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Abstract. In this paper, we provide some characterizations and representations for them-core-EP inverse.
We give a relationship between the m-core-EP inverse and an invertible bordered matrix. Also, some char-
actizations for the m-core-EP inverse as an {2}-inverse with prescribed range and null space are presented.
The Cramer’s rule for the solution of a singular equation Ax = b is also given. Perturbation bounds related
with them-core-EP inverse are estimated. Furthermore, the successive matrix squaring algorithm for com-
puting the m-core-EP inverse is constructed. Finally, we show that the m-core-EP inverse can be used in
solving appropriate systems of linear equations.

1. Introduction

Throughout this paper, we denote the set of all n × n complex matrices by Cn,n. Let A∗, N (A), R (A),
∥A∥, ρ,M and rk (A) represent the conjugate transpose, the null space, the range space (column space), the
spectrum norm, the spectral radius, the Minskowski space and the rank, respectively, of A. The smallest
nonnegative integer k, which satisfies rk

(
Ak+1

)
= rk

(
Ak

)
, is called the index of A and is denoted by Ind(A).

In particular, if Ind(A) = 1, that is,

CCM
n =

{
A | A ∈ Cn,n, rk(A2) = rk(A)

}
.

Let Cn be the space of complex n-tuples, we shall index the components of a complex vector in Cn from
0 to n − 1, that is, u = (u0,u1,u2, · · · un−1). Let G be the Minkowski metric tensor defined by

Gu = (u0,−u1,−u2, · · · ,−un−1).

Moreover, the Minkowski metric tensor G can be written as

G =
[
1 0
0 −In−1

]
, G = G∗ and G2 = In. (1.1)
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In [2], Minkowski inner product on Cn is defined by (u, v) = [u,Gv], where [.,.] denotes the conventional
Hilbert (unitary) inner product. A space with Minkowski inner product is called a Minkowski space and
denoted asM. For A ∈ Cn,n, x, y ∈ Cn in Minskowski space, by applying (1.1), the Minskowski conjugate
matrix A∼ of A can be defined as follows

(Ax, y) = [Ax,Gy] = [x,A∗Gy]
= [x,G(GA∗G)y]
= [x,GA∼y] = (x,A∼y)

where A∼ = GA∗G (see [2]).
In 2000, Meenakshi [3] defined the generalized inverse inM. For A ∈ Cn,n, the Minkowski inverse Am

of A is the unique matrix X ∈ Cn,n satisfying the following four equations:

AXA = A, XAX = X, (AX)∼ = AX, (XA)∼ = XA.

For A ∈ Cn,n, the Minkowski inverse Am of A exists if and only if

rk(A) = rk (A∼A) = rk (AA∼) .

In [4, 5], Kılıçman and Al-Zhour studied the weighed Minkowski inverse in M. More propeties of the
Minkowski inverse can be seen in [6, 7].

In 2019, Wang, Li and Liu [22] defined the m-core inverse inM. For A ∈ CCM
n , the m-core inverse AmO of

A is the unique matrix X ∈ Cn,n satisfying the following three equations:

AXA = A, AX2 = X, (AX)∼ = AX. (1.2)

For A ∈ CCM
n , A is m-core invertible if and only if

rk(A) = rk(A∼A).

In recent years, the core-EP inverse was studied in numerous papers. For A ∈ Cn,n with Ind(A) = k, the
core-EP inverse A †O of A is the unique matrix X ∈ Cn,n satisfying the following four equations [8]:

XAk+1 = Ak, XAX = X, (AX)∗ = AX, R(X) ⊆ R
(
Ak

)
.

In [9], Ferreyra, Levis and Thome generalize the core-EP inverse to rectangular matrices. In [12], Ma and
Stanimirović studied perturbations and SMS algorithm of the core-EP inverse. In [13], Mosić, Stanimirović
and Katsikis applied the core-EP inverses to study some constrained matrix approximation problems. In
[14], Gao, Chen and Patrı́cio studied continuity of the core-EP inverse and its applications to semistable
matrices. More propeties of the core-EP inverse can be seen in [10, 11, 16–18].

In 2021, Wang, Wu and Liu [23] generalize the core-EP inverse to Minkowski space, and defined the
m-core-EP inverse inM. For A ∈ Cn,n with Ind(A) = k, the m-core-EP inverse AEO of A is the unique matrix
X ∈ Cn,n satisfying the following four equations:

XAk+1 = Ak, XAX = X, (AX)∼ = AX, R(X) ⊆ R
(
Ak

)
. (1.3)

For A ∈ Cn,n with Ind(A) = k, A is m-core-EP invertible if and only if

rk(Ak) = rk((Ak)∼Ak).

Motivated by recent researches about the core-EP inverse, we give some characterizations and repre-
sentations for the m-core-EP inverse. The main structures of this paper are as follows

(1) Some characterizations for the m-core-EP inverse is investigated.
(2) A Cramer’s rule for the solution of a singular equation Ax = b is given.
(3) Perturbation bounds for the m-core-EP inverse are established.
(4) A successive matrix squaring (SMS) algorithm for the m-core-EP inverse is proposed.
(5) Applications of the m-core-EP inverse in solving linear equations.
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2. Preliminaries

In this paper, we mainly use the core-EP decomposition. The core-EP decomposition is defined as
follows

Lemma 2.1 ([15], core-EP decomposition). Let A ∈ Cn,n with Ind(A) = k and rk(Ak) = r. Then

A = U
[
T S
0 N

]
U∗, (2.1)

where U ∈ Cn,n is unitary, T ∈ Cr,r is nonsingular, S ∈ Cr,n−r, N ∈ Cn−r,n−r is nilpotent, and Nk = 0.

Let A be as in (2.1), then

A †O = U
[
T−1 0

0 0

]
U∗, (2.2)

Ak = U
[
Tk T̂
0 0

]
U∗, Ak+1 = U

[
Tk+1 T

0 0

]
U∗, (2.3)

where T̂ = Tk−1S + Tk−2SN + · · · + TSNk−2 + SNk−1, and T = TkS + Tk−1SN + · · · + TSNk−1. It is easy to get
T−1T = T̂.

Let U be as in (2.1). Denote

U∗GU =
[
G1 G2
G3 G4

]
, (2.4)

where G1 ∈ Cr,r.

Lemma 2.2 ([23]). Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r if and only if G1 ∈ Cr,r is invertible.

Lemma 2.3 ([23]). Let A be as in (2.1), rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r. Then

AEO = U
[
T−1G−1

1 0
0 0

]
U∗G. (2.5)

Lemma 2.4 ([19]). Let A ∈ Cn,n and M ∈ C2n,2n partitioned as M =
[

A AT
SA B

]
. Then

rk(M) = rk(A) + rk(B − SAT).

Lemma 2.5 ([1]). Let A ∈ Cn,n with Ind(A) = k, the Drazin inverse AD of A is the unique matrix X ∈ Cn,n satisfying
the following three equations:

AkXA = Ak, XAX = X, AX = XA.

Lemma 2.6 ([23]). Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r. Then

AEO = AkAD
(
Ak

)mO
.

Lemma 2.7 ([1]). Let E and F be complementary subspaces of Cn, PE,F represents the projector on the subspace E
along the subspace F and M ∈ Cn,n. Then

(i) PE,FM =M⇔ R(M) ⊆ E;
(ii) MPE,F =M⇔ F ⊆ N(M).
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3. Some characterizations for the m-core-EP inverse

It is obvious that if A is an invertible matrix, then X = A−1 is the unique matrix satisfy following rank
equality

rk
([

A I
I X

])
= rk(A).

In this section, by applying the m-core-EP inverse AEO of A, we give an analogous result.

Theorem 3.1. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r. Then there exist a unique matrix X such

that

(Ak+1)∼AX = 0, XAk = 0, X2 = X, rk(X) = n − r, (3.1)

a unique matrix Y such that

YAk = 0, Y2 = Y, Y = Y∼, rk(Y) = n − r, (3.2)

and a unique matrix Z such that

rk
([

A In − Y
In − X Z

])
= rk(A). (3.3)

The matrix Z is the m-core-EP inverse AEO of A. Furthermore, we have

X = In − AEOA, Y = In − AAEO.

Proof. Let A be as in (2.1). It is easy to verify that

X = U
[
0 −T−1(S + G−1

1 G2N)
0 In−r

]
U∗ (3.4)

satisfies condition (3.1). By applying (2.5), we obtain X = In − AEOA. Next, we verify the uniqueness of X.
Firstly, suppose that both X and X1 satisfy (3.1). Let X1 = UX0U∗, and X0 can be denoted by

X0 =

[
E F
K H

]
, (3.5)

where E ∈ Cr,r. By applying X1Ak = 0, (3.5) and (2.3), we obtain[
E F
K H

] [
Tk T̂
0 0

]
= 0.

Therefore, E = 0 and K = 0. Moreover, it follows from (3.1) that rk(X1) = n− r and X2
1 = X1, and it is easy to

obtain that rk(H) = n − r, H2 = H and F = FH. Therefore, H is invertible and H = In−r.
Besides, by using (3.1), we have

(Ak+1)∼AX1 = GU
[
(Tk+1)∗ 0

T
∗

0

]
U∗GU

[
T S
0 N

]
U∗U

[
0 F
0 In−r

]
U∗

= GU
[
0 (Tk+1)∗G1TF + (Tk+1)∗G1S + (Tk+1)∗G2N
0 T

∗

G1TF + T
∗

G1S + T
∗

G2N

]
U∗ = 0.
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Since G1 and T are invertible, by using (Tk+1)∗G1TF + (Tk+1)∗G1S + (Tk+1)∗G2N = 0, we obtain F = −T−1(S +
G−1

1 G2N). Thus, X1 = X.
In a similar way, we can also verify (3.2), where Y can be denoted by

Y = U
[
0 −G−1

1 G2
0 In−r

]
U∗.

By applying (2.1) and (2.5), then

In − AAEO = In −U
[
T S
0 N

]
U∗U

[
T−1G−1

1 0
0 0

]
U∗G

= In −U
[
G−1

1 0
0 0

]
U∗G = In −U

[
G−1

1 0
0 0

]
U∗GUU∗

= In −U
[
G−1

1 0
0 0

] [
G1 G2
G3 G4

]
U∗ = In −U

[
Ir G−1

1 G2
0 0

]
U∗

= U
[
0 −G−1

1 G2
0 In−r

]
U∗ = Y.

The matrices X = In − AEOA and Y = In − AAEO satisfy[
A In − Y

In − X Z

]
=

[
A AAEO

AEOA Z

]
.

By applying Lemma 2.4 and (3.3), we get

rk(Z − AEOAAEO) = 0,

which is equivalent to Z = AEOAAEO = AEO. The above proof is completed.

In the following, by using X = In − AEOA and Y = In − AAEO, we obtain another representation of the
m-core-EP inverse.

Theorem 3.2. Let A be as in Theorem 3.1. Then

AEO = (A − X)−1(In − Y) = (A + X)−1(In − Y), (3.6)

where X = In − AEOA, Y = In − AAEO.

Proof. Let A be of the form (2.1), by using (3.4), we obtain

A − X = U
[
T S
0 N

]
U∗ −U

[
0 −T−1(S + G−1

1 G2N)
0 In−r

]
U∗

= U
[
T S + T−1(S + G−1

1 G2N)
0 N − In−r

]
U∗.

Since T and N − In−r are invertible, we have

(A − X)−1 = U
[
T−1

−T−1[S + T−1(S + G−1
1 G2N)](N − In−r)−1

0 (N − In−r)−1

]
U∗

and

(A − X)−1(In − Y) = U
[

T−1
−T−1[S+T−1(S+G−1

1 G2N)](N−In−r)−1

0 (N−In−r)−1

]
U∗U

[
G−1

1 0
0 0

]
U∗G

= U
[
T−1G−1

1 0
0 0

]
U∗G = AEO.
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In a similar way, we can also obtain the equality AEO = (A + X)−1(In − Y). Then

AEO = (A − X)−1(In − Y) = (A + X)−1(In − Y),

which prove the representation (3.6).

In the following, we take an example to verify the results of Theorem 3.1.

Example 3.3. Let

A =

 0 4 −1
−1 3 −1
−2 −2 0

 =


2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


3 3 3
0 0 3
0 0 0




2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


with rk(A) = 2 and Ind(A) = 2. The AEO is denoted by

AEO = U
[
T−1G−1

1 0
0 0

]
U∗G

=


2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


−3 0 0

0 0 0
0 0 0




2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


1 0 0
0 −1 0
0 0 −1

 =

−

4
3

2
3 −

4
3

−
2
3

1
3 −

2
3

4
3 −

2
3

4
3

 .
The block matrix

B =
[

A I3 − Y
I3 − X Z

]
=

[
A AAEO

AEOA AEO

]
=



0 4 −1 2 −
2
3

2
3

−1 3 −1 1 −
1
3

1
3

−2 −2 0 −2 2
3 −

2
3

−
2
9

14
9 −

4
9

2
3 −

2
9

2
9

−
1
9

7
9 −

2
9

1
3 −

1
9

1
9

2
9 −

14
9

4
9 −

2
3

2
9 −

2
9


satisfies rk(B) = rk(A) = 2. Furthermore,

X = I3 − AEOA =


11
9 −

14
9

4
9

1
9

2
9

2
9

−
2
9

14
9

5
9


and

Y = I3 − AAEO =

−1 2
3 −

2
3

−1 4
3 −

1
3

2 −
2
3

5
3


satisfy (3.1) and (3.2), respectively.

In the following, we give characterizations for the m-core-EP inverse as an {2}-inverse with prescribed
range and null space.

Lemma 3.4 ([1], Theorem 14, p.72). Let A ∈ Cn,n with rk (A) = t. Let T be a subspace of Cn of dimension s ≤ t,
and let S be a subspace of Cn of dimension n − s. X is a {2}-inverse of A with prescribed range T and null space S if

XAX = X, R(X) = T, N(X) = S.

In this case, X is unique and denoted by A(2)
T,S.
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Theorem 3.5. Let A be as in Theorem 3.1. Then

R(AAEO) = R(Ak), N(AAEO) = N((Ak)∼).

Furthermore, AAEO = PR(AAEO),N(AAEO) = PR(Ak),N((Ak)∼).

Proof. Let A be of the form (2.1), by applying Lemma 2.6, we obtian R(AAEO) ⊆ R(Ak). Next, we just need
to verify R(Ak) ⊆ R(AAEO). By applying (1.3), we known that AEOAk+1 = Ak. Premultiplying both sides of
equality with A, we obtain AAEOAk+1 = Ak+1. Therefore, R(Ak+1) ⊆ R(AAEO). Since Ind(A) = k, we obtain
R(Ak) = R(Ak+1) ⊆ R(AAEO). From above, R(Ak) = R(AAEO).

In the following, we verifyN(AAEO) = N((Ak)∼). Let any x ∈ N(AAEO), that is, AAEOx = 0. Denote

U∗Gx =
[
x1
x2

]
,

AAEOx = U
[
T S
0 N

] [
T−1G−1

1 0
0 0

]
U∗Gx

= U
[
G−1

1 0
0 0

] [
x1
x2

]
= U

[
G−1

1 x1
0

]
.

Since AAEOx = 0, and G1 is invertible, we obtain x1 = 0, that is, x = GU
[

0
x2

]
, where x2 ∈ Cn−r,1 is arbitrary.

In a similar way, let any y ∈ N((Ak)∼), that is, (Ak)∼y = 0. Denote

U∗Gy =
[
y1
y2

]
,

(Ak)∼y = GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗Gy

= GU
[
(Tk)∗ 0

T̂∗ 0

] [
y1
y2

]
= GU

[
(Tk)∗y1

T̂∗y1

]
.

Since (Ak)∼y = 0, and T is invertible, we obtain y1 = 0, that is, y = GU
[

0
y2

]
, where y2 ∈ Cn−r,1 is arbitrary.

Hence AAEOx = 0 and (Ak)∼y = 0 are the same solution, we obtainN(AAEO) = N((Ak)∼).
Furthermore, AAEO is idempotent matrix, then AAEO is projection operator, that is, AAEO = PR(AAEO),N(AAEO) =

PR(Ak),N((Ak)∼).

Theorem 3.6. Let A be as in Theorem 3.1. Then

AEO = A(2)
R(Ak),N((Ak)∼)

. (3.7)

Proof. By applying Lemma 2.6, we obtian R(AEO) ⊆ R(Ak). From (1.3), we known that AEOAk+1 = Ak, that is,
R(Ak) ⊆ R(AEO). Therefore, R(AEO) = R(Ak). By applying (1.3), we have N(AAEO) ⊆ N(AEOAAEO) = N(AEO) ⊆
N(AAEO). Therefore,N(AEO) = N(AAEO) = N((Ak)∼). From (1.3), we obtain AEOAAEO = AEO. Hence, by applying
Lemma 3.4, we have (3.7).
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4. The Cramer’s rule for the solution of a singular equation Ax = b

In the following, we study the relationship between them-core-EP inverse AEO and an invertible bordered
matrix. The relationship is derived by the Cramer’s rule.

Theorem 4.1. Let A be as in Theorem 3.1. Let B and C∗ be full column rank matrices such that

N((Ak)∼) = R(B), R(Ak) = N(C).

Then the bordered matrix

A =

[
A B
C 0

]
is invertible and

A
−1 =

[
AEO (In − AEOA)C†

B†(In − AAEO) B†(AAEOA − A)C†

]
.

Proof. Let

Z =
[

AEO (In − AEOA)C†

B†(In − AAEO) B†(AAEOA − A)C†

]
.

By applying Lemma 2.6, we have

CAEO = CAkAD(Ak)mO = 0.

By applying Theorem 3.5 and Lemma 2.7, we have

BB†(In − AAEO) =BB†PN((Ak)∼),R(Ak)

=PN((Ak)∼),R(Ak) = In − AAEO.

Then

AZ =
[
AAEO + BB†(In − AAEO) A(In − AEOA)C† − BB†(In − AAEO)AC†

CAEO C(In − AEOA)C†

]
=

[
AAEO + In − AAEO A(In − AEOA)C† − (In − AAEO)AC†

CAEO CC† − CAEOAC†

]
=

[
In A(In − AEOA)C† − (In − AAEO)AC†

0 CC†

]
=

[
In 0
0 In−r

]
= I2n−r.

In a similar way, we can verify ZA = I2n−r. So,A is invertible with Z = A−1.

Theorem 4.2. Let A be as in Theorem 3.1. Let B and C∗ be full column rank matrices such that

N((Ak)∼) = R(B), R(Ak) = N(C).

If b ∈ R(Ak), then the unique solution x = AEOb of a singular linear equation Ax = b is denoted by

x j = det
[
A( j −→ b) B
C( j −→ 0) 0

]
/det

[
A B
C 0

]
, j = 1, 2, · · · ,n.
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Proof. Since x = AEOb ∈ R(Ak) and R(Ak) = N(C), we obtain Cx = 0. The solution of Ax = b satisfies:[
A B
C 0

] [
x
0

]
=

[
b
0

]
.

Applying Theorem 4.1, we obtain the unique solution x = AEOb of the singular linear equation Ax = b is
given by

x j = det
[
A( j −→ b) B
C( j −→ 0) 0

]
/det

[
A B
C 0

]
, j = 1, 2, · · · ,n.

5. Perturbations of the m-core-EP inverse

In this section, we investigate perturbation bounds for the m-core-EP inverse.

Lemma 5.1 ([21]). Let A ∈ Cn,n with ∥A∥ ≤ 1. Then In + A is nonsingular and

∥(In + A)−1
∥ ≤ (1 − ∥A∥)−1.

Theorem 5.2. Let A be as in Theorem 3.1, B = A + E ∈ Cn,n. If the perturbation E satisfies AAEOE = E and
∥AEOE∥ < 1, then

BEO = (In + AEOE)−1AEO = AEO(In + EAEO)−1, BBEO = AAEO.

Furthermore,

∥AEO
∥

1 + ∥AEOE∥
≤ ∥BEO

∥ ≤
∥AEO
∥

1 − ∥AEOE∥
,

∥BEO
− AEO

∥

∥AEO∥
≤
∥AEOE∥

1 − ∥AEOE∥
.

Proof. Let A be of the form (2.1). Suppose that the perturbation E can be expressed as

E = U
[
E11 E12
E21 E22

]
U∗.

Since E satisfies AAEOE = E, then

AAEOE = U
[
T S
0 N

] [
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
E11 E12
E21 E22

]
U∗

= U
[
E11 + G−1

1 G2E21 E12 + G−1
1 G2E22

0 0

]
U∗ = U

[
E11 E12
E21 E22

]
U∗.

Then, we have E21 = 0 and E22 = 0, and

E = U
[
E11 E12
0 0

]
U∗, B = A + E = U

[
T + E11 S + E12

0 N

]
U∗. (5.1)

By applying (2.5) and (5.1), we have

In + AEOE = In +U
[
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
E11 E12
0 0

]
U∗

= U
[
Ir + T−1E11 T−1E12

0 In−r

]
U∗.
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Since ∥AEOE∥ < 1, we known that In + AEOE and T + E11 are invertible. Then, we have

(In + AEOE)−1 = U
[
(T + E11)−1T −(T + E11)−1E12

0 In−r

]
U∗. (5.2)

Since T + E11 is invertible, by applying (5.1), we obtain rk
(
Bk

)
= rk

((
Bk

)∼
Bk

)
= r. It follows from Lemma

2.3 that the m-core-EP inverse of B exists. Then,

BEO = U
[
(T + E11)−1G−1

1 0
0 0

]
U∗G. (5.3)

By applying (2.5) and (5.2), we have

(In + AEOE)−1AEO = U
[
(T + E11)−1T −(T + E11)−1E12

0 In−r

]
U∗U

[
T−1G−1

1 0
0 0

]
U∗G

= U
[
(T + E11)−1G−1

1 0
0 0

]
U∗G. (5.4)

From (5.3) and (5.4), we obtain BEO = (In + AEOE)−1AEO.
On the other hand,

In + EAEO = In +U
[
E11 E12
0 0

]
U∗U

[
T−1G−1

1 0
0 0

]
U∗G

= In +U
[
E11T−1G−1

1 0
0 0

]
U∗G = In +U

[
E11T−1G−1

1 0
0 0

]
U∗GUU∗

= In +U
[
E11T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

]
U∗ = In +U

[
E11T−1 E11T−1G−1

1 G2
0 0

]
U∗

= U
[
Ir + E11T−1 E11T−1G−1

1 G2
0 In−r

]
U∗,

(In + EAEO)−1 = U
[
T(T + E11)−1

−T(T + E11)−1E11T−1G−1
1 G2

0 In−r

]
U∗. (5.5)

By applying (2.5), (5.3) and (5.5), we have

AEO(In + EAEO)−1 = U
[
T−1G−1

1 0
0 0

]
U∗GU

[
T(T + E11)−1

−T(T + E11)−1E11T−1G−1
1 G2

0 In−r

]
U∗

= U
[
(T + E11)−1

−(T + E11)−1E11T−1G−1
1 G2 + T−1G−1

1 G2
0 0

]
U∗

= U
[
(T + E11)−1 (T + E11)−1[−E11T−1G−1

1 G2 + (T + E11)T−1G−1
1 G2]

0 0

]
U∗

= U
[
(T + E11)−1 (T + E11)−1[(−E11 + T + E11)T−1G−1

1 G2]
0 0

]
U∗

= U
[
(T + E11)−1 (T + E11)−1G−1

1 G2
0 0

]
U∗, (5.6)
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BEO = U
[
(T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
(T + E11)−1G−1

1 0
0 0

]
U∗GUU∗

= U
[
(T + E11)−1G−1

1 0
0 0

] [
G1 G2
G3 G4

]
U∗

= U
[
(T + E11)−1 (T + E11)−1G−1

1 G2
0 0

]
U∗. (5.7)

From (5.6) and (5.7), we obtain BEO = AEO(In + EAEO)−1.
By applying (2.1), (2.5), (5.1) and (5.3), we have

BBEO = U
[
T + E11 S + E12

0 N

]
U∗U

[
(T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
G−1

1 0
0 0

]
U∗G,

AAEO = U
[
T S
0 N

]
U∗U

[
T−1G−1

1 0
0 0

]
U∗G

= U
[
G−1

1 0
0 0

]
U∗G.

Therefore, BBEO = AAEO.
Next, we prove the perturbation bound inequality. From Lemma 5.1, we obtain

∥(In + AEOE)−1
∥ ≤

1
1 − ∥AEOE∥

. (5.8)

By applying BEO = (In + AEOE)−1AEO and (5.8), we obtain

∥BEO
∥ ≤

∥AEO
∥

1 − ∥AEOE∥
. (5.9)

By applying (2.5), (5.1) and (5.3), we have

BEO
− AEO = U

[
(T + E11)−1G−1

1 0
0 0

]
U∗G −U

[
T−1G−1

1 0
0 0

]
U∗G

= U
[
(T + E11)−1G−1

1 − T−1G−1
1 0

0 0

]
U∗G

= U
[
[Ir − T−1(T + E11)](T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
−T−1E11(T + E11)−1G−1

1 0
0 0

]
U∗G,
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AEOEBEO = U
[
T−1G−1

1 0
0 0

]
U∗GU

[
E11 E12
0 0

]
U∗U

[
(T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
E11 E12
0 0

] [
(T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
T−1E11 T−1E12

0 0

] [
(T + E11)−1G−1

1 0
0 0

]
U∗G

= U
[
T−1E11(T + E11)−1G−1

1 0
0 0

]
U∗G.

From above, we obtain

BEO
− AEO = −AEOEBEO, (5.10)

that is, (In + AEOE)BEO = AEO. Therefore,

∥AEO
∥ ≤ (1 + ∥AEOE∥)∥BEO

∥,

∥AEO
∥

1 + ∥AEOE∥
≤ ∥BEO

∥. (5.11)

From (5.9) and (5.11), we have

∥AEO
∥

1 + ∥AEOE∥
≤ ∥BEO

∥ ≤
∥AEO
∥

1 − ∥AEOE∥
.

By applying BEO = (In + AEOE)−1AEO and (5.10), we obtain

∥BEO
− AEO

∥

∥AEO∥
≤
∥AEOE∥

1 − ∥AEOE∥
.

Corollary 5.3. Let A be as in Theorem 3.1, B = A + E ∈ Cn,n. If the perturbation E satisfies R(E) ⊆ R(Ak) and
∥AEOE∥ < 1, then

BEO = (In + AEOE)−1AEO = AEO(In + EAEO)−1, BBEO = AAEO. (5.12)

Furthermore,

∥AEO
∥

1 + ∥AEOE∥
≤ ∥BEO

∥ ≤
∥AEO
∥

1 − ∥AEOE∥
, (5.13)

∥BEO
− AEO

∥

∥AEO∥
≤
∥AEOE∥

1 − ∥AEOE∥
. (5.14)

Proof. By applying Lemma 2.7 and Theorem 3.5, we known that R(E) ⊆ R(Ak) is equivalent to AAEOE = E.
Next, similar to the proof of the Theorem 5.2, we obtain (5.12), (5.13) and (5.14).

Corollary 5.4. Let A be as in Theorem 3.1, B = A + E ∈ Cn,n. If the perturbation E satisfies AEOAE = E and
∥AEOE∥ < 1, then

BEO = (In + AEOE)−1AEO = AEO(In + EAEO)−1, BBEO = AAEO. (5.15)

Furthermore,

∥AEO
∥

1 + ∥AEOE∥
≤ ∥BEO

∥ ≤
∥AEO
∥

1 − ∥AEOE∥
, (5.16)

∥BEO
− AEO

∥

∥AEO∥
≤
∥AEOE∥

1 − ∥AEOE∥
. (5.17)
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Proof. Let A be of the form (2.1). Assume that the perturbation E can be denoted by

E = U
[
E11 E12
E21 E22

]
U∗.

Since E satisfies AEOAE = E, we have

AEOAE = U
[
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

] [
E11 E12
E21 E22

]
U∗

= U
[
E11 + (T−1S + T−1G−1

1 G2N)E21 E12 + (T−1S + T−1G−1
1 G2N)E22

0 0

]
U∗

= U
[
E11 E12
E21 E22

]
U∗.

Then, we get E21 = 0 and E22 = 0. Next, similar to the proof of the Theorem 5.2, we obtain (5.15), (5.16) and
(5.17).

6. Successive matrix squaring algorithm for computing the m-core-EP inverse

In this section, we give successive matrix squaring (SMS) algorithm for computing them-core-EP inverse
AEO. By applying Lemma 2.5, Lemma 2.6 and (1.2), we have

Ak(Ak)∼AAEO = Ak(Ak)∼AAkAD(Ak)mO = Ak(Ak)∼Ak+1AD(Ak)mO

= Ak(Ak)∼Ak(Ak)mO = Ak(Ak)∼(Ak(Ak)mO)∼

= Ak(Ak(Ak)mOAk)∼ = Ak(Ak)∼.

Then

AEO = AEO
− β(Ak(Ak)∼AAEO

− Ak(Ak)∼) = (In − βAk(Ak)∼A)AEO + βAk(Ak)∼.

Set

P = In − βAk(Ak)∼A, Q = βAk(Ak)∼, β > 0. (6.1)

The iterative scheme for finding the m-core-EP inverse AEO will be given by [20]:

X1 = Q = βAk(Ak)∼, Xm+1 = PXm +Q, m ∈N. (6.2)

Taking

T =
[
P Q
0 In

]
and Tm =

[
Pm Σm−1

i=0 PiQ
0 In

]
,

Xm is the top right block of Tm, i.e. Xm = Σ
m−1
i=0 PiQ. Notice that

T2m
=

[
P2m

Σ2m
−1

i=0 PiQ
0 In

]
.

Applying [20], we have the following Theorem 6.1.
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Theorem 6.1. Let A be as in Theorem 3.1. The approximations

X2m =

2m
−1∑

i=0

(In − βAk(Ak)∼A)iβAk(Ak)∼ (6.3)

determined by the SMS algorithm

T0 = T, Ti+1 = T2
i , i = 0,m − 1,

converges in the matrix norm ∥ · ∥ to the m-core-EP inverse AEO if spectral radius ρ(In − AX1) < 1. In the case of
convergence, we have the error estimates,

∥AEO
− X2m∥ ≤ ∥AEO

∥∥(In − AX1)2m
∥.

Moreover,

lim
m→∞

sup 2m√
∥AEO − X2m∥ ≤ ρ(In − AX1).

Proof. By applying AEOAk+1 = Ak and (6.3), we have

AEOAX2m = X2m .

Next, we verify following equality

In − AXm = (In − AX1)m. (6.4)

By the mathematical induction, for m = 1, the equality (6.4) is true. Assume that it holds for m = k−1. Next,
we just need to prove that it holds for m = k. From (6.1), it is easy to obtain P = In − QA, and by applying
(6.2), we have

In − AXk = In − A(PXk−1 +Q)
= In − A(In −QA)Xk−1 − AQ
= In − AXk−1 + AQAXk−1 − AQ
= In − AXk−1 − AQ(In − AXk−1)
= (In − AQ)(In − AXk−1)

= (In − AX1)(In − AX1)k−1

= (In − AX1)k.

Therefore,

∥AEO
− X2m∥ = ∥AEO

− AEOAX2m∥

= ∥AEO(In − AX2m )∥
≤ ∥AEO

∥∥In − AX2m∥

≤ ∥AEO
∥∥(In − AX1)2m

∥

and

lim
m→∞

sup 2m√
∥AEO − X2m∥ ≤ lim

m→∞

2m√
∥AEO∥∥(In − AX1)2m

∥ = ρ(In − AX1).

In the last equality, we use the fact that lim
n→∞
∥Bn
∥

1/n = ρ(B) for any square matrix B and any norm. It
completes the proof.

Remark 6.2. In order to achieve the convergence criterion ρ(In − AX1) = ρ(In − βAk+1(Ak)∼) < 1, the parameter
β can be chosen as an arbitrary real number satisfying max

1≤i≤s
|1 − βλi| < 1, where λi(i = 1, ..., s) are the nonzero

eigenvalues of Ak+1(Ak)∼.
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Example 6.3. Let A =


0 4

3 −
1
3

−
1
3 1 −

1
3

−
2
3 −

2
3 0

 with Ind(A) = 2. Taking

Q = βA2(A2)∼, P = I3 − βA2(A2)∼A, β = 1/2.

The eigenvalues λi of A3(A2)∼ are {0, 0, 0.642}. The nonzero eigenvalues λi satisfies

max
i
|1 − βλi| = 1 − 0.642/2 = 0.679 < 1.

An approximation of AEO can be generated from the upper right corner of the 29th approximation (T2)29 of the SMS
algorithm, equal to

−1 0.6667 −0.6667 −4 2 −4
−1 1.3333 −0.3333 −2 1 −2
2 −0.6667 1.6667 4 −2 4
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

which gives

AEO =

−4 2 −4
−2 1 −2
4 −2 4

 .
7. Applications of the m-core-EP inverse

In this section, we apply the m-core-EP inverse to solve systems of linear equations. If the system
is consisten, we give the general solution of linear equations in the Minkowski space. If the system is
inconsisten, we give the least squares solution of constrained systems of linear equations.

In the following, we consider the general solutions of matrix equation in the Minkowski space

(Ak)∼Ax = (Ak)∼b, b ∈ Cn,1, (7.1)

where A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r.

Theorem 7.1. Then the equation (7.1) is consistent and its general solution is

x = AEOb + (In − AEOA) y, (7.2)

for arbitrary y ∈ Cn,1.

Proof. Let A be of the form (2.1), AEO and U∗GU are given in (2.4) and (2.5), respectively. By applying Lemma
2.2, we obtain G1 is invertible. Denote

U∗x =
[
x1
x2

]
, U∗Gb =

[
b1
b2

]
and AEOb = U

[
T−1G−1

1 b1
0

]
, (7.3)

where b1, x1 and T−1G−1
1 b1 ∈ Cr,1. By using (2.1) and (2.4), we have

(Ak)∼Ax − (Ak)∼b

= GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T S
0 N

]
U∗x − GU

[
(Tk)∗ 0

T̂∗ 0

]
U∗Gb

= GU
[
(Tk)∗ 0

T̂∗ 0

] ([
G1 G2
G3 G4

] [
T S
0 N

] [
x1
x2

]
−

[
b1
b2

])
= GU

[
(Tk)∗G1Tx1 + (Tk)∗G1Sx2 + (Tk)∗G2Nx2 − (Tk)∗b1

T̂∗G1Tx1 + T̂∗G1Sx2 + T̂∗G2Nx2 − T̂∗b1

]
. (7.4)
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Since G1 and T are invertible, we obtain

x1 = T−1G−1
1 b1 − T−1(S + G−1

1 G2N)x2

such that

(Tk)∗G1Tx1 + (Tk)∗G1Sx2 + (Tk)∗G2Nx2 − (Tk)∗b1 = 0

and
T̂∗G1Tx1 + T̂∗G1Sx2 + T̂∗G2Nx2 − T̂∗b1 = 0,

that is, there exists x such that (Ak)∼Ax = (Ak)∼b. Hence, we obtain the equation (7.1) is consistent.
By using (7.3) and (7.4), we obtain

x = U
[
T−1G−1

1 b1 − T−1(S + G−1
1 G2N)x2

x2

]
, (7.5)

for arbitrary x2 ∈ Cn−r,1. Applying (2.1) and (2.5), it is easy to get

In − AEOA = U
[
0 −T−1(S + G−1

1 G2N)
0 In−r

]
U∗. (7.6)

Therefore, by applying (7.3), (7.5) and (7.6), we obtain

x = U
[
T−1G−1

1 b1
0

]
+U

[
−T−1(S + G−1

1 G2N)x2
x2

]
= AEOb + (In − AEOA)y,

where x2 ∈ Cn−r,1 and y ∈ Cn,1 are arbitrary. Hence, we obtain the general solution (7.2).

In [13], Mosić et al. considered constrained matrix minimization problem in the Euclidean norm:

min
x∈R(Ak)

∥Ax − b∥2,

where A ∈ Cn,n with Ind(A) = k, and b ∈ Cn,1. Futhermore, the least squares solution of the constrained
system can be expressed as A †Ob.

In the following, we seek for the least squares solution of the problem

min
x∈R(Ak)

∥(AA †O)∼Ax − b∥2,

where A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
, and b ∈ Cn,1.

Theorem 7.2. Let A be as in Theorem 3.1. Then

min
x∈R(Ak)

∥(AA †O)∼Ax − b∥2 = ∥(In − AA †O)Gb∥2. (7.7)

Furthermore,

x = AEOb (7.8)

is the unique solution of (7.7).
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Proof. Let A, A †O, AEO and U∗GU be of the form (2.1), (2.2), (2.5) and (2.4), respectively. By applying Lemma
2.2, we obtain G1 is invertible. Since x ∈ R(Ak), there exists y ∈ Cn,1 such that x = Aky. Denote

U∗y =
[
y1
y2

]
, U∗Gb =

[
b1
b2

]
and AEOb = U

[
T−1G−1

1 b1
0

]
, (7.9)

where y1 ∈ Cr,1 and b1 ∈ Cr,1. Since G is unitary, we have

∥(AA †O)∼Ax − b∥2 = ∥AA †OGAk+1y − Gb∥2

=

∥∥∥∥∥∥
[

G1Tk+1y1 + G1Ty2 − b1
−b2

]∥∥∥∥∥∥
2

=
∥∥∥G1Tk+1y1 + G1Ty2 − b1

∥∥∥
2
+ ∥b2∥2 . (7.10)

Since G1 and T are invertible, we have min
y1,y2

∥∥∥G1Tk+1y1 + G1Ty2 − b1

∥∥∥
2
= 0, when

y1 = (Tk+1)−1G−1
1 b1 − (Tk+1)−1Ty2. (7.11)

Therefore, applying (7.10) and (7.11), we have

min
x∈R(Ak)

∥∥∥(AA †O)∼Ax − b
∥∥∥

2
= ∥b2∥2 .

On the other hand, by applying (2.1), (2.2) and (7.9), we obtain ∥(In − AA †O)Gb∥2 = b2. Therefore, we have
(7.7). Applying (7.9) and (7.11), we obtain

x = Aky = U
[
Tk T̂
0 0

]
U∗y = U

[
Tky1 + T̂y2

0

]
= U

[
T−1G−1

1 b1
0

]
= AEOb,

that is, (7.8) is the unique solution of (7.7).

Conclusion

In this paper, we present characterizations and representations for them-core-EP inverse. For Cramer’s
rule, perturbation bounds and SMS iterative algorithm are also studied. Moreover, the m-core-EP inverse
can be used to solve linear equations. We believe that the research on the m-core-EP inverse will be
popularized in the next years.

Some possibilities for further research are given as follows
1. New iterative algorithms and splitting methods for computing the m-core-EP inverse.
2. In addition, we can further generalize the m-core-EP inverse to tensors.
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