Filomat 38:15 (2024), 5431–5440 https://doi.org/10.2298/FIL2415431P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Every regular countably sieve-complete semitopological group is a topological group

Liang-Xue Peng^a

^aDepartment of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Abstract. In this note, we firstly discuss some properties of spaces which are countably sieve-complete, densely *q*-complete and strongly Baire. By some known conclusions, we finally show that if *G* is a regular countably sieve-complete semitopological group then *G* is a topological group. If a regular semitopological group which is countably sieve-complete (densely *q*-complete), then *G* is a topological group. If *G* is a regular countably sieve-complete semitopological group. If *G* is a regular countably sieve-complete semitopological group then *G* is a topological group. If *G* is a regular countably sieve-complete semitopological group then *G* is a *D*-space if and only if *G* is paracompact. We point out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are not essential.

1. Introduction

Recall that a *paratopological group* is a group with a topology such that the multiplication on the group is jointly continuous. A *topological group G* is a paratopological group such that the inverse mapping of *G* into itself associating x^{-1} with $x \in G$ is continuous. A *semitopological group* is a group with a topology in which the left and the right translations are continuous [4]. The set of all positive integers is denoted by \mathbb{N} and $\omega = \mathbb{N} \cup \{0\}$. In notation and terminology we will follow [9].

A topological space *X* is called *pseudocompact* if *X* is a Tychonoff space and every continuous real-valued function defined on *X* is bounded [9]. A Tychonoff space *X* is pseudocompact if and only if every locally finite family of open sets in *X* is finite [9]. Recall that a space *X* is *feebly compact* if every locally finite family of open sets in *X* is finite.

If *G* is a paratopological group such that *G* is a dense G_{δ} -set in a regular feebly compact space *X*, then *G* is a topological group (([4], Theorem 2.4.1) and [3]). Thus every regular countably compact paratopological group is a topological group ([4], Corollary 2.4.4). In [20] it was proved that a completely regular countably compact semitopological group is a topological group. In [13] a completely regular pseudocompact semitopological group was constructed which is not a topological group. Applying Martin's Axiom, Ravsky constructed a Hausdorff countably compact paratopological group which is not a topological group ([19] and ([4], p. 128)).

A Tychonoff space X is Čech-complete if and only if X is a G_{δ} -set in some (equivalent, every) Hausdorff compactification of X [9]. Every Čech-complete semitopological group is a topological group (([4], Theorem

Received: 15 June 2023; Revised: 09 November 2023; Accepted: 14 November 2023

²⁰²⁰ Mathematics Subject Classification. Primary 54A20; Secondary 54A25, 54E50

Keywords. Semitopological group, countably sieve-complete, densely q-complete, countably compact

Communicated by Ljubiša D. R. Kočinac

Research supported by the National Natural Science Foundation of China (Grant No. 12171015, 62272015). *Email address:* pengliangxue@bjut.edu.cn (Liang-Xue Peng)

2.4.12) and [6]). Recall that a space X is called *locally* \mathcal{P} if every point x of X has a neighborhood V_x such that V_x has property \mathcal{P} , where \mathcal{P} is topological property. Then a space X is called *locally countably compact* if every point x of X has a neighborhood V_x such that V_x is a countably compact subspace of X.

An important generalization of both Čech-complete spaces and locally countably compact spaces was introduced by Z. Frolík [10]—strongly countably complete spaces. Every G_{δ} -subspace and every closed subspace of a regular strongly countably complete space is a strongly countably complete space [10]. This class of spaces was used both in the study of the continuity of operations in groups ([18] and [6]), and in the study of separately continuous mappings ([16] and [11]). In [6] and [11], strongly countably complete spaces are called countably Čech-complete spaces. In [18], H. Pfister proved that every locally strongly countably complete regular paratopological group is a topological group. Consequently, every locally countably compact ([6], Corollary 5): every semitopological Baire *p*-space group is a paratopological group. Using the same arguments, it follows from ([6], Theorem 3) that every semitopological Baire point-wise countably complete regular space is point-wise countably complete [6], we obtain that from the results of [6] and the mentioned result of H. Pfister [18] it follows that every semitopological strongly countably complete group is a topological group. Consequently, countably complete regular group. Consequently, every semitopological group is a topological group.

Further generalizations of Čech-complete spaces and strongly countably complete spaces were obtained using the concept of sieve [7]. Sieve-complete spaces [15] (which are called monotonically Čech-complete in [7] and called λ_b -spaces in [24]) are a generalization of Čech-complete spaces and countably sieve-complete spaces are a generalization of strongly countably complete spaces. In [24] λ_c -spaces were introduced, which in [1] are called *q*-complete spaces. Any *q*-complete space is strongly countably complete and in the class of regular spaces these classes coincide [15]. In [1], Arhangel'skii and Choban also considered a broader class than countably sieve-complete spaces.

In this note, we firstly discuss some properties of spaces which are countably sieve-complete, densely q-complete and strongly Baire. By some known conclusions, we finally show that if G is a regular countably sieve-complete semitopological group then G is a topological group. If a regular semitopological group G has a dense subgroup which is countably sieve-complete (densely q-complete), then G is a topological group. If G is a regular locally countably sieve-complete semitopological group, then G is a topological group. Thus every locally countably compact regular semitopological group is a topological group. This answers Problem 2.3.B in [4].

Recall that a *neighborhood assignment* for a space *X* is a function ϕ from *X* to the topology of the space *X* such that $x \in \phi(x)$ for any $x \in X$ [8]. A space *X* is a *D*-space if for every neighborhood assignment ϕ for *X* there is a closed discrete subspace *D* of *X* such that $X = \bigcup \{\phi(d) : d \in D\}$ [8]. It is an open problem that whether every paracompact Hausdorff space a *D*-space. We point out that if *G* is a regular countably sieve-complete semitopological group, then *G* is a *D*-space if and only if *G* is paracompact. We also point out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are not essential.

2. Countably sieve-complete, densely q-complete and strongly Baire spaces

Recall that a filter base \mathcal{F} clusters at x in X if $x \in \overline{F}$ for all $F \in \mathcal{F}$. Two collections of sets \mathcal{F} and \mathcal{U} mesh if every $F \in \mathcal{F}$ intersects every $U \in \mathcal{U}$ ([14], p. 99). A sieve on a space X is a sequence of open covers $\{U_{\alpha} : \alpha \in A_n\}_{n \in \omega}$ (with disjoint A_n), together with functions $\pi_n : A_{n+1} \to A_n$, such that, for all $n \in \omega$ and $\alpha \in A_n$, $U_{\alpha} = \bigcup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\}$. A π -chain for such a sieve is a sequence (α_n) such that $\alpha_n \in A_n$ and $\pi_n(\alpha_{n+1}) = \alpha_n$ for all n. The sieve is *complete* if, for every π -chain (α_n) , every filter base \mathcal{F} on X which meshes with $\{U_{\alpha_n} : n \in \omega\}$ clusters in X [15]. A space X with a complete sieve is called *sieve-complete* [15].

Recall that a point *x* of a space *X* is an *accumulation point* of a sequence $\{x_n\}_{n \in \omega}$ of points of *X* if every open neighborhood *V* of *x*, $|\{n \in \omega : x_n \in V\}| = \omega$. An accumulation point of a sequence $\{x_n\}$ of points of a space *X* is also called *cluster point* of the sequence $\{x_n\}_{n \in \omega}$. Analogously to a complete sieve, one can define a *countably complete sieve* ([15], p. 729) by restricting the filter base \mathcal{F} in the definition of complete sieve to

be countable (equivalently, by requiring that, if (α_n) is a π -chain and $x_n \in U_{\alpha_n}$ for all n, then the sequence $\{x_n\}_{n \in \omega}$ clusters in X). A space with a countably complete sieve is called *countably sieve-complete* ([15], p. 729). Every Čech-complete space is sieve-complete and every sieve-complete space is countably sieve-complete. Every countably compact space is countably sieve-complete, but not necessarily sieve-complete ([15], p. 730). Every uncountable discrete space X is countably sieve-complete, but it is not feebly compact.

A sequence $\{U_n : n \in \omega\}$ of open subsets of a space *X* is called a *stable sequence* [1] if it satisfies the following conditions:

- (S1) $\emptyset \neq U_{n+1} \subset U_n$ for any $n \in \omega$;
- (S2) Every sequence $\{V_n : n \in \omega\}$ of open non-empty sets in X such that $V_n \subset U_n$ for each $n \in \omega$ has an accumulation point in X.

The following notions appear in [1]. Let *Y* be a dense subspace of a space *X*, $\gamma = \{\gamma_n = \{U_\alpha : \alpha \in A_n\} : n \in \omega\}$ be a sequence of families of open subsets of *X*, and let $\pi = \{\pi_n : A_{n+1} \rightarrow A_n : n \in \omega\}$ be a sequence of mappings. A sequence $\alpha = \{\alpha_n : n \in \omega\}$ is called a *c*-sequence if $\alpha_n \in A_n$ and $\pi_n(\alpha_{n+1}) = \alpha_n$ for every *n*. Let $H(\alpha) = \bigcap \{U_{\alpha_n} : n \in \omega\}$. Consider the following conditions:

- (SC1) $\bigcup \{ U_{\beta} : \beta \in A_n \}$ is dense subset of *X* for every $n \in \omega$;
- (SC2) $\bigcup \{ U_{\beta} : \beta \in \pi_n^{-1}(\alpha) \}$ is a dense subset of the set U_{α} for all $\alpha \in A_n$ and $n \in \omega$;
- (SC3) $U_{\alpha} = \bigcup \{ U_{\beta} : \beta \in \pi_n^{-1}(\alpha) \}$ for all $\alpha \in A_n$ and $n \in \omega$;
- (SC4) $\bigcup \{\overline{U_{\beta}} : \beta \in \pi_n^{-1}(\alpha)\} \subset U_{\alpha} \text{ for all } \alpha \in A_n \text{ and } n \in \omega;$
- (C1) For any *c*-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the sequence $\{U_{\alpha_n} : n \in \omega\}$ is stable.
- (C2) For any *c*-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, each sequence $\{y_n \in Y \cap U_{\alpha_n} : n \in \omega\}$ has an accumulation point in *X*;
- (C4) For any *c*-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the set $H(\alpha)$ is a non-empty compact subset of *X*;
- (C5) For any *c*-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the set $H(\alpha)$ is a non-empty countably compact subset of *X*.

Sequences γ and π are called an *A*-sieve if they have the Properties (SC3) and (SC4) and each γ_n covers *X*. A space is called a *q*-complete if there exists an *A*-sieve with the Properties (C2) and (C5) for Y = X. A space *X* is called *fan*-complete if there exists an *A*-sieve on *X* with the Property (C1). Sequences γ and π are called a *dense A*-sieve if they have the Properties (SC1), (SC2), (SC4). A space is called *densely sieve-complete* if there exists a dense *A*-sieve with the Properties (C2) and (C4). A space *X* is called *densely q-complete* if there exists a dense subspace *Y* and a dense *A*-sieve with the Properties (C2) and (C4). A space *X* is called *densely q-complete* if there exists a dense subspace *Y* and a dense *A*-sieve with the Property (C2). A space *X* is called *densely fan-complete* if there exists a dense *A*-sieve on *X* with the Property (C1).

Proposition 2.1. ([1], p. 37) Any closed subspace of a q-complete space is q-complete.

Proposition 2.2. ([1], p. 37) Any *q*-complete space is densely *q*-complete.

By definitions of countably sieve-completeness and *q*-completeness, we have the following result.

Proposition 2.3. *Every q-complete space is countably sieve-complete.*

A sieve ({ $U_{\alpha} : \alpha \in A_n$ }, π_n) on a space X is a *strong sieve* if $\overline{U_{\beta}} \subset U_{\alpha}$ whenever $\alpha \in A_n$ and $\beta \in \pi_n^{-1}(\alpha)$ [7].

Lemma 2.4. ([15], p. 729) Every regular countably sieve-complete space has a strong countably complete sieve.

Proposition 2.5. If X is a regular space, then X is countably sieve-complete if and only if X is q-complete.

Proof. The sufficiency follows from Proposition 2.3. Now we prove the necessity. Since *X* is a regular countably sieve-complete space, it follows from Lemma 2.4 that *X* has a strong countably complete sieve $(\{U_{\alpha} : \alpha \in A_n\}, \pi_n)$. Then for any π -chain (α_n) and any sequence $\{y_n\}_{n \in \omega}$ with $y_n \in U_{\alpha_n}$ for every $n \in \omega$, the sequence $\{y_n\}_{n \in \omega}$ has an accumulation point *y* in *X*. Since $\overline{U_{\alpha_{n+1}}} \subset U_{\alpha_n}$ for every *n*, the set $H = \bigcap \{U_{\alpha_n} : n \in \omega\}$ is a closed non-empty countably compact subset of *X*. Thus *X* is a *q*-complete space. \Box

By Propositions 2.2 and 2.5, we have the following result.

Proposition 2.6. *Every regular countably sieve-complete space is densely q-complete.*

In what follows, we show that the converse of the above result does not hold.

Recall that \mathbb{R} is the set of real numbers. The Michael line *M* is the set \mathbb{R} topologized by isolating the points of the set \mathbb{P} of irrational numbers and leaving the points of the set \mathbb{Q} of rational numbers with their usual neighborhoods. The following result shows that the Michael line *M* is densely *q*-complete.

Theorem 2.7. Let X be a regular space and let Y be a dense subspace of X. If Y is densely q-complete, then so is X.

Proof. By assumption, there exist a dense subspace *D* of *Y* and a dense *A*-sieve $\mathcal{U} = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, \pi_n : A_{n+1} \rightarrow A_n : n \in \omega\}$ with the Property (C2). Since *D* is dense in *Y* and *Y* is dense in *X*, the set *D* is dense in *X*. Now we define a dense *A*-sieve $\mathcal{V} = \{\mathcal{V}_n = \{V_{\langle \alpha, \lambda \rangle} : \langle \alpha, \lambda \rangle \in A_n \times \Lambda_n\}, \pi_n \times \phi_n : A_{n+1} \times \Lambda_{n+1} \rightarrow A_n \times \Lambda_n : n \in \omega\}$ on *X* such that the set *D* and the dense *A*-sieve \mathcal{V} on *X* satisfy the Property (C2), where $\phi_n : \Lambda_{n+1} \rightarrow \Lambda_n$ is a mapping. The dense *A*-sieve \mathcal{V} on *X* also has the following properties:

- 1. If $\langle \alpha, \lambda \rangle \in A_0 \times \Lambda_0$, then $V_{\langle \alpha, \lambda \rangle}$ is an open subset of *X* such that $V_{\langle \alpha, \lambda \rangle} \cap Y = U_{\alpha}$, where Λ_0 is any non-empty set;
- 2. For any $n \in \omega$ and any $\langle \alpha, \lambda \rangle \in A_n \times \Lambda_n$, the set $V_{\langle \alpha, \lambda \rangle}$ is an open subset of X such that $V_{\langle \alpha, \lambda \rangle} \cap Y \subset U_\alpha$ and if $\langle \beta, \lambda' \rangle \in \pi_n^{-1}(\alpha) \times \phi_n^{-1}(\lambda)$ then $\overline{V_{\langle \beta, \lambda' \rangle}} \subset V_{\langle \alpha, \lambda \rangle}$ and $V_{\langle \beta, \lambda' \rangle} \cap Y \subset U_\beta$.

Let Λ_0 be any non-empty set. For for any $\alpha \in A_0$ and any $\lambda \in \Lambda_0$, let $V_{\langle \alpha, \lambda \rangle}$ be an open subset of X such that $V_{\langle \alpha, \lambda \rangle} \cap Y = U_{\alpha}$. Denote $\mathcal{T}' = \{O \subset X : O \text{ is a non-empty open subset of } X\}$ and let $\kappa = |\mathcal{T}'|$. Then denote $\mathcal{T}' = \{O_{\xi} : \xi \in \kappa\}$. Let $\Lambda_1 = \Lambda_0 \times \kappa$ and let $\phi_0 : \Lambda_1 \to \Lambda_0$ be a mapping such that $\phi_0(\langle \lambda, \xi \rangle) = \lambda$ for every $\langle \lambda, \xi \rangle \in \Lambda_1$. If $\langle \alpha, \lambda \rangle \in A_0 \times \Lambda_0$ and $\langle \beta, \lambda' \rangle \in \pi_0^{-1}(\alpha) \times \phi_0^{-1}(\lambda)$, then we let $V_{\langle \beta, \lambda' \rangle}$ be an open subset of X such that $V_{\langle \beta, \lambda' \rangle} = O_{\lambda'}$ if $O_{\lambda'} \cap Y \subset U_{\beta}$ and $\overline{O_{\lambda'}} \subset V_{\langle \alpha, \lambda \rangle}$, otherwise $V_{\langle \beta, \lambda' \rangle} = \emptyset$.

Let $n \in \omega$. Assume that for every i < n we have defined a mapping $\phi_i : \Lambda_{i+1} \to \Lambda_i$ and for every $i \le n$ and any $\langle \alpha, \lambda \rangle \in A_i \times \Lambda_i$ there exists an open subset $V_{\langle \alpha, \lambda \rangle}$ of *X* with the following properties:

- 1. $V_{\langle \alpha, \lambda \rangle} \cap Y = U_{\alpha}$ if $\langle \alpha, \lambda \rangle \in A_0 \times \Lambda_0$;
- 2. If $0 \le i < n$ and $\langle \alpha, \lambda \rangle \in A_i \times \Lambda_i$, then for any $\langle \beta, \lambda' \rangle \in \pi_i^{-1}(\alpha) \times \phi_i^{-1}(\lambda)$, $V_{\langle \beta, \lambda' \rangle}$ is an open subset of *X* such that $V_{\langle \beta, \lambda' \rangle} \cap Y \subset U_\beta$ and $\overline{V_{\langle \beta, \lambda' \rangle}} \subset V_{\langle \alpha, \lambda \rangle}$;
- 3. If $0 \le i < n$ and $\langle \alpha, \lambda \rangle \in A_i \times \Lambda_i$, then $\bigcup \{ V_{\langle \beta, \lambda' \rangle} : \langle \beta, \lambda' \rangle \in \pi_i^{-1}(\alpha) \times \phi_i^{-1}(\lambda) \}$ is dense in $V_{\langle \alpha, \lambda \rangle}$.

Let $\Lambda_{n+1} = \Lambda_n \times \kappa$ and let $\phi_n : \Lambda_{n+1} \to \Lambda_n$ be a mapping such that $\phi_n(\langle \lambda, \lambda' \rangle) = \lambda$ whenever $\langle \lambda, \lambda' \rangle \in \Lambda_{n+1}$. For any $\langle \alpha, \lambda \rangle \in A_n \times \Lambda_n$ and any $\langle \beta, \lambda' \rangle \in \pi_n^{-1}(A_n) \times \phi_n^{-1}(\Lambda_n)$, let $V_{\langle \beta, \lambda' \rangle} = O_{\lambda'}$ if $O_{\lambda'} \cap Y \subset U_{\beta}$ and $\overline{O_{\lambda'}} \subset V_{\langle \alpha, \lambda \rangle}$, otherwise $V_{\langle \beta, \lambda' \rangle} = \emptyset$. Now we assume that $V_{\langle \alpha, \lambda \rangle} \neq \emptyset$. Since Y is dense in X and $V_{\langle \alpha, \lambda \rangle}$ is a non-empty open subset of $X, Y \cap V_{\langle \alpha, \lambda \rangle}$ is dense in $V_{\langle \alpha, \lambda \rangle}$. Since $V_{\langle \alpha, \lambda \rangle} \cap Y \subset U_{\alpha}$ and $\bigcup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\}$ is dense in $U_{\alpha,\lambda}$. Thus $\bigcup \{O_{\xi} : \xi \in \kappa, O_{\xi} \cap Y \subset U_{\beta}$ and $\overline{O_{\xi}} \subset V_{\langle \alpha, \lambda \rangle}$. Then the set $\bigcup \{V_{\langle \beta, \lambda' \rangle} : \langle \beta, \lambda' \rangle \in \pi_n^{-1}(\alpha) \times \phi_n^{-1}(\lambda)\}$ is dense in $V_{\langle \alpha, \lambda \rangle}$.

In this way, we get a dense A-sieve $\mathcal{V} = \{\mathcal{V}_n = \{V_{\langle \alpha, \lambda \rangle} : \langle \alpha, \lambda \rangle \in A_n \times \Lambda_n\} : \pi_n \times \phi_n : A_{n+1} \times \Lambda_{n+1} \rightarrow A_n \times \Lambda_n : n \in \omega\}$ on X. If $\{\langle \alpha_n, \lambda_n \rangle : n \in \omega\}$ is a *c*-sequence, then $V_{\langle \alpha_n, \lambda_n \rangle} \cap Y \subset U_{\alpha_n}, \pi_n(\alpha_{n+1}) = \alpha_n$ and $\overline{V_{\langle \alpha_{n+1}, \lambda_{n+1} \rangle}} \subset V_{\langle \alpha_n, \lambda_n \rangle}$ for every $n \in \omega$.

If $\{d_n\}_{n \in \omega}$ is a sequence of points such that $d_n \in V_{\langle \alpha_n, \lambda_n \rangle} \cap D$ for every $n \in \omega$, then $d_n \in U_{\alpha_n}$ for every $n \in \omega$. Since \mathcal{U} is a dense *A*-sieve on *Y* such that *D* and \mathcal{U} satisfy the Property (C2), the sequence $\{d_n\}_{n \in \omega}$ has an accumulation in *Y*. Then the sequence $\{d_n\}_{n \in \omega}$ has an accumulation in *X*. Thus \mathcal{V} is a dense *A*-sieve on *X*. Then the dense subspace *D* of *X* and the dense *A*-sieve \mathcal{V} on *X* satisfy the Property (C2). Thus *X* is densely *q*-complete. \Box

The following result was proved in ([15], Theorem 3.2). A paracompact Hausdorff space X is Čechcomplete if and only if X is sieve-complete. In ([15], p. 730), it was pointed out that the above result valid with "sieve-complete" weakened to "countably sieve-complete". **Lemma 2.8.** ([15], p. 730) A paracompact Hausdorff space X is Čech-complete if and only if X is countably sieve-complete.

Remark 2.9. The Michael line *M* is densely *q*-complete, but it is not *q*-complete (countably sieve-complete).

Proof. The space \mathbb{Q} of all rational numbers with the topology of a subspace of the real line with the usual topology is not Čech-complete ([9], p. 200). Thus the subspace \mathbb{Q} of *M* is not Čech-complete. Since every closed subspace of a Čech-complete space is Čech-complete ([9], Theorem 3.9.6), the Michael line *M* is not Čech-complete. By Lemma 2.8, *M* is not countably sieve-complete. By Proposition 2.5, *M* is not *q*-complete.

Since the subspace \mathbb{P} of *M* is a densely *q*-complete dense subspace of *X*, it follows from Theorem 2.7 *M* is densely *q*-complete. \Box

By Proposition 2.6 and Theorem 2.7, we have the following result.

Proposition 2.10. *Let* X *be a regular space and let* Y *be a dense subspace of* X. *If* Y *is countably sieve-complete, then* X *is a densely q-complete space.*

By an argument similar to the proof of Theorem 2.7, we have the following result.

Proposition 2.11. ([1], p. 38) If X is a regular space and Y is a dense subspace of X such that Y is densely fan-complete, then X is densely fan-complete.

Proposition 2.12. ([15], p. 729) *Countably sieve-completeness is inherited by closed subsets.*

Recall that a subset *F* of a space X is called a *regular closed set* if $F = \overline{F^{\circ}}$.

Proposition 2.13. Let X be a regular space and let Y be a regular closed subset of X. If X is densely q-complete (densely sieve-complete, densely fan-complete, fan-complete, q-complete), then the subspace Y of X is densely q-complete (densely sieve-complete, densely fan-complete, fan-complete, q-complete).

Proof. We just prove the case of densely *q*-completeness. The proofs of other cases are similar. Since *X* is densely *q*-complete, there exist a dense subspace *D* of *X* and a dense *A*-sieve $\mathcal{U} = {\mathcal{U}_{\alpha} = {\mathcal{U}_{\alpha} : \alpha \in A_n}, \pi_n : A_{n+1} \rightarrow A_n : n \in \omega}$ with the Property (C2). Since *Y* is a regular closed set, $Y = \overline{Y^\circ}$. Then $D_Y = D \cap Y^\circ$ is dense in *Y*. If $\mathcal{U}_Y = {\mathcal{U}'_{\alpha} = {\mathcal{U}_{\alpha} \cap Y : \alpha \in A_n}, \pi_n : A_{n+1} \rightarrow A_n : n \in \omega}$, then \mathcal{U}_Y is a dense *A*-sieve on *Y*. It is obvious that the dense subset D_Y of *Y* and the dense *A*-sieve \mathcal{U}_Y satisfy the Property (C2). \Box

Proposition 2.14. *Let* X *be a regular space and let* Y *be an open subspace of* X. *If* X *is densely q-complete (densely sieve-complete, densely fan-complete), then so is* Y.

Proof. We just prove the case of densely *q*-completeness. The proofs of other cases are similar.

By assumption, there exist a dense subspace D of X and a dense A-sieve $\mathcal{U} = \{\gamma_n = \{U_\alpha : \alpha \in A_n\}, \pi_n : A_{n+1} \to A_n : n \in \omega\}$ with the Property (C2). Since Y is open in X and $\overline{D} = X$, $D_Y = D \cap Y$ is dense in Y. Denote $\mathcal{T}' = \{O \subset X : O \text{ is a non-empty open subset of } X\}$ and let $\kappa = |\mathcal{T}'|$. Then denote $\mathcal{T}' = \{O_{\xi} : \xi \in \kappa\}$.

By an argument similar to the proof of Theorem 2.7 we can get a dense *A*-sieve $\mathcal{V} = \{\mathcal{V}_n = \{V_{\langle \alpha, \lambda \rangle} : \langle \alpha, \lambda \rangle \in A_n \times \Lambda_n\}, \pi_n \times \phi_n : A_{n+1} \times \Lambda_{n+1} \to A_n \times \Lambda_n : n \in \omega\}$ on *X* such that D_Y and \mathcal{V} satisfy the Property (C2) and the following properties:

- 1. Λ_0 is any non-empty set and $V_{\langle \alpha, \lambda \rangle} = U_{\alpha} \cap Y$ for every $\langle \alpha, \lambda \rangle \in A_0 \times \Lambda_0$;
- 2. For every $n \in \omega$, let $\Lambda_{n+1} = \Lambda_n \times \kappa$ and let $\phi_n : \Lambda_{n+1} \to \Lambda_n$ be a mapping such that $\phi_n(\langle \lambda, \lambda' \rangle) = \lambda$ whenever $\langle \lambda, \lambda' \rangle \in \Lambda_{n+1}$.
- 3. For any $n \in \omega$ and any $\langle \alpha, \lambda \rangle \in A_n \times \Lambda_n$, the set $V_{\langle \beta, \lambda' \rangle}$ is an open subset of X such that $\overline{V_{\langle \beta, \lambda' \rangle}} \subset U_{\beta} \cap V_{\langle \alpha, \lambda \rangle} \cap Y$ for any $\langle \beta, \lambda' \rangle \in \pi_n^{-1}(\alpha) \times \phi_n^{-1}(\lambda)$;
- 4. For any $n \in \omega$ and any $\langle \alpha, \lambda \rangle \in A_n \times \Lambda_n$, the set $\bigcup \{ V_{\langle \beta, \lambda' \rangle} : \langle \beta, \lambda' \rangle \in \pi_i^{-1}(\alpha) \times \phi_i^{-1}(\lambda) \}$ is dense in $V_{\langle \alpha, \lambda \rangle}$.

If $\{\langle \alpha_n, \lambda_n \rangle : n \in \omega\}$ is any *c*-sequence, then $\pi_n(\alpha_{n+1}) = \alpha_n$ and $\phi_n(\lambda_{n+1}) = \lambda_n$ for every $n \in \omega$. If $d_n \in D_Y \cap V_{\langle \alpha_n, \lambda_n \rangle}$ for every $n \in \omega$, then $d_n \in U_{\alpha_n}$ for every $n \in \omega$. Thus the sequence $\{d_n\}_{n \in \omega}$ has an accumulation point $y \in X$. Since $V_{\langle \alpha_0, \lambda_0 \rangle} \subset Y$ and $V_{\langle \alpha_n, \lambda_n \rangle} \subset V_{\langle \alpha_1, \lambda_1 \rangle} \subset \overline{V_{\langle \alpha_1, \lambda_1 \rangle}} \subset Y$, the point $y \in Y$. Thus Y is densely q-complete. \Box

Proposition 2.15. ([1], Proposition 2.3) Every G_{δ} -subspace of a regular fan-complete space is fan-complete.

Proposition 2.16. Every G_{δ} -subspace of a regular *q*-complete space is *q*-complete.

Proof. This can be gotten by Proposition 2.5 and the fact that countably sieve-completeness is inherited by G_{δ} -subsets in a regular space ([15], p. 729).

It was pointed out in ([15], p. 729) that a space *X* is countably sieve-complete if and only if every point of *X* has a countably sieve-complete open neighborhood. If *X* is regular, then the neighborhood need not be open. However, we have following result.

Lemma 2.17. A space X is countably sieve-complete if and only if every point of X has a countably sieve-complete neighborhood.

Proof. The necessity is obvious. Now we prove the sufficiency.

For every $x \in X$, there exists a countably sieve-complete neighborhood V_x . Let $\mathcal{U}_x = {\mathcal{U}_n(x) = {\mathcal{U}_\alpha : \alpha \in A_n(x)}, \pi_{n,x} : A_{n+1}(x) \to A_n(x), n \in \omega}$ be a countably complete sieve on *X*. For every $x \in X$ and every $n \in \omega$ we let $\mathcal{U}'_n(x) = {\mathcal{U}_\alpha \cap V_x^\circ : \alpha \in A_n(x)}$. For every $n \in \omega$, let $B_n = \bigcup {A_n(x) \times {x} : x \in X}$ and let $\pi_n : B_{n+1} \to B_n$ be a mapping such that for any $x \in X \pi_n(\langle \alpha, x \rangle) = \alpha$ whenever $\langle \alpha, x \rangle \in A_n(x) \times {x}$. For any $x \in X$ and any $\langle \alpha, x \rangle \in A_n(x) \times {x}$, let $V_{\langle \alpha, x \rangle} = \mathcal{U}_\alpha \cap V_x^\circ$. Then $\mathcal{V} = {\mathcal{V}_n = {\mathcal{V}_{\langle \alpha, x \rangle} : \langle \alpha, x \rangle \in B_n}, \pi_n : B_{n+1} \to B_n : n \in \omega}$ is a sieve on *X*. If $(\langle \alpha_n, x_n \rangle)$ is a π -chain, then there exists $y \in X$ such that $x_n = y$ and $\alpha_n \in A_n(y)$ for every $n \in \omega$. If ${d_n}_{n \in \omega}$ is a sequence of points of *X* such that $d_n \in \mathcal{V}_{\langle \alpha_n, x_n \rangle}$ for every $n \in \omega$, then $d_n \in \mathcal{U}_{\alpha_n} \cap \mathcal{V}_y^\circ \subset \mathcal{U}_{\alpha_n}$ and $\pi_{n,v}(\alpha_{n+1}) = \alpha_n$ for every $n \in \omega$.

Since \mathcal{U}_y is a countably complete sieve on V_y , the sequence $\{d_n\}_{n \in \omega}$ has an accumulation point d in $V_y \subset X$. Thus \mathcal{V} is a countably complete sieve on X. Then X is countably sieve-complete. \Box

By Lemma 2.17 and Proposition 2.5, we have the following result.

Proposition 2.18. A regular space X is q-complete if and only if every point x of X has a q-complete neighborhood.

Proposition 2.19. Every locally countably compact space X is countably sieve-complete.

Proof. Since X is locally countably compact and every countably compact space is countably sieve-complete, every point of X has a neighborhood which is countably sieve-complete. Thus by Lemma 2.17 X is countably sieve-complete. \Box

The above result shows that the T_1 separation axiom in Proposition 1.1 in [17] is not essential.

Proposition 2.20. *Let* X *be a regular space. If every point of* X *has a densely fan-complete (fan-complete) neighbor-hood, then* X *is densely fan-complete (fan-complete).*

Proof. We just prove the case of densely fan-completeness. The proof of the other case is similar.

Since *X* is regular and every point of *X* has a densely fan-complete neighborhood, it follows from Proposition 2.13 for every $x \in X$ there exists an open neighborhood V_x of *x* such that $\overline{V_x}$ is densely fancomplete. By Proposition 2.14, the subspace V_x of *X* is densely fan-complete for every $x \in X$. By an argument similar to the proof of Proposition 2.14, for every $x \in X$ there exists a dense A-sieve $\mathcal{V}_x = \{\mathcal{V}_n(x) = \{V_\alpha(x) : \alpha \in A_n(x)\}, \pi_{n,x} : A_{n+1}(x) \to A_n(x) : n \in \omega\}$ on V_x with the Property (C1) and for every $n \in \omega$ and every $\alpha \in A_n(x)$, the set $\overline{V_\beta(x)} \subset V_\alpha(x)$ if $\beta \in \pi_{n,x}^{-1}(\alpha)$.

For every $n \in \omega$, we let $A_n = \bigcup \{A_n(x) \times \{x\} : x \in X\}$. For every $n \in \omega$, let $\pi_n : A_{n+1} \to A_n$ be a mapping such that if $\langle \alpha, x \rangle \in A_{n+1}(x) \times \{x\}$ for some $x \in X$, then $\pi_n(\langle \alpha, x \rangle) = \alpha$. For every $n \in \omega$ and every $x \in X$, let $U_{\langle \alpha, x \rangle} = V_{\alpha}(x)$ for every $\langle \alpha, x \rangle \in A_n(x) \times \{x\}$. Then $\mathcal{U} = \{\mathcal{U}_n = \{U_{\langle \alpha, x \rangle} : \langle \alpha, x \rangle \in A_n(x) \times \{x\}, x \in X\}, \pi_n : A_{n+1} \to A_n : n \in \omega\}$ is a dense A-sieve on X with the Property (C1). Thus X is densely fan-complete. \Box

The following notions appears in [12]. Let (X, τ) be a topological space and let D be a dense subset of X. On *X* we consider the $G_S(D)$ -game played between two players α and β . Player β goes first and chooses a non-empty open subset $B_1 \subset X$. Player α must then respond by choosing a non-empty open subset $A_1 \subset B_1$. Following this, player β must select another non-empty open subset $B_2 \subset A_1 \subset B_1$ and in turn player α must again respond by selecting a non-empty open subset $A_2 \subset B_2 \subset A_1 \subset B_1$. Continuing this procedure indefinitely the players α and β produce a sequence ((A_n , B_n) : $n \in \mathbb{N}$) of pairs of open sets called a *play* of the $\mathcal{G}_{\mathcal{S}}(D)$ -game. We shall declare that α wins a play $((A_n, B_n) : n \in \mathbb{N})$ of the $\mathcal{G}_{\mathcal{S}}(D)$ -game if; $\bigcap_{n \in \mathbb{N}} A_n$ is non-empty and each sequence $(a_n : n \in \mathbb{N})$ with $a_n \in A_n \cap D$ has a cluster-point in X. Otherwise the player β is said to have won this play. By a *strategy t* for the player β we mean a '*rule*' that specifies each move of the player β in every possible situation. More precisely, a strategy $t := (t_n : n \in \mathbb{N})$ for β is a sequence of τ -valued functions such that $t_{n+1}(A_1, ..., A_n) \subset A_n$ for each $n \in \mathbb{N}$. The domain of each function t_n is precisely the set of all finite sequences $(A_1, A_2, ..., A_{n-1})$ of length n-1 in τ with $A_j \subset t_j(A_1, ..., A_{j-1})$ for all $1 \le j \le n-1$. The sequence of length 0 will be denoted by \emptyset . Such a finite sequence $(A_1, A_2, ..., A_{n-1})$ or infinite sequence $(A_n : n \in \mathbb{N})$ is called a *t*-sequence. A strategy $t := (t_n : n \in \mathbb{N})$ for the player β is called a *winning strategy* if each *t*-sequence is won by β . We will call a topological space (X, τ) a strongly Baire or (strongly β -unfavorable) space if it is regular and there exists a dense subset D of X such that the player β does not have a winning strategy in the $\mathcal{G}_S(D)$ -game played on X [12]. In [2], the authors provided a large class of topological spaces X for which the absence of winning strategy for player β is equivalent to the requirement that X is a Baire space.

Theorem 2.21. If X is a densely q-complete regular space, then X is a strongly Baire space.

Proof. Since *X* is a densely *q*-complete space, there exist a dense subspace *D* of *X* and a dense *A*-sieve $\mathcal{U} = \{\gamma_n = \{U_\alpha : \alpha \in \Lambda_n\}, \pi_n : \Lambda_{n+1} \to \Lambda_n : n \in \omega\}$ with the Property (C2). Let us prove that *X* is a strongly Baire space. Let $t := (t_n : n \in \mathbb{N})$ be the strategy for player β . Let us construct a *t*-sequence $(A_n : n \in \mathbb{N})$ that wins for α . Let $B_1 = t_1(\emptyset)$. Then B_1 is a non-empty open subset of *X*.

Since $\bigcup \{U_{\alpha} : \alpha \in \Lambda_0\}$ is dense in *X*, there exists $\alpha_0 \in \Lambda_0$ such that $B_1 \cap U_{\alpha_0} \neq \emptyset$. Since *X* is regular and $B_1 \cap U_{\alpha_0}$ is a non-empty open subset of *X*, there exists a non-empty open subset A_1 of *X* such that $A_1 \subset \overline{A_1} \subset B_1 \cap U_{\alpha_0}$. Let $B_2 = t_2(A_1)$ be a non-empty open subset of *X* such that $B_2 \subset A_1$. Since $\bigcup \{U_\beta : \beta \in \pi^{-1}(\alpha_0)\}$ is dense in U_{α_0} , there exists $\alpha_1 \in \Lambda_1 \cap \pi_0^{-1}(\alpha_0)$ such that $U_{\alpha_1} \cap B_2 \neq \emptyset$. Then there exists a non-empty open subset A_2 of *X* such that $\overline{A_2} \subset U_{\alpha_1} \cap B_2$ by the regularity of *X*. Then $\overline{A_2} \subset A_1$ and $t_2(A_1) = B_2$. Take a non-empty open subset $B_3 = t_3(A_1, A_2) \subset A_2$.

Let $n \ge 1$. Assume that we have finite sequences $(B_1, ..., B_{n+1})$, $(A_1, ..., A_n)$, $(\alpha_0, ..., \alpha_{n-1})$ with the following properties:

- 1. $\overline{A_1} \subset B_1 \cap U_{\alpha_0}$;
- 2. $(B_1, ..., B_{n+1})$ and $(A_1, ..., A_n)$ are finite sequences of open subsets of *X*;
- 3. For each $0 \le i \le n 1$, $\alpha_i \in \Lambda_i$ and $\pi_i(\alpha_{i+1}) = \alpha_i$ for each $i \le n 2$;
- 4. For each $1 \le i \le n$, $\overline{A_i} \subset B_i \cap U_{\alpha_{i-1}}$;
- 5. $B_{i+1} = t_{i+1}(A_1, ..., A_i) \subset A_i$ for each $i \le n$.

Then $B_{n+1} = t_{n+1}(A_1, ..., A_n) \subset A_n \subset \overline{A_n} \subset B_n \cap U_{\alpha_{n-1}}$. Since $\bigcup \{U_\beta : \beta \in \pi_{n-1}^{-1}(\alpha_{n-1})\}$ is dense in $U_{\alpha_{n-1}}$, there exists $\alpha_n \in \Lambda_n \cap \pi_{n-1}^{-1}(\alpha_{n-1})$ such that $B_{n+1} \cap U_{\alpha_n} \neq \emptyset$. Then there exists a non-empty open subset A_{n+1} of X such that $\overline{A_{n+1}} \subset B_{n+1} \cap U_{\alpha_n}$. Let $B_{n+2} = t_{n+2}(A_1, ..., A_{n+1})$ be a non-empty open subset of X such that $B_{n+2} \subset A_{n+1}$.

By induction we get two sequences $\{B_n : n \in \mathbb{N}\}$ and $\{A_n : n \in \mathbb{N}\}$ of open subsets of X and a *c*-sequence $\alpha = \{\alpha_n : n \in \omega\}$ with the following properties:

- 1. $\overline{A_1} \subset B_1 \cap U_{\alpha_0}$;
- 2. $B_{n+1} = t_{n+1}(A_1, ..., A_n) \subset A_n$ for every $n \in \mathbb{N}$;
- 3. $\overline{A_{n+1}} \subset B_{n+1} \cap U_{\alpha_n}$ for every $n \in \mathbb{N}$.

Thus $\overline{A_{n+1}} \subset A_n \cap U_{\alpha_n}$ for every $n \in \mathbb{N}$. If $\{x_n\}_{n \in \omega}$ is a sequence of points of *X* such that $x_n \in A_{n+1} \cap D$ for every $n \in \omega$, then $x_n \in U_{\alpha_n} \cap D$ for every $n \in \omega$.

Since the dense subspace D and the dense A-sieve $\mathcal{U} = \{\gamma_n = \{U_\alpha : \alpha \in \Lambda_n\}, \pi_n : \Lambda_{n+1} \to \Lambda_n : n \in \omega\}$ satisfy the Property (C2), the sequence $\{x_n\}_{n \in \omega}$ has an accumulation point y in X and $y \in \bigcap \{\overline{A_n} : n \in \omega\}$. Then $\bigcap \{A_n : n \in \mathbb{N}\} = \bigcap \{\overline{A_n} : n \in \omega\} \neq \emptyset$. Thus the strategy $t := (t_n : n \in \mathbb{N})$ for the player β does not win. Then X is a strongly Baire space. \Box

3. Continuity in semitopological groups

All topological groups in this note are assumed to be Hausdorff. Let e be the identity of the considered group in this note. Given a semitopological group G, the symbol $\mathcal{N}(e)$ denotes the family of open neighborhoods of the identity e in G.

Lemma 3.1. ([12], Theorem 2) Let *G* be a semitopological regular group. If *G* is a strongly Baire space, then *G* is a topological group.

Theorem 3.2. *If G is a regular countably sieve-complete semitopological group, then G is a topological group.*

Proof. It can be gotten by Proposition 2.6, Theorem 2.21 and Lemma 3.1. It can also be gotten by Proposition 2.6 in this note and Theorem 5.2 in [1].

Corollary 3.3. Let G be a regular semitopological group. If G is locally countably sieve-complete, then G is a topological group.

Proof. By Lemma 2.17, G is countably sieve-complete. Then by Theorem 3.2 G is a topological group. \Box

By Theorem 3.2 and Proposition 2.19, we have the following result.

Corollary 3.4. If *G* is a locally countably compact regular semitopological group, then *G* is a topological group.

Theorem 3.5. *If G is a regular semitopological group with a densely q-complete dense subgroup, then G is a topological group.*

Proof. Let *H* be a densely *q*-complete dense subgroup of *G*. By Theorem 2.7, *G* is densely *q*-complete. Since every densely *q*-complete regular semitopological group is a topological group ([1], Theorem 5.2), the semitopological group *G* is a topological group. \Box

By Proposition 2.6 and Theorem 3.5, we have the following result.

Corollary 3.6. *If G is a regular semitopological group with a countably sieve-complete dense subgroup, then G is a topological group.*

In what follows, we show that if *G* is a regular countably sieve-complete semitopological group, then *G* is a *D*-space if and only if *G* is paracompact.

The following result was pointed out in ([15], p. 730).

Lemma 3.7. ([15], p. 730) The following properties of a strong sieve ($\{U_{\alpha} : \alpha \in \Lambda_n\}, \pi_n$) on a space X are equivalent:

- (a) $({U_{\alpha} : \alpha \in \Lambda_n}, \pi_n)$ is a countably complete sieve;
- (b) If (α_n) is a π -chain, if $U_{\alpha_n} \neq \emptyset$ for all n, and if $C = \bigcap_{n \in \mathbb{N}} U_{\alpha_n}$, then C is nonempty, closed, and countably compact, and every open $V \supset C$ contains some U_{α_n} .

Recall that a topological group *G* is *feathered* if it contains a non-empty compact set *K* with countable character in *G* ([4], p. 235).

Lemma 3.8. Let \mathcal{P} be a topological property such that every countably compact space X with property \mathcal{P} is compact, property \mathcal{P} is hereditary with respect to closed sets. If G is a regular countably sieve-complete semitopological group with property \mathcal{P} , then G is a paracompact Čech-complete topological group.

Proof. By Theorem 3.2, *G* is a topological group. By Lemmas 2.4 and 3.7, there exists a non-empty countably compact closed subset *K* of *G* with countable character in *G*. Then *K* is countably compact and has property \mathcal{P} . Thus *K* is compact. Then *G* is feathered. Every feathered topological group is paracompact ([4], Corollary 4.3.21). Then *G* is paracompact countably sieve-complete. It follows from Lemma 2.8 *G* is Čech-complete. \Box

Theorem 3.9. *If G is a regular countably sieve-complete semitopological group, then G is a D-space if and only if G is paracompact.*

Proof. Assume that *G* is a *D*-space. Since the *D*-property is hereditary with respect to closed subsets and every countably compact T_1 *D*-space is compact, it follows from Lemma 3.8 *G* is a paracompact.

Now we assume that *G* is a paracompact countably sieve-complete semitopological group. By Lemma 2.8 and Theorem 3.2, *G* is a Čech-complete topological group. By ([4], Theorem 4.3.20), there exists a compact subgroup *H* of *G* such that *G*/*H* is a complete metric space. Let $\pi : G \to G/H$ be the canonical quotient homomorphism. By ([4], Theorem 1.5.7), the mapping π is perfect. Since every metric space is a *D*-space and every perfect preimage of a *D*-space is a *D*-space [5], it follows that *G* is a *D*-space.

Given a paratopological group *G* with a topology τ , one defines the *conjugate topology* τ^{-1} on *G* by $\tau^{-1} = \{U^{-1} : U \in \tau\}$. The upper bounded $\tau^* = \tau \lor \tau^{-1}$ is a topological group topology. We call $G^* = (G, \tau^*)$ the *group associated to G* [23]. A paratopological group is called *totally* \mathcal{P} if the associated topological group *G*^{*} has property \mathcal{P} [23]. Recall that a semitopological group *G* is ω -narrow if for any neighborhood *U* of the identity *e* in *G*, there exists a countable set $C \subset G$ such that CU = UC = G.

In [22], Sánchez gave an internal characterization of subgroups of products of metrizable semitopological groups. A family \mathcal{U} of subsets of a semitopological group *G* is *discrete with respect to a family* $\gamma \subset \mathcal{N}(e)$ if for every $x \in G$ we can find $V \in \gamma$ such that xV intersects at most one element of \mathcal{U} . Also, we say that \mathcal{U} is σ -*discrete with respect to a family* $\gamma \subset \mathcal{N}(e)$ if \mathcal{U} can be decomposed as a countable union of families discrete with respect to γ . The family \mathcal{U} of subsets of *G* is *dominated by a family* $\gamma \subset \mathcal{N}(e)$ if for every $U \in \mathcal{U}$ and $x \in U$ there exists $V \in \gamma$ such that $xV \subset U$ [22]. Let \mathcal{U} be a cover of a space *X*. We say that a refinement \mathcal{V} of \mathcal{U} is *basic* if for every $U \in \mathcal{U}$ and $x \in U$ there exists $V \in \nabla$ such that $x \in V \subset U$ [22]. A semitopological group has *property* (*) if for every $U \in \mathcal{N}(e)$, the family $\{Ux : x \in G\}$ has an open basic refinement which is dominated by a countable family γ and σ -discrete with respect to γ ([22], Definition 2.3). The *symmetry number* of a T_1 semitopological group *G*, denoted by Sm(G), is the minimum cardinal number κ such that for every neighborhood U of e in G, there exists a family \mathcal{V} of neighborhoods of e in G such that $\bigcap_{V \in \mathcal{V}} V^{-1} \subset U$ and $|\mathcal{V}| \leq \kappa$ [21]. If G is a regular countably sieve-complete semitopological group with $Sm(G) \leq \omega$ and satisfies property (*), then G is a topological group ([17], Theorem 2.14). By Theorem 3.2, the conditions of $Sm(G) \leq \omega$ and property (*) in Theorem 2.14 in [17] is not essential.

In ([17], Corollary 2.15), it is proved that if *G* is a regular totally ω -narrow countably sieve-complete paratopological group, then *G* is a topological group. By Theorem 3.2, the property of totally ω -narrowness of the paratopological group *G* in Corollary 2.15 in [17] is not essential.

Acknowledgement

The author would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

 A. V. Arhangel'skii, M. M. Choban, Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis, Topology Proc. 37 (2011), 33–60.

- [2] A. V. Arhangel'skii, M. M. Choban, P. S. Kenderov, Topological games and continuity of group operations, Topology Appl. 157 (2010), 2542–2552.
- [3] A. V. Arhangel'skii, E. A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107–119.
- [4] A. V. Arhangel'skii, M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Stud. Math., Vol. I, Atlantis Press/World Scientific, Paris, Amsterdam, 2008.
- [5] C. R. Borges, A. C. Wehrly, A study of D-spaces, Topology Proc. 16 (1991), 7-15.
- [6] A. Bouziad, Continuity of separately continuous group actions in p-spaces, Topology Appl. 71 (1996), 119–124.
- [7] J. Chaber, M. M. Čoban, K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), 107–119.
- [8] E. K. van Douwen, W. F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371–377.
- [9] R. Engelking, General Topology, revised ed., Sigma Series in Pure Mathematics, Vol. 6, Heldermann, Berlin, 1989.
- [10] Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11 (1961), 237-248.
- [11] G. Hansel, J.-P. Troallic, Quasicontinuity and Namioka's theorem, Topology Appl. 46 (1992), 135–149.
- [12] P. S. Kenderov, I. S. Kortezov, W. B. Moors, Topological games and topological groups, Topology Appl. 109 (2001), 157–165.
- [13] A. V. Korovin, Continuous actions of pseudocompact groups and axioms of topological group, Comment. Math. Univ. Carolinae, 33 (1992), 335–343.
- [14] E. A. Michael, A quintuple quotient quest, Gen. Topol. Appl. 2 (1972), 91–138.
- [15] E. Michael, Complete spaces and tri-quotient maps, Ill. J. Math. 21 (1977), 716–733.
- [16] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531.
- [17] L.-X. Peng, Y. Liu, On (para)topological groups with a countably (s-)complete sieve, Topology Appl. 322 (2022), 108320.
- [18] H. Pfister, Continuity of the inverse, Proc. Amer. Math. Soc. 95 (1985), 312-314.
- [19] O. V. Ravsky, An example of a Hausdorff countably compact paratopological group which is not a topological group, IVth Internat. Algebraic Conf. in Ukraine, August 4–9, 2003, Lviv.
- [20] E. Reznichenko, Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233–244.
- [21] I. Sánchez, Subgroups of products of paratopological groups, Topology Appl. 163 (2014), 160–173.
- [22] I. Sánchez, Subgroups of products of metrizable semitopological groups, Monatshefte Math. 183 (2017), 191–199.
- [23] M. Sanchis, M. G. Tkachenko, *Totally Lindelöf and totally w-narrow paratopological groups*, Topology Appl. **155** (2008), 322-334.
- [24] H. H. Wicke, Open continuous images of certain kinds of M-spaces and completeness of mappings and spaces, Gen. Topol. Appl. 1 (1971), 85–100.