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Every regular countably sieve-complete semitopological group is a
topological group

Liang-Xue Penga

aDepartment of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Abstract. In this note, we firstly discuss some properties of spaces which are countably sieve-complete,
densely q-complete and strongly Baire. By some known conclusions, we finally show that if G is a regular
countably sieve-complete semitopological group then G is a topological group. If a regular semitopological
group G has a dense subgroup which is countably sieve-complete (densely q-complete), then G is a topo-
logical group. If G is a regular countably sieve-complete semitopological group then G is a D-space if and
only if G is paracompact. We point out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are
not essential.

1. Introduction

Recall that a paratopological group is a group with a topology such that the multiplication on the group is
jointly continuous. A topological group G is a paratopological group such that the inverse mapping of G into
itself associating x−1 with x ∈ G is continuous. A semitopological group is a group with a topology in which
the left and the right translations are continuous [4]. The set of all positive integers is denoted by N and
ω =N ∪ {0}. In notation and terminology we will follow [9].

A topological space X is called pseudocompact if X is a Tychonoff space and every continuous real-valued
function defined on X is bounded [9]. A Tychonoff space X is pseudocompact if and only if every locally
finite family of open sets in X is finite [9]. Recall that a space X is feebly compact if every locally finite family
of open sets in X is finite.

If G is a paratopological group such that G is a dense Gδ-set in a regular feebly compact space X, then G
is a topological group (([4], Theorem 2.4.1) and [3]). Thus every regular countably compact paratopological
group is a topological group ([4], Corollary 2.4.4). In [20] it was proved that a completely regular countably
compact semitopological group is a topological group. In [13] a completely regular pseudocompact semi-
topological group was constructed which is not a topological group. Applying Martin’s Axiom, Ravsky
constructed a Hausdorff countably compact paratopological group which is not a topological group ([19]
and ([4], p. 128)).

A Tychonoff space X is Čech-complete if and only if X is a Gδ-set in some (equivalent, every) Hausdorff
compactification of X [9]. Every Čech-complete semitopological group is a topological group (([4], Theorem
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2.4.12) and [6]). Recall that a space X is called locally P if every point x of X has a neighborhood Vx such
that Vx has property P, where P is topological property. Then a space X is called locally countably compact if
every point x of X has a neighborhood Vx such that Vx is a countably compact subspace of X.

An important generalization of both Čech-complete spaces and locally countably compact spaces was
introduced by Z. Frolı́k [10]—strongly countably complete spaces. Every Gδ-subspace and every closed
subspace of a regular strongly countably complete space is a strongly countably complete space [10]. This
class of spaces was used both in the study of the continuity of operations in groups ([18] and [6]), and in the
study of separately continuous mappings ([16] and [11]). In [6] and [11], strongly countably complete spaces
are called countably Čech-complete spaces. In [18], H. Pfister proved that every locally strongly countably
complete regular paratopological group is a topological group. Consequently, every locally countably
compact regular paratopological group is a topological group. In [6] A. Bouziad, using ([6], Theorem 4),
proved ([6], Corollary 5): every semitopological Baire p-space group is a paratopological group. Using the
same arguments, it follows from ([6], Theorem 3) that every semitopological Baire point-wise countably
complete [6] completely regular group is a paratopological group. Since every strongly countably complete
regular space is point-wise countably complete [6], we obtain that from the results of [6] and the mentioned
result of H. Pfister [18] it follows that every semitopological strongly countably complete completely regular
group is a topological group. Consequently, every semitopological locally countably compact completely
regular group is a topological group.

Further generalizations of Čech-complete spaces and strongly countably complete spaces were obtained
using the concept of sieve [7]. Sieve-complete spaces [15] (which are called monotonically Čech-complete in
[7] and called λb-spaces in [24]) are a generalization of Čech-complete spaces and countably sieve-complete
spaces are a generalization of strongly countably complete spaces. In [24] λc-spaces were introduced, which
in [1] are called q-complete spaces. Any q-complete space is strongly countably complete and in the class of
regular spaces these classes coincide [15]. In [1], Arhangel’skii and Choban also considered a broader class
than countably sieve-complete spaces—densely q-complete spaces.

In this note, we firstly discuss some properties of spaces which are countably sieve-complete, densely
q-complete and strongly Baire. By some known conclusions, we finally show that if G is a regular countably
sieve-complete semitopological group then G is a topological group. If a regular semitopological group
G has a dense subgroup which is countably sieve-complete (densely q-complete), then G is a topological
group. If G is a regular locally countably sieve-complete semitopological group, then G is a topological
group. Thus every locally countably compact regular semitopological group is a topological group. This
answers Problem 2.3.B in [4].

Recall that a neighborhood assignment for a space X is a function ϕ from X to the topology of the space
X such that x ∈ ϕ(x) for any x ∈ X [8]. A space X is a D-space if for every neighborhood assignment ϕ
for X there is a closed discrete subspace D of X such that X =

⋃
{ϕ(d) : d ∈ D} [8]. It is an open problem

that whether every paracompact Hausdorff space a D-space. We point out that if G is a regular countably
sieve-complete semitopological group, then G is a D-space if and only if G is paracompact. We also point
out that some conditions in Theorem 2.14 and Corollary 2.15 in [17] are not essential.

2. Countably sieve-complete, densely q-complete and strongly Baire spaces

Recall that a filter base F clusters at x in X if x ∈ F for all F ∈ F . Two collections of sets F andU mesh
if every F ∈ F intersects every U ∈ U ([14], p. 99). A sieve on a space X is a sequence of open covers
{Uα : α ∈ An}n∈ω (with disjoint An), together with functions πn : An+1 → An, such that, for all n ∈ ω and
α ∈ An, Uα =

⋃
{Uβ : β ∈ π−1

n (α)}. A π-chain for such a sieve is a sequence (αn) such that αn ∈ An and
πn(αn+1) = αn for all n. The sieve is complete if, for every π-chain (αn), every filter base F on X which meshes
with {Uαn : n ∈ ω} clusters in X [15]. A space X with a complete sieve is called sieve-complete [15].

Recall that a point x of a space X is an accumulation point of a sequence {xn}n∈ω of points of X if every
open neighborhood V of x, |{n ∈ ω : xn ∈ V}| = ω. An accumulation point of a sequence {xn} of points of a
space X is also called cluster point of the sequence {xn}n∈ω. Analogously to a complete sieve, one can define
a countably complete sieve ([15], p. 729) by restricting the filter base F in the definition of complete sieve to
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be countable (equivalently, by requiring that, if (αn) is a π-chain and xn ∈ Uαn for all n, then the sequence
{xn}n∈ω clusters in X). A space with a countably complete sieve is called countably sieve-complete ([15], p. 729).
Every Čech-complete space is sieve-complete and every sieve-complete space is countably sieve-complete.
Every countably compact space is countably sieve-complete, but not necessarily sieve-complete ([15], p.
730). Every uncountable discrete space X is countably sieve-complete, but it is not feebly compact.

A sequence {Un : n ∈ ω} of open subsets of a space X is called a stable sequence [1] if it satisfies the
following conditions:

(S1) ∅ , Un+1 ⊂ Un for any n ∈ ω;
(S2) Every sequence {Vn : n ∈ ω} of open non-empty sets in X such that Vn ⊂ Un for each n ∈ ω has an

accumulation point in X.

The following notions appear in [1]. Let Y be a dense subspace of a space X, γ = {γn = {Uα : α ∈ An} :
n ∈ ω} be a sequence of families of open subsets of X, and let π = {πn : An+1 → An : n ∈ ω} be a sequence of
mappings. A sequence α = {αn : n ∈ ω} is called a c-sequence if αn ∈ An and πn(αn+1) = αn for every n. Let
H(α) =

⋂
{Uαn : n ∈ ω}. Consider the following conditions:

(SC1)
⋃
{Uβ : β ∈ An} is dense subset of X for every n ∈ ω;

(SC2)
⋃
{Uβ : β ∈ π−1

n (α)} is a dense subset of the set Uα for all α ∈ An and n ∈ ω;
(SC3) Uα =

⋃
{Uβ : β ∈ π−1

n (α)} for all α ∈ An and n ∈ ω;
(SC4)

⋃
{Uβ : β ∈ π−1

n (α)} ⊂ Uα for all α ∈ An and n ∈ ω;
(C1) For any c-sequence α = {αn ∈ An : n ∈ ω}, the sequence {Uαn : n ∈ ω} is stable.
(C2) For any c-sequence α = {αn ∈ An : n ∈ ω}, each sequence {yn ∈ Y ∩ Uαn : n ∈ ω} has an accumulation

point in X;
(C4) For any c-sequence α = {αn ∈ An : n ∈ ω}, the set H(α) is a non-empty compact subset of X;
(C5) For any c-sequence α = {αn ∈ An : n ∈ ω}, the set H(α) is a non-empty countably compact subset of X.

Sequences γ and π are called an A-sieve if they have the Properties (SC3) and (SC4) and each γn covers
X. A space is called a q-complete if there exists an A-sieve with the Properties (C2) and (C5) for Y = X. A
space X is called fan-complete if there exists an A-sieve on X with the Property (C1). Sequences γ and π are
called a dense A-sieve if they have the Properties (SC1), (SC2), (SC4). A space is called densely sieve-complete
if there exist a dense subspace Y and a dense A-sieve with the Properties (C2) and (C4). A space X is called
densely q-complete if there exists a dense subspace Y and a dense A-sieve with the Property (C2). A space X
is called densely fan-complete if there exists a dense A-sieve on X with the Property (C1).

Proposition 2.1. ([1], p. 37) Any closed subspace of a q-complete space is q-complete.

Proposition 2.2. ([1], p. 37) Any q-complete space is densely q-complete.

By definitions of countably sieve-completeness and q-completeness, we have the following result.

Proposition 2.3. Every q-complete space is countably sieve-complete.

A sieve ({Uα : α ∈ An}, πn) on a space X is a strong sieve if Uβ ⊂ Uα whenever α ∈ An and β ∈ π−1
n (α) [7].

Lemma 2.4. ([15], p. 729) Every regular countably sieve-complete space has a strong countably complete sieve.

Proposition 2.5. If X is a regular space, then X is countably sieve-complete if and only if X is q-complete.

Proof. The sufficiency follows from Proposition 2.3. Now we prove the necessity. Since X is a regular
countably sieve-complete space, it follows from Lemma 2.4 that X has a strong countably complete sieve
({Uα : α ∈ An}, πn). Then for any π-chain (αn) and any sequence {yn}n∈ω with yn ∈ Uαn for every n ∈ ω, the
sequence {yn}n∈ω has an accumulation point y in X. Since Uαn+1 ⊂ Uαn for every n, the set H =

⋂
{Uαn : n ∈ ω}

is a closed non-empty countably compact subset of X. Thus X is a q-complete space.
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By Propositions 2.2 and 2.5, we have the following result.

Proposition 2.6. Every regular countably sieve-complete space is densely q-complete.

In what follows, we show that the converse of the above result does not hold.
Recall that R is the set of real numbers. The Michael line M is the set R topologized by isolating the

points of the set P of irrational numbers and leaving the points of the set Q of rational numbers with their
usual neighborhoods. The following result shows that the Michael line M is densely q-complete.

Theorem 2.7. Let X be a regular space and let Y be a dense subspace of X. If Y is densely q-complete, then so is X.

Proof. By assumption, there exist a dense subspace D of Y and a dense A-sieveU = {γn = {Uα : α ∈ An}, πn :
An+1 → An : n ∈ ω}with the Property (C2). Since D is dense in Y and Y is dense in X, the set D is dense in X.
Now we define a dense A-sieveV = {Vn = {V⟨α,λ⟩ : ⟨α, λ⟩ ∈ An×Λn}, πn×ϕn : An+1×Λn+1 → An×Λn : n ∈ ω}
on X such that the set D and the dense A-sieveV on X satisfy the Property (C2), where ϕn : Λn+1 → Λn is a
mapping. The dense A-sieveV on X also has the following properties:

1. If ⟨α, λ⟩ ∈ A0 × Λ0, then V⟨α,λ⟩ is an open subset of X such that V⟨α,λ⟩ ∩ Y = Uα, where Λ0 is any
non-empty set;

2. For any n ∈ ω and any ⟨α, λ⟩ ∈ An ×Λn, the set V⟨α,λ⟩ is an open subset of X such that V⟨α,λ⟩ ∩ Y ⊂ Uα
and if ⟨β, λ′⟩ ∈ π−1

n (α) × ϕ−1
n (λ) then V⟨β,λ′⟩ ⊂ V⟨α,λ⟩ and V⟨β,λ′⟩ ∩ Y ⊂ Uβ.

Let Λ0 be any non-empty set. For for any α ∈ A0 and any λ ∈ Λ0, let V⟨α,λ⟩ be an open subset of X such
that V⟨α,λ⟩ ∩ Y = Uα. Denote T ′ = {O ⊂ X : O is a non-empty open subset of X} and let κ = |T ′|. Then
denote T ′ = {Oξ : ξ ∈ κ}. Let Λ1 = Λ0 × κ and let ϕ0 : Λ1 → Λ0 be a mapping such that ϕ0(⟨λ, ξ⟩) = λ for
every ⟨λ, ξ⟩ ∈ Λ1. If ⟨α, λ⟩ ∈ A0 ×Λ0 and ⟨β, λ′⟩ ∈ π−1

0 (α) × ϕ−1
0 (λ), then we let V⟨β,λ′⟩ be an open subset of X

such that V⟨β,λ′⟩ = Oλ′ if Oλ′ ∩ Y ⊂ Uβ and Oλ′ ⊂ V⟨α,λ⟩, otherwise V⟨β,λ′⟩ = ∅.
Let n ∈ ω. Assume that for every i < n we have defined a mapping ϕi : Λi+1 → Λi and for every i ≤ n

and any ⟨α, λ⟩ ∈ Ai ×Λi there exists an open subset V⟨α,λ⟩ of X with the following properties:

1. V⟨α,λ⟩ ∩ Y = Uα if ⟨α, λ⟩ ∈ A0 ×Λ0;
2. If 0 ≤ i < n and ⟨α, λ⟩ ∈ Ai × Λi, then for any ⟨β, λ′⟩ ∈ π−1

i (α) × ϕ−1
i (λ), V⟨β,λ′⟩ is an open subset of X

such that V⟨β,λ′⟩ ∩ Y ⊂ Uβ and V⟨β,λ′⟩ ⊂ V⟨α,λ⟩;
3. If 0 ≤ i < n and ⟨α, λ⟩ ∈ Ai ×Λi, then

⋃
{V⟨β,λ′⟩ : ⟨β, λ′⟩ ∈ π−1

i (α) × ϕ−1
i (λ)} is dense in V⟨α,λ⟩.

LetΛn+1 = Λn×κ and letϕn : Λn+1 → Λn be a mapping such thatϕn(⟨λ, λ′⟩) = λwhenever ⟨λ, λ′⟩ ∈ Λn+1.
For any ⟨α, λ⟩ ∈ An × Λn and any ⟨β, λ′⟩ ∈ π−1

n (An) × ϕ−1
n (Λn), let V⟨β,λ′⟩ = Oλ′ if Oλ′ ∩ Y ⊂ Uβ and

Oλ′ ⊂ V⟨α,λ⟩, otherwise V⟨β,λ′⟩ = ∅. Now we assume that V⟨α,λ⟩ , ∅. Since Y is dense in X and V⟨α,λ⟩ is a
non-empty open subset of X, Y ∩ V⟨α,λ⟩ is dense in V⟨α,λ⟩. Since V⟨α,λ⟩ ∩ Y ⊂ Uα and

⋃
{Uβ : β ∈ π−1

n (α)} is
dense in Uα, the set V⟨α,λ⟩ ∩ (

⋃
{Uβ : β ∈ π−1

n (α)}) is dense in V⟨α,λ⟩. Thus
⋃
{Oξ : ξ ∈ κ,Oξ ∩ Y ⊂ Uβ and

Oξ ⊂ V⟨α,λ⟩} is dense in V⟨α,λ⟩. Then the set
⋃
{V⟨β,λ′⟩ : ⟨β, λ′⟩ ∈ π−1

n (α) × ϕ−1
n (λ)} is dense in V⟨α,λ⟩.

In this way, we get a dense A-sieve V = {Vn = {V⟨α,λ⟩ : ⟨α, λ⟩ ∈ An × Λn} : πn × ϕn : An+1 × Λn+1 →

An × Λn : n ∈ ω} on X. If {⟨αn, λn⟩ : n ∈ ω} is a c-sequence, then V⟨αn,λn⟩ ∩ Y ⊂ Uαn , πn(αn+1) = αn and
V⟨αn+1,λn+1⟩ ⊂ V⟨αn,λn⟩ for every n ∈ ω.

If {dn}n∈ω is a sequence of points such that dn ∈ V⟨αn,λn⟩ ∩D for every n ∈ ω, then dn ∈ Uαn for every n ∈ ω.
Since U is a dense A-sieve on Y such that D and U satisfy the Property (C2), the sequence {dn}n∈ω has an
accumulation in Y. Then the sequence {dn}n∈ω has an accumulation in X. ThusV is a dense A-sieve on X.
Then the dense subspace D of X and the dense A-sieveV on X satisfy the Property (C2). Thus X is densely
q-complete.

The following result was proved in ([15], Theorem 3.2). A paracompact Hausdorff space X is Čech-
complete if and only if X is sieve-complete. In ([15], p. 730), it was pointed out that the above result valid
with “sieve-complete” weakened to “countably sieve-complete”.
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Lemma 2.8. ([15], p. 730) A paracompact Hausdorff space X is Čech-complete if and only if X is countably
sieve-complete.

Remark 2.9. The Michael line M is densely q-complete, but it is not q-complete (countably sieve-complete).

Proof. The space Q of all rational numbers with the topology of a subspace of the real line with the usual
topology is not Čech-complete ([9], p. 200). Thus the subspace Q of M is not Čech-complete. Since every
closed subspace of a Čech-complete space is Čech-complete ([9], Theorem 3.9.6), the Michael line M is not
Čech-complete. By Lemma 2.8, M is not countably sieve-complete. By Proposition 2.5, M is not q-complete.

Since the subspace P of M is a densely q-complete dense subspace of X, it follows from Theorem 2.7 M
is densely q-complete.

By Proposition 2.6 and Theorem 2.7, we have the following result.

Proposition 2.10. Let X be a regular space and let Y be a dense subspace of X. If Y is countably sieve-complete, then
X is a densely q-complete space.

By an argument similar to the proof of Theorem 2.7, we have the following result.

Proposition 2.11. ([1], p. 38) If X is a regular space and Y is a dense subspace of X such that Y is densely
fan-complete, then X is densely fan-complete.

Proposition 2.12. ([15], p. 729) Countably sieve-completeness is inherited by closed subsets.

Recall that a subset F of a space X is called a regular closed set if F = F◦.

Proposition 2.13. Let X be a regular space and let Y be a regular closed subset of X. If X is densely q-complete
(densely sieve-complete, densely fan-complete, fan-complete, q-complete), then the subspace Y of X is densely q-
complete (densely sieve-complete, densely fan-complete, fan-complete, q-complete).

Proof. We just prove the case of densely q-completeness. The proofs of other cases are similar. Since X is
densely q-complete, there exist a dense subspace D of X and a dense A-sieveU = {Uα = {Uα : α ∈ An}, πn :
An+1 → An : n ∈ ω} with the Property (C2). Since Y is a regular closed set, Y = Y◦. Then DY = D ∩ Y◦ is
dense in Y. IfUY = {U

′
α = {Uα ∩ Y : α ∈ An}, πn : An+1 → An : n ∈ ω}, thenUY is a dense A-sieve on Y. It is

obvious that the dense subset DY of Y and the dense A-sieveUY satisfy the Property (C2).

Proposition 2.14. Let X be a regular space and let Y be an open subspace of X. If X is densely q-complete (densely
sieve-complete, densely fan-complete), then so is Y.

Proof. We just prove the case of densely q-completeness. The proofs of other cases are similar.
By assumption, there exist a dense subspace D of X and a dense A-sieve U = {γn = {Uα : α ∈ An}, πn :

An+1 → An : n ∈ ω} with the Property (C2). Since Y is open in X and D = X, DY = D ∩ Y is dense in Y.
Denote T ′ = {O ⊂ X : O is a non-empty open subset of X} and let κ = |T ′|. Then denote T ′ = {Oξ : ξ ∈ κ}.

By an argument similar to the proof of Theorem 2.7 we can get a dense A-sieve V = {Vn = {V⟨α,λ⟩ :
⟨α, λ⟩ ∈ An × Λn}, πn × ϕn : An+1 × Λn+1 → An × Λn : n ∈ ω} on X such that DY and V satisfy the Property
(C2) and the following properties:

1. Λ0 is any non-empty set and V⟨α,λ⟩ = Uα ∩ Y for every ⟨α, λ⟩ ∈ A0 ×Λ0;
2. For every n ∈ ω, let Λn+1 = Λn × κ and let ϕn : Λn+1 → Λn be a mapping such that ϕn(⟨λ, λ′⟩) = λ

whenever ⟨λ, λ′⟩ ∈ Λn+1.
3. For any n ∈ ω and any ⟨α, λ⟩ ∈ An × Λn, the set V⟨β,λ′⟩ is an open subset of X such that V⟨β,λ′⟩ ⊂

Uβ ∩ V⟨α,λ⟩ ∩ Y for any ⟨β, λ′⟩ ∈ π−1
n (α) × ϕ−1

n (λ);
4. For any n ∈ ω and any ⟨α, λ⟩ ∈ An ×Λn, the set

⋃
{V⟨β,λ′⟩ : ⟨β, λ′⟩ ∈ π−1

i (α) × ϕ−1
i (λ)} is dense in V⟨α,λ⟩.
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If {⟨αn, λn⟩ : n ∈ ω} is any c-sequence, then πn(αn+1) = αn and ϕn(λn+1) = λn for every n ∈ ω. If
dn ∈ DY ∩ V⟨αn,λn⟩ for every n ∈ ω, then dn ∈ Uαn for every n ∈ ω. Thus the sequence {dn}n∈ω has an
accumulation point y ∈ X. Since V⟨α0,λ0⟩ ⊂ Y and V⟨αn,λn⟩ ⊂ V⟨α1,λ1⟩ ⊂ V⟨α1,λ1⟩ ⊂ Y, the point y ∈ Y. Thus Y is
densely q-complete.

Proposition 2.15. ([1], Proposition 2.3) Every Gδ-subspace of a regular fan-complete space is fan-complete.

Proposition 2.16. Every Gδ-subspace of a regular q-complete space is q-complete.

Proof. This can be gotten by Proposition 2.5 and the fact that countably sieve-completeness is inherited by
Gδ-subsets in a regular space ([15], p. 729).

It was pointed out in ([15], p. 729) that a space X is countably sieve-complete if and only if every point
of X has a countably sieve-complete open neighborhood. If X is regular, then the neighborhood need not
be open. However, we have following result.

Lemma 2.17. A space X is countably sieve-complete if and only if every point of X has a countably sieve-complete
neighborhood.

Proof. The necessity is obvious. Now we prove the sufficiency.
For every x ∈ X, there exists a countably sieve-complete neighborhood Vx. LetUx = {Un(x) = {Uα : α ∈

An(x)}, πn,x : An+1(x) → An(x),n ∈ ω} be a countably complete sieve on X. For every x ∈ X and every n ∈ ω
we letU′n(x) = {Uα ∩ V◦x : α ∈ An(x)}. For every n ∈ ω, let Bn =

⋃
{An(x) × {x} : x ∈ X} and let πn : Bn+1 → Bn

be a mapping such that for any x ∈ X πn(⟨α, x⟩) = α whenever ⟨α, x⟩ ∈ An(x) × {x}. For any x ∈ X and any
⟨α, x⟩ ∈ An(x) × {x}, let V⟨α,x⟩ = Uα ∩ V◦x . Then V = {Vn = {V⟨α,x⟩ : ⟨α, x⟩ ∈ Bn}, πn : Bn+1 → Bn : n ∈ ω} is a
sieve on X. If (⟨αn, xn⟩) is a π-chain, then there exists y ∈ X such that xn = y and αn ∈ An(y) for every n ∈ ω.
If {dn}n∈ω is a sequence of points of X such that dn ∈ V⟨αn,xn⟩ for every n ∈ ω, then dn ∈ Uαn ∩ V◦y ⊂ Uαn and
πn,y(αn+1) = αn for every n ∈ ω.

Since Uy is a countably complete sieve on Vy, the sequence {dn}n∈ω has an accumulation point d in
Vy ⊂ X. ThusV is a countably complete sieve on X. Then X is countably sieve-complete.

By Lemma 2.17 and Proposition 2.5, we have the following result.

Proposition 2.18. A regular space X is q-complete if and only if every point x of X has a q-complete neighborhood.

Proposition 2.19. Every locally countably compact space X is countably sieve-complete.

Proof. Since X is locally countably compact and every countably compact space is countably sieve-complete,
every point of X has a neighborhood which is countably sieve-complete. Thus by Lemma 2.17 X is countably
sieve-complete.

The above result shows that the T1 separation axiom in Proposition 1.1 in [17] is not essential.

Proposition 2.20. Let X be a regular space. If every point of X has a densely fan-complete (fan-complete) neighbor-
hood, then X is densely fan-complete (fan-complete).

Proof. We just prove the case of densely fan-completeness. The proof of the other case is similar.
Since X is regular and every point of X has a densely fan-complete neighborhood, it follows from

Proposition 2.13 for every x ∈ X there exists an open neighborhood Vx of x such that Vx is densely fan-
complete. By Proposition 2.14, the subspace Vx of X is densely fan-complete for every x ∈ X. By an argument
similar to the proof of Proposition 2.14, for every x ∈ X there exists a dense A-sieveVx = {Vn(x) = {Vα(x) :
α ∈ An(x)}, πn,x : An+1(x) → An(x) : n ∈ ω} on Vx with the Property (C1) and for every n ∈ ω and every
α ∈ An(x), the set Vβ(x) ⊂ Vα(x) if β ∈ π−1

n,x(α).
For every n ∈ ω, we let An =

⋃
{An(x) × {x} : x ∈ X}. For every n ∈ ω, let πn : An+1 → An be a mapping

such that if ⟨α, x⟩ ∈ An+1(x) × {x} for some x ∈ X, then πn(⟨α, x⟩) = α. For every n ∈ ω and every x ∈ X, let
U⟨α,x⟩ = Vα(x) for every ⟨α, x⟩ ∈ An(x) × {x}. ThenU = {Un = {U⟨α,x⟩ : ⟨α, x⟩ ∈ An(x) × {x}, x ∈ X}, πn : An+1 →

An : n ∈ ω} is a dense A-sieve on X with the Property (C1). Thus X is densely fan-complete.



L.-X. Peng / Filomat 38:15 (2024), 5431–5440 5437

The following notions appears in [12]. Let (X, τ) be a topological space and let D be a dense subset of X.
On X we consider the GS(D)-game played between two players α and β. Player β goes first and chooses a
non-empty open subset B1 ⊂ X. Player αmust then respond by choosing a non-empty open subset A1 ⊂ B1.
Following this, player β must select another non-empty open subset B2 ⊂ A1 ⊂ B1 and in turn player α
must again respond by selecting a non-empty open subset A2 ⊂ B2 ⊂ A1 ⊂ B1. Continuing this procedure
indefinitely the players α and β produce a sequence ((An,Bn) : n ∈ N) of pairs of open sets called a play of
the GS(D)-game. We shall declare that α wins a play ((An,Bn) : n ∈ N) of the GS(D)-game if;

⋂
n∈N An is

non-empty and each sequence (an : n ∈ N) with an ∈ An ∩D has a cluster-point in X. Otherwise the player
β is said to have won this play. By a strategy t for the player β we mean a ‘rule’ that specifies each move of
the player β in every possible situation. More precisely, a strategy t := (tn : n ∈ N) for β is a sequence of
τ-valued functions such that tn+1(A1, ...,An) ⊂ An for each n ∈N. The domain of each function tn is precisely
the set of all finite sequences (A1,A2, ...,An−1) of length n−1 in τwith A j ⊂ t j(A1, ...,A j−1) for all 1 ≤ j ≤ n−1.
The sequence of length 0 will be denoted by ∅. Such a finite sequence (A1,A2, ...,An−1) or infinite sequence
(An : n ∈ N) is called a t-sequence. A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if
each t-sequence is won by β. We will call a topological space (X, τ) a strongly Baire or (strongly β-unfavorable)
space if it is regular and there exists a dense subset D of X such that the player β does not have a winning
strategy in the GS(D)-game played on X [12]. In [2], the authors provided a large class of topological spaces
X for which the absence of winning strategy for player β is equivalent to the requirement that X is a Baire
space.

Theorem 2.21. If X is a densely q-complete regular space, then X is a strongly Baire space.

Proof. Since X is a densely q-complete space, there exist a dense subspace D of X and a dense A-sieve
U = {γn = {Uα : α ∈ Λn}, πn : Λn+1 → Λn : n ∈ ω} with the Property (C2). Let us prove that X is a strongly
Baire space. Let t := (tn : n ∈N) be the strategy for player β. Let us construct a t-sequence (An : n ∈N) that
wins for α. Let B1 = t1(∅). Then B1 is a non-empty open subset of X.

Since
⋃
{Uα : α ∈ Λ0} is dense in X, there exists α0 ∈ Λ0 such that B1 ∩ Uα0 , ∅. Since X is regular

and B1 ∩ Uα0 is a non-empty open subset of X, there exists a non-empty open subset A1 of X such that
A1 ⊂ A1 ⊂ B1 ∩ Uα0 . Let B2 = t2(A1) be a non-empty open subset of X such that B2 ⊂ A1. Since⋃
{Uβ : β ∈ π−1(α0)} is dense in Uα0 , there exists α1 ∈ Λ1 ∩π−1

0 (α0) such that Uα1 ∩ B2 , ∅. Then there exists a
non-empty open subset A2 of X such that A2 ⊂ Uα1∩B2 by the regularity of X. Then A2 ⊂ A1 and t2(A1) = B2.
Take a non-empty open subset B3 = t3(A1,A2) ⊂ A2.

Let n ≥ 1. Assume that we have finite sequences (B1, ...,Bn+1), (A1, ...,An), (α0, ..., αn−1) with the following
properties:

1. A1 ⊂ B1 ∩Uα0 ;
2. (B1, ...,Bn+1) and (A1, ...,An) are finite sequences of open subsets of X;
3. For each 0 ≤ i ≤ n − 1, αi ∈ Λi and πi(αi+1) = αi for each i ≤ n − 2;
4. For each 1 ≤ i ≤ n, Ai ⊂ Bi ∩Uαi−1 ;
5. Bi+1 = ti+1(A1, ...,Ai) ⊂ Ai for each i ≤ n.

Then Bn+1 = tn+1(A1, ...,An) ⊂ An ⊂ An ⊂ Bn ∩ Uαn−1 . Since
⋃
{Uβ : β ∈ π−1

n−1(αn−1)} is dense in Uαn−1 ,
there exists αn ∈ Λn ∩ π−1

n−1(αn−1) such that Bn+1 ∩Uαn , ∅. Then there exists a non-empty open subset An+1

of X such that An+1 ⊂ Bn+1 ∩ Uαn . Let Bn+2 = tn+2(A1, ...,An+1) be a non-empty open subset of X such that
Bn+2 ⊂ An+1.

By induction we get two sequences {Bn : n ∈N} and {An : n ∈N} of open subsets of X and a c-sequence
α = {αn : n ∈ ω}with the following properties:

1. A1 ⊂ B1 ∩Uα0 ;
2. Bn+1 = tn+1(A1, ...,An) ⊂ An for every n ∈N;

3. An+1 ⊂ Bn+1 ∩Uαn for every n ∈N.
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Thus An+1 ⊂ An ∩Uαn for every n ∈N. If {xn}n∈ω is a sequence of points of X such that xn ∈ An+1 ∩D for
every n ∈ ω, then xn ∈ Uαn ∩D for every n ∈ ω.

Since the dense subspace D and the dense A-sieve U = {γn = {Uα : α ∈ Λn}, πn : Λn+1 → Λn : n ∈ ω}
satisfy the Property (C2), the sequence {xn}n∈ω has an accumulation point y in X and y ∈

⋂
{An : n ∈ ω}.

Then
⋂
{An : n ∈ N} =

⋂
{An : n ∈ ω} , ∅. Thus the strategy t := (tn : n ∈ N) for the player β does not win.

Then X is a strongly Baire space.

3. Continuity in semitopological groups

All topological groups in this note are assumed to be Hausdorff. Let e be the identity of the consid-
ered group in this note. Given a semitopological group G, the symbol N(e) denotes the family of open
neighborhoods of the identity e in G.

Lemma 3.1. ([12], Theorem 2) Let G be a semitopological regular group. If G is a strongly Baire space, then G is a
topological group.

Theorem 3.2. If G is a regular countably sieve-complete semitopological group, then G is a topological group.

Proof. It can be gotten by Proposition 2.6, Theorem 2.21 and Lemma 3.1. It can also be gotten by Proposition
2.6 in this note and Theorem 5.2 in [1].

Corollary 3.3. Let G be a regular semitopological group. If G is locally countably sieve-complete, then G is a
topological group.

Proof. By Lemma 2.17, G is countably sieve-complete. Then by Theorem 3.2 G is a topological group.

By Theorem 3.2 and Proposition 2.19, we have the following result.

Corollary 3.4. If G is a locally countably compact regular semitopological group, then G is a topological group.

Theorem 3.5. If G is a regular semitopological group with a densely q-complete dense subgroup, then G is a topological
group.

Proof. Let H be a densely q-complete dense subgroup of G. By Theorem 2.7, G is densely q-complete.
Since every densely q-complete regular semitopological group is a topological group ([1], Theorem 5.2), the
semitopological group G is a topological group.

By Proposition 2.6 and Theorem 3.5, we have the following result.

Corollary 3.6. If G is a regular semitopological group with a countably sieve-complete dense subgroup, then G is a
topological group.

In what follows, we show that if G is a regular countably sieve-complete semitopological group, then G
is a D-space if and only if G is paracompact.

The following result was pointed out in ([15], p. 730).

Lemma 3.7. ([15], p. 730) The following properties of a strong sieve ({Uα : α ∈ Λn}, πn) on a space X are equivalent:

(a) ({Uα : α ∈ Λn}, πn) is a countably complete sieve;
(b) If (αn) is a π-chain, if Uαn , ∅ for all n, and if C =

⋂
n∈NUαn , then C is nonempty, closed, and countably

compact, and every open V ⊃ C contains some Uαn .

Recall that a topological group G is feathered if it contains a non-empty compact set K with countable
character in G ([4], p. 235).
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Lemma 3.8. Let P be a topological property such that every countably compact space X with property P is compact,
property P is hereditary with respect to closed sets. If G is a regular countably sieve-complete semitopological group
with property P, then G is a paracompact Čech-complete topological group.

Proof. By Theorem 3.2, G is a topological group. By Lemmas 2.4 and 3.7, there exists a non-empty countably
compact closed subset K of G with countable character in G. Then K is countably compact and has
property P. Thus K is compact. Then G is feathered. Every feathered topological group is paracompact
([4], Corollary 4.3.21). Then G is paracompact countably sieve-complete. It follows from Lemma 2.8 G is
Čech-complete.

Theorem 3.9. If G is a regular countably sieve-complete semitopological group, then G is a D-space if and only if G
is paracompact.

Proof. Assume that G is a D-space. Since the D-property is hereditary with respect to closed subsets and
every countably compact T1 D-space is compact, it follows from Lemma 3.8 G is a paracompact.

Now we assume that G is a paracompact countably sieve-complete semitopological group. By Lemma
2.8 and Theorem 3.2, G is a Čech-complete topological group. By ([4], Theorem 4.3.20), there exists a
compact subgroup H of G such that G/H is a complete metric space. Let π : G → G/H be the canonical
quotient homomorphism. By ([4], Theorem 1.5.7), the mapping π is perfect. Since every metric space is a
D-space and every perfect preimage of a D-space is a D-space [5], it follows that G is a D-space.

Given a paratopological group G with a topology τ, one defines the conjugate topology τ−1 on G by
τ−1 = {U−1 : U ∈ τ}. The upper bounded τ∗ = τ ∨ τ−1 is a topological group topology. We call G∗ = (G, τ∗)
the group associated to G [23]. A paratopological group is called totally P if the associated topological group
G∗ has property P [23]. Recall that a semitopological group G is ω-narrow if for any neighborhood U of the
identity e in G, there exists a countable set C ⊂ G such that CU = UC = G.

In [22], Sánchez gave an internal characterization of subgroups of products of metrizable semitopological
groups. A familyU of subsets of a semitopological group G is discrete with respect to a family γ ⊂ N(e) if for
every x ∈ G we can find V ∈ γ such that xV intersects at most one element of U. Also, we say that U is
σ-discrete with respect to a family γ ⊂ N(e) ifU can be decomposed as a countable union of families discrete
with respect to γ. The family U of subsets of G is dominated by a family γ ⊂ N(e) if for every U ∈ U and
x ∈ U there exists V ∈ γ such that xV ⊂ U [22]. LetU be a cover of a space X. We say that a refinementV
ofU is basic if for every U ∈ U and x ∈ U there exists V ∈ V such that x ∈ V ⊂ U [22]. A semitopological
group has property (∗) if for every U ∈ N(e), the family {Ux : x ∈ G} has an open basic refinement which
is dominated by a countable family γ and σ-discrete with respect to γ ([22], Definition 2.3). The symmetry
number of a T1 semitopological group G, denoted by Sm(G), is the minimum cardinal number κ such that for
every neighborhood U of e in G, there exists a familyV of neighborhoods of e in G such that

⋂
V∈V V−1

⊂ U
and |V| ≤ κ [21]. If G is a regular countably sieve-complete semitopological group with Sm(G) ≤ ω and
satisfies property (∗), then G is a topological group ([17], Theorem 2.14). By Theorem 3.2, the conditions of
Sm(G) ≤ ω and property (∗) in Theorem 2.14 in [17] is not essential.

In ([17], Corollary 2.15), it is proved that if G is a regular totally ω-narrow countably sieve-complete
paratopological group, then G is a topological group. By Theorem 3.2, the property of totallyω-narrowness
of the paratopological group G in Corollary 2.15 in [17] is not essential.
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