a = (a+)∗a.

Pre-multiply a+a(a+)∗aa∗a = (a+)∗a by a#aa∗a#a, we get aa∗a = a. Hence, we obtain a ∈ RPI.
(13) If (x, y) = (a, a+), then a+a3a∗a+ = aa+. Pre-multiply a+a3a∗a+ = aa+ by a+a, one has aa+ = a+a2a+. So, we have

a = aa+a = a+a2a+a = a+a2.

Hence, a ∈ REP by Lemma 2.1, so a+ = a#. This gives a2a∗a# = aa#. Pre-multiply by a#, one has aa∗a# = a#. Therefore,
a ∈ RPI by [3, Theorem 2.2].
(14) If (x, y) = (a#, a+), then a+aa#aa∗a+ = a#a+, that is,

a∗a+ = a#a+.

By Lemma 2.2, a ∈ RPI.
(15) If (x, y) = (a+, a+), then a+aa+aa∗a+ = a+a+, that is,

a∗a+ = a+a+.

Therefore, a ∈ RPI by [14, Corollary 2.10].
(16) If (x, y) = (a∗, a+), then a+aa∗aa∗a+ = a∗a+, that is,

a∗aa∗a+ = a∗a+.

Apply the involution, one has (a+)∗aa∗a = (a+)∗a. Pre-multiply (a+)∗aa∗a = (a+)∗a by a#aa∗, this leads to aa∗a = a.
Hence, we obtain a ∈ RPI.
(17) If (x, y) = ((a#)∗, a+), then a+a(a#)∗aa∗a+ = (a#)∗a+, that is,

(a#)∗aa∗a+ = (a#)∗a+.
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Apply the involution, one gets (a+)∗aa∗a# = (a+)∗a#. Pre-multiply (a+)∗aa∗a# = (a+)∗a# by aa#a∗, we get aa∗a# = a#.
Hence, we obtain a ∈ RPI by [3, Theorem 2.2].
(18) If (x, y) = ((a+)∗, a+), then a+a(a+)∗aa∗a+ = (a+)∗a+. Apply the involution, one has (a+)∗aa∗a+a+a = (a+)∗a+.
Pre-multiply by a+a#aa∗, one gives a∗a+a+a = a+a#aa+. Apply the involution, one yields a+a(a+)∗a = aa+(a#)∗(a+)∗.
Pre-multiply by aa#, this leads to a+a(a+)∗a = aa#(a+)∗a. Post-multiply by a#a∗, one gets a+a2a+ = aa+. Hence, by
(13) a ∈ REP. So, we have

a#a(a#)∗aa∗a# = (a#)∗a#.

Pre-multiply by a+a∗a+a, one obtains a∗a# = a+a#. Therefore, a ∈ RPI by Lemma 2.2.
(19) If (x, y) = (a, a∗), then a+a3a∗a∗ = aa∗. Post-multiply a+a3a∗a∗ = aa∗ by (a+)∗, we can get

a+a3a∗a+a = a.

Pre-multiply a+a3a∗a+a = a by a#a, one gives a = a2a∗a+a = a2a∗. Therefore, a ∈ RPI by Lemma 2.2.
(20) If (x, y) = (a#, a∗), then a+aa#aa∗a∗ = a#a∗, that is,

a∗a∗ = a#a∗.

Post-multiply a∗a∗ = a#a∗ by (a+)∗, this leads to a∗a+a = a#. By Lemma 2.2, a ∈ RPI.
(21) If (x, y) = (a+, a∗), then a+aa+aa∗a∗ = a+a∗, that is,

a∗a∗ = a+a∗.

Therefore, a ∈ RPI by [14, Corollary 2.10].
(22) If (x, y) = (a∗, a∗), then a+aa∗aa∗a∗ = a∗a∗, that is,

a∗aa∗a∗ = a∗a∗.

Apply the involution, one has a2a∗a = a2. Pre-multiply a2a∗a = a2 by a#, we can get aa∗a = a. Hence, we obtain
a ∈ RPI.
(23) If (x, y) = ((a#)∗, a∗), then a+a(a#)∗aa∗a∗ = (a#)∗a∗, that is,

(a#)∗aa∗a∗ = (a#)∗a∗.

Apply the involution, one gets a2a∗a# = aa#. Pre-multiply a2a∗a# = aa# by a+a#, this gives a∗a# = a+a#. Hence, we
obtain a ∈ RPI by [3, Theorem 2.2].
(24) If (x, y) = ((a+)∗, a∗), then a+a(a+)∗aa∗a∗ = (a+)∗a∗. Apply the involution, one obtains a2a∗a+a+a = aa+. Post-
multiply by a#a, one has aa+ = aa+a#a = a#a. Hence, a ∈ REP by [11, Lemma 2.1]. So, we have

a#a(a#)∗aa∗a∗ = (a#)∗a∗.

Pre-multiply by a+a, one gets (a#)∗aa∗a∗ = (a#)∗a∗. Apply the involution, one obtains a2a∗a# = aa#. Pre-multiply by
a#, one yields aa∗a# = a#. Therefore, a ∈ RPI by [3, Theorem 2.2].
(25) If (x, y) = (a, (a#)∗), then

a+a3a∗(a#)∗ = a(a#)∗.

Post-multiply a+, one has a+a3a+ = a(a#)∗a+. Apply the involution, one gives aa+a∗a+a = (a+)∗a#a∗. Pre-multiply by
a∗, one gets a∗a∗a+a = a+aa#a∗. Post-multiply by aa+, one obtains

a∗a∗a+a = a∗a∗a+a2a+.

Apply the involution, one yields a+a3 = aa+a+a3. Post-multiply by (a#)2, this leads to a+a = aa+a+a. Hence, a ∈ REP.
So, we have

a+a3 = a(a+)∗.
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Pre-multiply by a#, this gives a = (a+)∗. Therefore a ∈ RPI.
(26) If (x, y) = (a#, (a#)∗), then a+aa#aa∗(a#)∗ = a#(a#)∗, that is,

a∗(a#)∗ = a#(a#)∗.

Post-multiply a∗(a#)∗ = a#(a#)∗ by a∗a+, this leads to a∗a+ = a#a+. By Lemma 2.2, a ∈ RPI.
(27) If (x, y) = (a+, (a#)∗), then a+aa+aa∗(a#)∗ = a+(a#)∗, that is,

a∗(a#)∗ = a+(a#)∗.

Post-multiply a∗(a#)∗ = a+(a#)∗ by a∗a+, this leads to a∗a+ = a+a+. Hence, we obtain a ∈ RPI by [14, Corollary 2.10].
(28) If (x, y) = (a∗, (a#)∗), then a+aa∗aa∗(a#)∗ = a∗(a#)∗, that is,

a∗aa∗(a#)∗ = a∗(a#)∗.

Apply the involution, one gets a#aa∗a = a#a. Pre-multiply a#aa∗a = a#a by a, this leads to aa∗a = a. Thus, a ∈ RPI.
(29) If (x, y) = ((a#)∗, (a#)∗), then a+a(a#)∗aa∗(a#)∗ = (a#)∗(a#)∗, that is,

(a#)∗aa∗(a#)∗ = (a#)∗(a#)∗.

Apply the involution, one obtains a#aa∗a# = a#a#. Pre-multiply a#aa∗a# = a#a# by a, this leads to aa∗a# = a#. Hence,
we obtain a ∈ RPI by [3, Theorem 2.2].
(30) If (x, y) = ((a+)∗, (a#)∗), then

a+a(a+)∗aa∗(a#)∗ = (a+)∗(a#)∗.

Post-multiply by a∗a+, this leads to a+a(a+)∗aa∗a+ = (a+)∗a+. Pre-multiply by a#a, one has a+a(a+)∗aa∗a+ = (a+)∗aa∗a+.
Apply the involution, one gets (a+)∗aa∗a+a+a = (a+)∗aa∗a+. Pre-multiply by a+a#aa∗, one yields a∗a+a+a = a∗a+. Apply
the involution, one obtains a+a(a+)∗a = (a+)∗a. Post-multiply by a#a∗, one gives a+a2a+ = a+a. Hence, a ∈ REP. So,
we have

a+a(a+)∗aa∗(a+)∗ = (a+)∗(a+)∗,

that is, a+a(a+)∗a = (a+)∗(a+)∗. Apply the involution, this gives a∗a+a+a = a+a+. Post-multiply by a+, we have
a∗a+a+ = a+a+a+. Therefore, a ∈ RPI by Lemma 2.4.
(31) If (x, y) = (a, (a+)∗), then a+a3a∗(a+)∗ = a(a+)∗, that is,

a+a3 = a(a+)∗.

Hence, we get a ∈ RPI by (25).
(32) If (x, y) = (a#, (a+)∗), then a+aa#aa∗(a+)∗ = a#(a+)∗, that is,

a+a = a#(a+)∗.

Post-multiply a+a = a#(a+)∗ by a∗, this leads to a∗ = a#aa+. Pre-multiply a∗ = a#aa+ by a, we get aa∗ = aa+. Thus,
a ∈ RPI by [3, Theorem 2.1].
(33) If (x, y) = (a+, (a+)∗), then a+aa+aa∗(a+)∗ = a+(a+)∗, that is,

a+a = a+(a+)∗.

Post-multiply a+a = a+(a+)∗ by a∗, we have a∗ = a+. Hence, we obtain a ∈ RPI.
(34) If (x, y) = (a∗, (a+)∗), then a+aa∗aa∗(a+)∗ = a∗(a+)∗, that is,

a∗a = a+a.

Hence, we obtain a ∈ RPI by [3, Theorem 2.1].
(35) If (x, y) = ((a#)∗, (a+)∗), then a+a(a#)∗aa∗(a+)∗ = (a#)∗(a+)∗, that is

(a#)∗a = (a#)∗(a+)∗.
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Apply the above involution, this leads to a∗a# = a+a#. Thus, a ∈ RPI by [3, Theorem 2.2].
(36) If (x, y) = ((a+)∗, (a+)∗), then a+a(a+)∗aa∗(a+)∗ = (a+)∗(a+)∗, that is

a+a(a+)∗a = (a+)∗(a+)∗.

Pre-multiply a+a(a+)∗a = (a+)∗(a+)∗ by aa∗a#a, this leads to a2 = a(a+)∗. Hence, we obtain a ∈ RPI by Theorem 2.1.

Revised the equation (2.8) as follows:

axa∗y + a# = xy + a+. (9)

Theorem 2.11. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if there is at least one solution to the equation (2.9) in χ2

a .
Proof. ′ ⇒′ Suppose that a ∈ RSEP, then a+ = a∗ = a#, we have (x, y) = (a, a+) is a solution.
′
⇐
′ (1) If (x, y) = (a, a), then a2a∗a+ a# = a2+ a+. Pre-multiply and post-multiply a2a∗a+ a# = a2+ a+ by a, one gets

a3a∗a2 = a4.

Pre-multiply a3a∗a2 = a4 by a#a+, this leads to aa∗a2 = a2. Post-multiply by a#, one obtains aa∗a = a Hence, a ∈ RPI.
Since a2a+a + a# = a2 + a+, this gives a# = a+ = a∗. Therefore, a ∈ RSEP.
(2) If (x, y) = (a#, a), then aa#a∗a + a# = a#a + a+. Pre-multiply and post-multiply aa#a∗a + a# = a#a + a+ by a, one
gets

aa∗a2 = a2.

Pre-multiply aa∗a2 = a2 by a+, this leads to a∗a2 = a+a2. By Lemma 2.1, a ∈ RPI. It follows from aa#a∗a+a# = a#a+a+

that aa#a+a + a# = a#a + a+. This gives a# = a+ because a#a+a = a#. Therefore, we obtain a ∈ RSEP.
(3) If (x, y) = (a+, a), then aa+a∗a + a# = a+a + a+. Post-multiply by a+a, one has a+ = a+a+a. Hence, we obtain
a ∈ REP by [11, Lemma 2.1]. So, we have

aa+a∗a = a+a.

Post-multiply by a+, one gets aa+a∗ = a+. Therefore, a ∈ RSEP by Lemma 2.2.
(4) If (x, y) = (a∗, a), then aa∗a∗a + a# = a∗a + a+. Post-multiply by a+a, one has a+ = a+a+a. Hence, a ∈ REP by [11,
Lemma 2.1]. This gives

aa∗a∗a = a∗a.

Post-multiply by a+, one gets aa∗a∗ = a∗. Apply the involution, one obtains a2a∗ = a. Therefore, a ∈ RSEP by Lemma
2.2.
(5) If (x, y) = ((a#)∗, a), then a(a#)∗a∗a + a# = (a#)∗a + a+. Post-multiply by a+a, one yields a+ = a+a+a. Hence, one
obtains a ∈ REP by [11, Lemma 2.1]. So, one has

a(a#)∗a∗a = (a#)∗a.

Post-multiply by a+, one obtains a(a#)∗a∗ = (a#)∗. Apply the involution, one gets aa#a∗ = a#. Pre-multiply by a, one
gives aa∗ = aa#. Therefore, a ∈ RSEP by Lemma 2.2.
(6) If (x, y) = ((a+)∗, a), then a(a+)∗a∗a+a# = (a+)∗a+a+, that is, a2+a# = (a+)∗a+a+. Pre-multiply and post-multiply
a2 + a# = (a+)∗a + a+ by a, one gets

a4 = a(a+)∗a2.

Post-multiply a4 = a(a+)∗a2 by (a#)2a∗, this leads to a2a∗ = a2a+. By Lemma 2.1, a ∈ RPI. It follows that
a2 + a# = (a∗)∗a + a∗. Post-multiply by a+a, one obtains a∗ = a∗a+a. hence a = a+a2 and so a ∈ REP. Therefore,
a ∈ RSEP.
(7) If (x, y) = (a, a#), then a2a∗a# + a# = aa# + a+. Pre-multiply and post-multiply by a, one gets

a3a∗a#a = a2.

Post-multiply a3a∗a#a = a2 by aa+, this leads to a3a∗ = a3a+. By Lemma 2.1, a ∈ RPI. It follows that a2a+a# + a# =
aa# + a+. we can infer a# = a+. Hence, we obtain a ∈ REP. Therefore, a ∈ RSEP.
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(8) If (x, y) = (a#, a#), then aa#a∗a# + a# = a#a# + a+. Pre-multiply and post-multiply aa#a∗a# + a# = a#a# + a+ by a,
one gets

aa∗a#a = a#a.

Post-multiply aa∗a#a = a#a by a, this leads to aa∗a = a. Hence, we obtain a ∈ RPI. This gives aa#a+a#+ a# = a#a#+ a+.
Pre-multiply aa#a+a# + a# = a#a# + a+ by a2, one obtains a = a2a+. Therefore, a ∈ RSEP by [11, Lemma 2.1].
(9) If (x, y) = (a+, a#), then aa+a∗a# + a# = a+a# + a+. Post-multiply by a+a, one yields a+ = a+a+a. Hence, a ∈ REP

by [11, Lemma 2.1]. It follows that
aa+a∗a# = a+a#.

Post-multiply by a2a+, one has aa+a∗ = a+. Therefore, a ∈ RSEP by Lemma 2.2.
(10) If (x, y) = (a∗, a#), then aa∗a∗a# + a# = a∗a# + a+. Post-multiply by a+a, one gets a+ = a+a+a. Hence, a ∈ REP by
[11, Lemma 2.1]. It follows that

aa∗a∗a# = a∗a#.

Post-multiply by a2a+, one obtains aa∗a∗ = a∗. Apply the involution, one gives a2a∗ = a. Therefore, a ∈ RSEP by
Lemma 2.2.
(11) If (x, y) = ((a#)∗, a#), then a(a#)∗a∗a# + a# = (a#)∗a# + a+. Post-multiply by a+a, one obtains a+ = a+a+a. Thus,
a ∈ REP by [11, Lemma 2.1]. This leads to

a(a#)∗a∗a# = (a#)∗a#.

Noting that a+a(a#)∗ = (a#)∗. Pre-multiply the above equality by a+, one gets (a#)∗a∗a# = a+(a#)∗a#. Post-multiply by
a2a+, one yields (a#)∗a∗ = a+(a#)∗. Apply the involution, one gives aa# = a#(a+)∗. Post-multiply by a∗, one obtains
aa#a∗ = a#aa+. Pre-multiply by a, one has aa∗ = aa+. Hence, we obtain a ∈ RPI by [3, Theorem 2.1]. Therefore,
a ∈ RSEP.
(12) If (x, y) = ((a+)∗, a#), then a(a+)∗a∗a# + a# = (a+)∗a# + a+, that is,

aa# + a# = (a+)∗a# + a+.

Pre-multiply and post-multiply aa# + a# = (a+)∗a# + a+ by a, one gets a2 = a(a+)∗a#a. Post-multiply a2 = a(a+)∗a#a by
aa#a∗, one yields a2a∗ = a2a+. By Lemma 2.1, a ∈ RPI. This gives aa# + a# = (a+)+a# + a+, that is, a# = a+. Hence, we
obtain a ∈ REP. Therefore, a ∈ RSEP.
(13) If (x, y) = (a, a+), then a2a∗a+ + a# = aa+ + a+. Post-multiply by aa+, one has a# = a#aa+. Pre-multiply by a, one
gets aa# = aa+. Hence, we obtain a ∈ REP by [11, Lemma 2.1], so a+ = a#. It follows that

a2a∗a# = aa#.

Post-multiply by a2a+, one yields a2a∗ = a2a+. Thus, a ∈ RPI by Lemma 2.1. Therefore, a ∈ RSEP.
(14) If (x, y) = (a#, a+), then aa#a∗a+ + a# = a#a+ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa#a∗a# = a#a#.

Pre-multiply by a, one yields aa∗a# = a#. Thus, a ∈ RPI by Lemma 2.1. Therefore, a ∈ RSEP.
(15) If (x, y) = (a+, a+), then aa+a∗a+ + a# = a+a+ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa+a∗a+ = a+a+.

Since a ∈ REP, aa#a∗a# = a#. Hence, a ∈ RSEP by (14).
(16) If (x, y) = (a∗, a+), then aa∗a∗a+ + a# = a∗a+ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa∗a∗a+ = a∗a+.

Pre-multiply by a+, one yields a∗a∗a+ = a+a∗a+. Apply the involution, one gets (a+)∗a2 = (a+)∗a(a+)∗. Pre-multiply
by a#a∗, this leads to a = (a+)∗. Thus, a ∈ RPI. Therefore, a ∈ REP.
(17) If (x, y) = ((a#)∗, a+), then a(a#)∗a∗a+ + a# = (a#)∗a+ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence,
we obtain a ∈ REP by (13). So, we have

a(a#)∗a∗a+ = (a#)∗a+.
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Pre-multiply by a+, one gets (a#)∗a∗a+ = a+(a#)∗a+. Apply the involution, one gives (a+)∗aa# = (a+)∗a#(a+)∗. Pre-
multiply by aa∗, this leads to a = aa#(a+)∗. Post-multiply by a∗, which implies that aa∗ = aa+. Thus, a ∈ RPI by [3,
Theorem 2.1]. Therefore, a ∈ RSEP.
(18) If (x, y) = ((a+)∗, a+), then a(a+)∗a∗a+ + a# = (a+)∗a+ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we
obtain a ∈ REP by (13). It follows that a2a+a+ = (a+)∗a+, that is,

aa# = (a#)∗a#.

Post-multiply by a2, one has a2 = (a#)∗a. Apply the involution, one gives a∗a∗ = a∗a#. Pre-multiply by (a+)∗, one
yields aa+a∗ = a#. Therefore, a ∈ RSEP by Lemma 2.2.
(19) If (x, y) = (a, a∗), then a2a∗a∗ + a# = aa∗ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

a2a∗a∗ = aa∗.

Post-multiply by (a+)∗, one gives a = a2a∗a+a = a2a∗. Therefore, a ∈ RSEP by Lemma 2.2.
(20) If (x, y) = (a#, a∗), then aa#a∗a∗ + a# = a#a∗ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa+a∗a∗ = a+a∗.

Pre-multiply by a+, one yields a+a∗a∗ = a+a+a∗. Hence, a ∈ RPI by Lemma 2.4. Therefore, a ∈ RSEP.
(21) If (x, y) = (a+, a∗), then aa+a∗a∗ + a# = a+a∗ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa+a∗a∗ = a+a∗.

Therefore, a ∈ RSEP by (20).
(22) If (x, y) = (a∗, a∗), then aa∗a∗a∗ + a# = a∗a∗ + a+. Post-multiply by aa+, one has a# = a#aa+. Hence, we obtain
a ∈ REP by (13). It follows that

aa∗a∗a∗ = a∗a∗.

Apply the involution, one obtains a3a∗ = a2. Pre-multiply by a#, this leads to a2a∗ = a. Therefore, a ∈ RSEP.
(23) If (x, y) = ((a#)∗, a∗), then a(a#)∗a∗a∗ + a# = (a#)∗a∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence,
we obtain a ∈ REP by (13). So, we have

a(a#)∗a∗a∗ = (a#)∗a∗.

Apply the involution, one gives aa∗ = aa#. Therefore, a ∈ RSEP by [3, Theorem 2.3].
(24) If (x, y) = ((a+)∗, a∗), then a(a+)∗a∗a∗ + a# = (a+)∗a∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence,
we obtain a ∈ REP by (13). So, we have a(a+)∗a∗a∗ = (a+)∗a∗, that is,

a(a#)∗a∗a∗ = (a#)∗a∗.

Apply the involution, one gets aa∗ = aa#. Therefore, a ∈ RSEP by [3, Theorem 2.3].
(25) If (x, y) = (a, (a#)∗), then a2a∗(a#)∗ + a# = a(a#)∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence, we
obtain a ∈ REP by (13). So, we have a2a∗(a+)∗ = a(a+)∗, that is,

a2 = a(a+)∗.

Pre-multiply by a#, one has a = (a+)∗. Hence, we obtain a ∈ RPI. Therefore, a ∈ RSEP.
(26) If (x, y) = (a#, (a#)∗), then aa#a∗(a#)∗ + a# = a#(a#)∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence,
we obtain a ∈ REP by (13). So, we have aa+a∗(a+)∗ = a+(a+)∗, that is,

aa+a+a = a+(a+)∗.

Post-multiply by a∗, one has aa+a∗ = a+. Therefore, a ∈ RSEP by Lemma 2.2.
(27) If (x, y) = (a+, (a#)∗), then aa+a∗(a#)∗ + a# = a+(a#)∗ + a+, that is, aa+ + a# = a+(a#)∗ + a+. Post-multiply by aa+,
one obtains a# = a#aa+. Hence, we obtain a ∈ REP by (13). So, we have

aa+ = a+(a+)∗.
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Post-multiply by a∗, one has aa+a∗ = a+. Therefore, a ∈ RSEP .
(28) If (x, y) = (a∗, (a#)∗), then aa∗a∗(a#)∗ + a# = a∗(a#)∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+. Hence,
we obtain a ∈ REP by (13). So, we have

aa∗a∗(a#)∗ = a∗(a#)∗.

Apply the involution, one has aa∗ = a#a. Hence, a ∈ RSEP by Lemma 2.1.
(29) If (x, y) = ((a#)∗, (a#)∗), then a(a#)∗a∗(a#)∗ + a# = (a#)∗(a#)∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+.
Hence, we obtain a ∈ REP by (13). It follows that a(a#)∗a∗(a#)∗ = (a#)∗(a#)∗, that is,

a(a#)∗ = (a#)∗(a#)∗.

Apply the involution, one has a#a∗ = a#a#. Pre-multiply by a2, one gets aa∗ = aa#. Therefore, a ∈ RSEP by Lemma 2.1.
(30) If (x, y) = ((a+)∗, (a#)∗), then a(a+)∗a∗(a#)∗ + a# = (a+)∗(a#)∗ + a+. Post-multiply by aa+, one obtains a# = a#aa+.
Hence, we obtain a ∈ REP by (13). It follows that a(a+)∗a∗(a+)∗ = (a+)∗(a+)∗, that is,

a(a+)∗ = (a+)∗(a+)∗.

Apply the involution, one has a+a∗ = a+a+. Thus, a ∈ RPI by [12, Lemma 4.2]. Therefore, a ∈ RSEP.
(31) If (x, y) = (a, (a+)∗), then a2a∗(a+)∗+a# = a(a+)∗+a+, that is, a2+a# = a(a+)∗+a+. Pre-multiply and post-multiply
a2 + a# = a(a+)∗ + a+ by a, one gets

a4 = a2(a+)∗a.

Pre-multiply and post-multiply a4 = a2(a+)∗a by a#, this leads to a2 = a(a+)∗. Hence a ∈ RPI. It follows that
a2 + a# = a(a+)+ + a+, we can infer a# = a+. Thus, a ∈ REP. Therefore, a ∈ RSEP.
(32) If (x, y) = (a#, (a+)∗), then aa#a∗(a+)∗ + a# = a#(a+)∗ + a+, that is, aa# + a# = a#(a+)∗ + a+. Pre-multiply and
post-multiply aa# + a# = a#(a+)∗ + a+ by a, one gets

a2 = (a+)∗a.

Thus, a ∈ RPI, and so a = (a+)∗. It follows that a# = a+ = a∗. Hence, a ∈ RSEP.
(33) If (x, y) = (a+, (a+)∗), then aa+a∗(a+)∗ + a# = a+(a+)∗ + a+, that is, aa+a+a + a# = a+(a+)∗ + a+. Post-multiply by
aa#, one obtains a+ = a+aa#. Pre-multiply by a, one yields aa+ = aa#. Hence, a ∈ REP by [11, Lemma 2.1]. It follows
that

aa+a+a = a+(a+)∗.

Therefore, a ∈ RSEP by (26).
(34) If (x, y) = (a∗, (a+)∗), then aa∗a∗(a+)∗ + a# = a∗(a+)∗ + a+, that is, aa∗a+a + a# = a+a + a+. Post-multiply by aa#,
one obtains a+ = a+aa#. Hence, we obtain a ∈ REP by (33). It follows that

aa∗a+a = a+a.

Post-multiply by a+, one has aa∗a+ = a+. Therefore, a ∈ RSEP by Lemma 2.2.
(35) If (x, y) = ((a#)∗, (a+)∗), then a(a#)∗a∗(a+)∗ + a# = (a#)∗(a+)∗ + a+, that is, a(a#)∗a+a + a# = (a#)∗(a+)∗ + a+.
Post-multiply by aa#, one obtains a+ = a+aa#. Hence, we obtain a ∈ REP by (33). It follows that

a(a#)∗a+a = (a#)∗(a+)∗.

Apply the involution, one yields a+aa#a∗ = a+a#. Pre-multiply by a2, one has aa∗ = aa#. Therefore, a ∈ RSEP by
Lemma 2.2.
(36) If (x, y) = ((a+)∗, (a+)∗), then a(a+)∗a∗(a+)∗ + a# = (a+)∗(a+)∗ + a+, that is, a(a+)∗ + a# = (a+)∗(a+)∗ + a+.
Post-multiply by aa#, one obtains a+ = a+aa#. Hence, we obtain a ∈ REP by (33). It follows that

a(a+)∗ = (a+)∗(a+)∗.

Therefore, a ∈ RSEP by (30).
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We modify the equation (2.9) as follows:

aa+xa∗y = a+xy. (10)

From the equation (2.10), we can obtain the following characterization of SEP element which proof is
routine.

Theorem 2.12. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if there is at least one solution to the equation (2.10) in χ2

a .

3. General solutions of some equations

In this section, we established some equations and discussing the general solutions of these equations.
The equation (2.3) can be extended to:

a+axa = y(a+)∗. (11)

Theorem 3.1. Let a ∈ R#
∩ R+. Then the general solution to equation (3.11) is given by{

x = pa+ + u − a+auaa+

y = a+apa∗ + v − vaa+
,where p,u, v ∈ R. (12)

Proof. First, we show that the (3.12) is the solution to the equation (3.11).
In fact, we have

a+a(pa+ + u − a+auaa+)a = a+apa+a + a+aua − a+aa+auaa+a = a+apa+a,

(a+apa∗ + v − vaa+)(a+)∗ = a+apa∗(a+)∗ + v(a+)∗ − vaa+(a+)∗ = a+apa+a.

Next, we show that all solutions to equation (3.11) can be written in (3.12).
Assume that x = x0, y = y0 is a solution of the equation (3.11), then

a+ax0a = y0(a+)∗.

Choose u = x0, v = y0 and p = y0(a+)∗.

pa+ + u − a+auaa+ = (y0(a+)∗)a+ + x0 − a+ax0aa+ = (a+ax0a)a+ + x0 − a+ax0aa+ = x0,

a+apa∗ + v − vaa+ = a+a(a+ax0a)a∗ + y0 − y0aa+ = (a+ax0a)a∗ + y0 − y0aa+ = y0(a+)∗a∗ + y0 − y0aa+ = y0.

Hence, the general solution of (3.11) is given by (3.12).

Theorem 3.2. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution to equation (3.11) is given by{

x = pa∗ + u − a+auaa+

y = a+apa∗ + v − vaa+
,where p,u, v ∈ R. (13)

Proof. ′ ⇒′ Suppose that a ∈ RPI, then a+ = a∗. As a result, the general solution (3.12) of equation (3.11) equals
(3.13).
′
⇐
′ If (3.13) is the general solution of (3.11), then

a+a(pa∗ + u − a+auaa+)a = a+apa∗a + a+aua − a+aa+auaa+a = a+apa∗a,

(a+apa∗ + v − vaa+)(a+)∗ = a+apa∗(a+)∗ + v(a+)∗ − vaa+(a+)∗ = a+apa∗(a+)∗.

Therefore, a+apa∗a = a+apa+a, for each p ∈ R. Choose p = 1 in particular, we get a∗a = a+a. Hence, a ∈ RPI by [3,
Theorem 2.1].
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Theorem 3.3. Let a ∈ R#
∩ R+. Then the general solution to equation (3.14) is given by (3.13).

a+axaa+ = yaa+. (14)

Proof. It’s similar to Theorem 3.1.

Theorem 3.4. Let a ∈ R#
∩R+. Then a ∈ RPI if and only if equation (3.11) has the same solution as equation (3.14).

Proof. ′ ⇒′ Suppose that a ∈ RPI, then a+ = a∗. Hence, the solution of equation (3.11) has the same solution as
equation (3.14) by Theorem 3.2 and Theorem 3.3.
′
⇐
′ If the solution of equation (3.11), has the same the solution as equation (3.14), then

a+a(pa+ + u − a+auaa+)aa+ = a+apa+ = (a+apa∗ + v − vaa+)aa+ = a+apa∗,

for each p ∈ R. Choose p = 1 in particular, this gives a+ = a∗. Hence, a ∈ RPI.

We also have the following theorem, which is related to Theorem 3.1.

Theorem 3.5. Let a ∈ R#
∩ R+. Then the general solution to equation (3.11) is given by{

x = p(a+)∗a+ + u − a+auaa+

y = a+ap + v − vaa+
,where p,u, v ∈ R. (15)

Theorem 3.6. Let a ∈ R#
∩ R+. Then the general solution to equation (3.11) is given by{

x = p + u − a+auaa+

y = a+apaa∗ + v − vaa+
,where p,u, v ∈ R. (16)
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