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Abstract. Let {Ri}i∈I be a family of quasi-local rings and let R =
∏

i∈I Ri be their product. In this paper,
we investigate the prime spectrum of R under different topologies, with special attention given to maximal
ideals based on the ultrafilters on I. Additionally, we will compute the number of topologies on R.

1. Introduction

All rings in this article are assumed to be commutative and unitary. We also use the following notation:
β(I) denotes the set of all ultrafilters on I, the cardinality of a set I is a measure that represents the number of
elements in I, often denoted as |I|, Spec(R) denotes the set of all prime ideals in a ring R, and U(R) denotes
the set of all unit elements in a ring R.

Let {Ri}i∈I be a family of quasi-local rings, and R =
∏

i∈I Ri be their product. Several papers in the literature
have addressed the problem of characterizing the prime ideals of R using purely algebraic methods (see
[6, 7]). On the other hand, the notion of F -limit is related to a construction proposed by S. Garcia-Ferreira
and L. M. Ruza-Montilla in [5], which gives some topological properties of the prime spectrum of QN. H.
Mouadi and D. Karim applied this notion to find a relation between the elements of

∏
i∈I Ri and Ri (see [12]),

as well as for defining topologies on other sets (see [11]).
Therefore, our objective is to address the following question:
(Q): How many pairwise non-homeomorphic topologies exist in Spec(

∏
i∈I Ri)?

The rest of this paper is organized as follows:
In Section 2, we define and discuss some properties of the F -limit of a family of ideals, along with

characterizations of the product of the rings using ultrafilters.
In Section 3, we establish the relationship between F -topologies on Spec(

∏
i∈I Ri) and on β(I), where

I is an infinite set, and each Ri is a quasi-local ring. Afterward, we will discuss some properties of the
F -topology. Finally, at the conclusion of this work, we will provide an answer to question (Q).

2. F − lim of a family of ideals

In our study, we will be working within the framework of Zermelo-Fraenkel set theory with the axiom
of choice (ZFC). We will assume the axioms of ZFC unless otherwise specified.

Let us recall the definition of a filter on a set I. A subset U of the power set of I is called a filter if it
satisfies the following conditions:
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1. ∅ <U and I ∈ U.
2. If J1, J2 ∈ U, then J1 ∩ J2 ∈ U.
3. If J ∈ U and J ⊆ J′ ⊆ I, then J′ ∈ U.

An ultrafilterU is a special type of filter that satisfies the additional condition: For any subset J of I, either
J or its complement I \ J belongs toU. IfU consists of all subsets of I containing a specific element p ∈ I,
we refer to it as a principal (or fixed) ultrafilter. Otherwise, if U includes subsets of I that do not contain
any fixed element, it is known as a non-principal (or free) ultrafilter. For more information about filters and
ultrafilters, refer to [2].

Theorem 2.1. ([2, Corollary 7.4]) Let I be an infinite set, and let | I |= α. Then | β(I) |= 22α .

Definition 2.2. Let R be a ring, I an infinite set, F an ultrafilter on I, and {Pi : i ∈ I} ⊆ Spec(R). We define
the F -limit of {Pi : i ∈ I} as follows:

F − lim
i∈I

Pi := {a ∈ R : {i ∈ I : a ∈ Pi} ∈ F }.

It can be noted that:
F − lim

i∈I
Pi =

⋃
F∈F

(
⋂
i∈F

Pi)

Example 2.3. • Let F be a nonprincipal ultrafilter on Spec(Z). Then:

(0) = F − lim
p∈Spec(Z)

(p).

For more information, see [12].

• Let R = ZI and U be an ultrafilter on I. In reference [10], R. Levy et al denoted the minimal prime
ideal in R by (U). Then,

(U) =U − lim
i∈I

(0i).

Theorem 2.4. ([5, Theorem 2.1]) Let R be a ring, I an infinite set, F an ultrafilter on I, and {Pi : i ∈ I} ⊆ Spec(R).

1. If A ∈ F , then
F − lim

i∈I
Pi = F |A − lim

i∈A
Pi.

where F |A= {B ⊆ A : B ∈ F }.
2. Let Γ be an infinite set, and σ : ∆ → Γ be a surjective function. For each j ∈ Γ, we define Q j = Pi if σ(i) = j.

Then, we have:
F − lim

i∈∆
Pi = C − lim

j∈Γ
Q j,

where σ(F ) = {σ[F] : F ∈ F } = C.

Consider a family of rings {Ri}i∈I and their product
∏

i∈I Ri. Elements of this product are commonly
approached in two distinct manners. The first, more formal approach involves defining

∏
i∈I Ri as the set of

all functions f : I →
⋃

i∈I Ri satisfying f (i) ∈ Ri for each i ∈ I. On the other hand, an alternative perspective
considers elements of

∏
i∈I Ri as tuples ⟨ai⟩i∈I, where ai ∈ Ri holds true for each i. Within this perspective,

the addition and multiplication of tuples are defined based on coordinate-wise addition and multiplication
operations.

In the following discussion, we introduce the notation to describe sets of indices where some elements
of a ring of products and extend it to ideals inside the ring. Our focus lies in the realm of quasi-local rings,
commencing our exploration by defining them, supported by illustrative examples.
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Definition 2.5. A commutative ring R is termed a quasi-local ring if there exists a unique maximal idealm
in R. Symbolically, a ring R is quasi-local if and only if there exists a unique ideal m ⊂ R such that for any
proper ideal a ⊂ R, either a ⊂ m or a = R.

Example 2.6. 1. The ring Z
pnZ is a quasi-local ring for p prime and n ≥ 1. Its unique maximal ideal is

composed of all multiples of p.
2. Let R be a commutative ring and P a prime ideal in R. The localization of R at the complement of P is

denoted by RP or S−1R where S = R \ P.
3. A nonzero ring in which every element is either a unit or nilpotent is a quasi-local ring.

For commutative rings, distinguishing between left, right, or two-sided ideals becomes unnecessary: a
commutative ring is deemed local only when possessing a singular maximal ideal. Before 1960, several
authors stipulated local rings to be both left and right Noetherian, labeling non-Noetherian local rings as
quasi-local. This article, however, refrains from imposing such a requirement.

Notation 2.7.

1. Let {Ri}i∈I be a nonempty family of commutative rings indexed by a set I, and let R =
∏

i∈I Ri be their
product. For each f ∈ R, we defineY( f ) as the set {i ∈ I f (i) ∈ Ri \U(Ri)}.

2. It is important to note that f is a unit of R if and only ifY( f ) is empty.
3. Furthermore, for an ideal J of R, we defineY(J) as the set of allY( f ) where f ∈ J.

In the study of product rings with a family of non-zero rings indexed by an infinite set, the following
proposition establishes relationships between ideals, filters, ultrafilters, and maximal ideals, providing
insights into their properties and interconnections.

Proposition 2.8. ( [3, Proposition 2.3]) Let R =
∏

i∈I Ri, where I is an infinite set and each Ri is nonzero ring.

1. If J is a proper ideal of R, thenY(J) forms a filter on I. In the case where J is prime,Y(J) becomes an ultrafilter.
2. Assuming that each Ri is quasilocal and F is a filter on I, we define JF = { f ∈ R : Y( f ) ∈ F }. It can be shown

that JF is an ideal of R, andY(JF ) = F . Consequently, JF is the largest ideal of R satisfyingY(JF ) = F .
3. When each Ri is quasilocal, the mapping M → Y(M) establishes a bijection between the set of maximal ideals

of R and the set of ultrafilters on I. This bijection also holds between the set of maximal ideals of R containing
a fixed ideal I and the set of nonprincipal ultrafilters on I. Additionally, each P ∈ Spec(R) is contained in a
unique maximal ideal of R.

3. The relationship between the F -topology on Spec(
∏

i∈I Ri) and β(I)

Let R be a commutative ring, the concept of the ultrafilter topology on Spec(R) was originally introduced
by M. Fontana and K. A. Loper in their work [3]. Building upon this idea, S. Garcia-Ferreira and L. M.
Ruza-Montilla defined the ultrafilter topology in the context of F -limits, as described in [5]. In this section,
we aim to establish the relationship between the F -topology on Spec(

∏
i∈I Ri) and the space β(I).

To begin, we define the F -topology on the product of quasi-local rings, inspired by the aforementioned
works:

Definition 3.1. Let R =
∏

i∈I Ri be a product of quasi-local rings, and let C be a subset of Spec(R). Consider
an ultrafilter H on C. Following the approach in [3], we define PH = {a ∈ R : V(a) ∩ C ∈ H} as a prime
ideal. We refer to PH as an ultrafilter limit point of C.

In this definition, we adapt the notion of ultrafilter limit points from [3] to the setting of Spec(
∏

i∈I Ri).
By establishing this correspondence, we aim to establish the relationship between the F -topology on
Spec(

∏
i∈I Ri) and the space β(I).
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Definition 3.2. Let R be a commutative ring and C be a subset of Spec(R). We say that C is ultrafilter closed
if, for any ultrafilterH on C, we have PH ∈ C.

The ultrafilter closed subsets are precisely the closed subsets of the ultrafilter topology τu on Spec(R).

Lemma 3.3. ( [5, Lemma 3.1]) Let C , ∅ be a subset of Spec(R) andH be an ultrafilter on C. Then there exists a
subset {Pi : i ∈ ∆} ⊆ C and an ultrafilter F on ∆ such that PH = F − limi∈∆ Pi.

Lemma 3.3 states that for a nonempty subset C of Spec(R) and an ultrafilterH on C, there exists a subset
{Pi : i ∈ ∆} ⊆ C and an ultrafilterF on∆ such that PH = F − limi∈∆ Pi. In other words, the lemma establishes
a connection between ultrafilters on C and ultrafilters on a indexed subset ∆. This result provides a useful
tool for understanding the behavior of ultrafilters in the context of Spec(R).

Theorem 3.4. ([5, Theorem 3.2]) A subset C ⊆ Spec(R) is said to be ultrafilter closed if and only if for every infinite
set ∆, every Pi ∈ C for each i ∈ ∆, and ultrafilter F on ∆, we have F − limi∈∆ Pi ∈ C.

Definition 3.5. Let R be a commutative ring, and let F be an ultrafilter on I. We say that C ⊆ Spec(R) is
F -closed if for every collection {Pi}i∈I in C, we have F − limi∈I Pi ∈ C.

Theorem 3.6. Let R be a commutative ring, and let F be a nonprincipal ultrafilter on I. The F -closed
subsets form the closed sets of a topology on Spec(R), which we refer to as the F -topology and denote by
τF .

Proof. Let C1 and C2 be F -closed subsets of Spec(R) for some ultrafilters on I. Let C = C1 ∪C2, and consider
a collection {Pi}i∈I in C.

Since I = {i ∈ I : Pi ∈ C1} ∪ {i ∈ I : Pi ∈ C2} ∈ F , by the definition of an ultrafilter, either {i ∈ I : Pi ∈

C1} ∈ F or {i ∈ I : Pi ∈ C2} ∈ F . Without loss of generality, let’s assume that A = {i ∈ I : Pi ∈ C1} ∈ F .
By Theorem 2.4, we have F -limi∈I Pi = F |A-limi∈I Pi ∈ C1 ⊆ C.
Thus, we see that the intersection of F -closed subsets is also a F -closed subset.

Remark 3.7. • Every ultrafilter closed subset of Spec(R) is F -closed.

• Let R be a ring, and let F be a nonprincipal ultrafilter on a countable set, such as N. In general,
τu ⊆ τF , but if Spec(R) is countable (as stated in [5, Theorem 4.4]), we have τu = τF .

Now, let us consider the ring R =
∏

i∈I Ri, where I is an infinite set and each Ri is a quasi-local ring.
Suppose we have a collection {Pa}a∈A in Spec(

∏
i∈I Ri). In this context, we can define the F -topology on

Spec(
∏

i∈I Ri) as follows. For each nonprincipal ultrafilter F on A (as defined in Definition 2.2), we consider
the prime ideal F -lima∈A Pa.

It is worth noting that there exists a maximal ideal JU satisfying F -lima∈A Pa ⊆ JU , whereU ∈ β(I) of the
set I, as shown in Proposition 2.8. This observation allows us to establish a connection between the sets I
and A. In fact, we can replace the set A with I, considering the collection {Pi}i∈I instead of {Pa}a∈A.

Moving forward, we introduce β(I), denoted as the Stone extension of I. It is a unique (up to homeomor-
phism) compact space that contains I as a dense subset. In β(I), each point corresponds to an ultrafilter on I.
The set I∗ = β(I) \ I represents the remainder, with its points corresponding to the nonprincipal ultrafilters
on I, while the principal ultrafilters are identified with the points of I. It’s important to note that this
construction is not unique and can be explored further in references such as [6, 8].

The Stone set Â is defined as follows:

Â := {F ∈ β(I) : A ∈ F }.

Certainly, we can make use of Stone sets and leverage the following lemmas to facilitate our computations.
It is evident that Î = β(I) and ∅̂ = ∅.

Lemma 3.8. For all subsets A and B of I, the following equations hold:
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1. Â ∪ B = Â ∪ B̂.
2. Â ∩ B = Â ∩ B̂.
3. Î \ A = β(I) \ Â.

Proof. The elements of the Stone sets occurring in these equations are ultrafiltersF on I. Let’s examine each
equation:

1. Â ∪ B = Â ∪ B̂: The first equation holds since F ∈ Â ∪ B holds if and only if A ∪ B ∈ F . This is
equivalent to A ∈ F and B ∈ F , which can be written as F ∈ Â ∩ B̂. Therefore, Â ∪ B = Â ∪ B̂.

2. Â ∩ B = Â∩ B̂: The second equation follows similarly. F ∈ Â ∩ B holds if and only if A∩B ∈ F . Since
every ultrafilter is a prime filter, we have A ∈ F and B ∈ F , which can be written as F ∈ Â ∩ B̂. Hence,
Â ∩ B = Â ∩ B̂.

3. Î \ A = β(I) \ Â: The third equation is a direct consequence of the definition of an ultrafilter. F ∈ Î \ A
holds if and only if I \ A ∈ F , which is equivalent to A < F . Therefore, Î \ A = β(I) \ Â.

These equations demonstrate the properties of Stone sets and how they relate to subsets of I through
the operations of union, intersection, and complement.

Lemma 3.9. The family B := {Â : A ⊆ I}, consisting of all Stone sets, is referred to as the Stone base of β(I).
The Stone base B is a collection of subsets of β(I) obtained by considering all possible subsets A of I and

forming their corresponding Stone sets Â. Each element Â of the Stone base represents a set of ultrafilters
on I that contain the set A. Thus, B provides a foundational set system for constructing the Stone sets in
β(I).

The Stone baseB plays a crucial role in the study of Stone spaces and ultrafilters. It captures the essential
structure and properties of the Stone sets and enables us to analyze the topology and algebraic properties
of the compact space β(I) through its subsets.

As a direct consequence of the properties of the Stone base, we obtain the following results:

• The Stone base B serves as a base for the open sets of β(I). Therefore, a subset U of β(I) is open if and
only if it can be expressed as the union of a family of Stone sets. In other words, there exists a family
{Ai : i ∈ I} of subsets of I such that U =

⋃
i∈I Âi.

• By considering complements and utilizing the closedness of the Stone base under complementation,
we find that a subset Y of β(I) is closed if and only if it can be expressed as the intersection of a family
of Stone sets. In other words, there exists a family {Ai : i ∈ I} of subsets of I such that Y =

⋂
i∈I Âi.

• In the space β(I), for every point p, the family {Â : A ∈ p} forms a canonical neighborhood base for p.
This means that for each A contained in p, the corresponding Stone set Â is a neighborhood of p, and
any neighborhood of p contains a Stone set of the form Â for some A contained in p.

These results highlight the topological properties of β(I) and provide a convenient framework for
understanding the open and closed sets in terms of the Stone base. Additionally, the last result emphasizes
the local structure of points in β(I), where each point has a neighborhood base consisting of Stone sets
associated with the subsets of I contained in the point.

Remark 3.10. For a topological space X, a subset U of X is said to be clopen if it is both closed and open,
which means that both U and its complement X \U are open sets.

In the context of β(I), every Stone set Â is clopen, as stated in Lemma 3.8.
In general, a subset of β(I) is clopen if and only if it is of the form Â for some subset A of I. To see this,

assume that U ⊆ β(I) is clopen and consider a family A of subsets of I such that U =
⋃

A∈A Â. Since U is
closed, it is also compact in β(I). Therefore, the open cover {Â : A ∈ A} of U has a finite subcover. Let
A1, . . . ,An be subsets inA such that U = Â1 ∪ . . .∪ Ân. It follows that U is the Stone set of A = A1 ∪ . . .∪An.

Thus, every clopen subset of β(I) can be represented as a Stone set Â for some subset A of I.
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The previous construction allows us to give the following definition

Definition 3.11. The Stone-Cech compactification β(I) of any set I is defined as the set of all ultrafilters on
I. One fundamental property of β(I) is that for any map f : I → I, there exists a continuous extension
f̃ : β(I)→ β(I). The topology on β(I), known as the Stone-Cech compactification topology, is equipped with
the discrete topology.

Furthermore, for A ⊆ I, the set clβ(I)(A) = {F ∈ β(I) : A ∈ F } is a basic clopen subset of β(I).

Given a nonprincipal ultrafilterU on I and a collection {Fi}i∈I in β(I), theU-limit of Fi is defined as:

U − lim Fi = {A ⊆ I : {i ∈ I : A ∈ Fi} ∈ U}

This set is an ultrafilter on I.
A subset C of β(I) is said to beU-closed if for every collection {Fi}i∈I in C, we haveU− limi∈I Fi ∈ C. The

U-closed sets define the F -topology on β(I), denoted by σU .
Now, let us consider the ring R =

∏
i∈I Ri, where each Ri is a quasi-local ring. The description of the

maximal ideal in R (as discussed in section 2) reveals that the maximal ideal JF in R has the form:

JF = { f ∈ R {i ∈ I : f (i) ∈ Ri \U(Ri)} ∈ F }

where F ∈ β(I).

Lemma 3.12. ([12, Proposition 2]) Let R =
∏

i∈I Ri, where I is an infinite set and each Ri is a quasi-local ring. Let
F be an ultrafilter on I. If (JFi )i∈I is a collection of maximal ideals of R, then

F - lim
i∈I

JFi = JF - lim
i∈I
Fi

Definition 3.13. Assume thatU is a nonprincipal ultrafilter on the set I, and let R denote the infinite product
of quasi-local rings R =

∏
i∈I Ri. Given a subset C of β(I), we provide the following definition:

CS := {P ∈ spec(R) : ∃F ∈ C (P ⊆ JF )}.

if C ⊆ spec(R), then we let
CI := {F ∈ β(I) : ∃P ∈ C (P ⊆ JF )}.

Theorem 3.14. Let U be a nonprincipal ultrafilter on I. If C ⊆ β(I) is σU-closed, then CS is a τU-closed
subset of Spec(R).

Proof. Let {Pi}i∈I be a collection of elements of CS. By definition, for each i ∈ I, there exists Fi ∈ C such that
Pi ⊆ JFi . Let F =U-limi∈I Fi. Since C is closed underU-limits, we have F ∈ C.

By Lemma 3.12, we know thatU-lim JFi = JF ∈ CS. Thus, CS is a τU-closed subset of Spec(R).

Theorem 3.15. LetU be a nonprincipal ultrafilter on I. If C ⊆ Spec(R) is a τU-closed subset of Spec(R), then
CI is σU-closed in β(I).

Proof. We assume that {Fi}i∈I is a collection of elements of CI. For each i ∈ I, there exists Pi ∈ C such that
Pi ⊆ JFi . Since C is τU-closed, we haveU-limi∈I Pi ∈ C.

By Lemma 3.12, it follows thatU-limi∈I Pi ⊆ U-limi∈I JFi = JF , whereF =U-limi∈I Fi. Therefore,F ∈ CI,
and CI is a σU-closed subset of β(I).

Theorem 3.16. Let R =
∏

i∈I Ri, where each Ri is a quasi-local ring, and let F be a nonprincipal ultrafilter
on I. Consider C ⊆ β(I). We claim that C = (CS)I.

Proof. We consider F ∈ (CS)I. Then I ∈ CS such that I ⊆ JFi . By Definition3.13, we know that there exists
U ∈ C such that I ⊆ JU . Since R is a quasi-local ring, the ultrafilter F is the unique ultrafilter with this
property. Hence, we must have F =U. Thus, (CS)I ⊆ C.

Now, let F ∈ C. Then, (JU) ∈ CS, and therefore F ∈ (CS)I. Hence, we conclude that C ⊆ (CS)I.
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Lemma 3.17. Let F be a nonprincipal ultrafilter on I. Consider a family {C j : j ∈ Γ} of nonempty subsets
of β(I). If

⋂
j∈Γ C j

S , ∅, then
⋂

j∈Γ C j , ∅.

Proof. Let P ∈ A =
⋂

j∈Γ C j
S. For every j ∈ Γ, there exists F j ∈ C j such that P ⊆ JF j . However, due to

the uniqueness property of maximal ideals in R =
∏

i∈I Ri, we have F j = F for all j ∈ Γ. Therefore,
F ∈

⋂
j∈Γ C j.

Now, our aim is to determine the number of pairwise non-homeomorphicF -topologies on Spec(
∏

i∈I Ri),
where each Ri is a quasi-local ring. We refer to [5] for the fact that the F -topology is not compact in general,
as exemplified by the case of Spec(QN) with the F -topology, where F is any ultrafilter on N.

Our goal is to calculate the number of pairwise non-homeomorphic F -topologies, where F ∈ β(I).
Let us introduce the following definition:

Definition 3.18. Let F be a nonprincipal ultrafilter on I. A topological space X is said to be F -compact if,
for every collection (xi)i∈I in X, there exists x ∈ X such that x = F − limi∈I xi.

The notion of F -compactness plays a crucial role in characterizing the properties of F -topologies.

Remark 3.19. Let F be a nonprincipal ultrafilter on I. Then the following statements hold:

1. τF is F -compact on Spec(
∏

i∈I Ri).
2. σF is F -compact on β(I).
3. If C ⊆ Spec(

∏
i∈I Ri) (resp. β(I)) is F -compact, then it is τF -closed (resp. σF -closed).

Definition 3.20. LetF ,E ∈ β(I)\I. The Comfort pre-order on β(I)\I is defined asF ≤C E if everyE-compact
space is F -compact.

Theorem 3.21. Let F and E be nonprincipal ultrafilters on I. The following statements are equivalent:
(a) F ≤C E.
(b) τE ⊆ τF on Spec(

∏
i∈I Ri).

(c) σE ⊆ σF on β(I).
(d) σE is F -compact.
(e) τE is F -compact on Spec(

∏
i∈I Ri).

Proof. It is evident that (a) implies (d) and (e).
(a)⇒ (b): Let C ⊆ Spec(

∏
i∈I Ri) be a τE-closed set. Since the topology τE is E-compact, C is E-compact.

By assumption, C is F -compact. According to Remark 3.19, we obtain that C is a τF -closed set. This shows
that τE ⊆ τF .

(b) ⇒ (c): Let C be a σE-closed set. By Theorem 3.14, we know that CS is a τE-closed set. From (b), it
follows that CS is a τF -closed set. Now, by Theorem 3.15 and Theorem 3.16, we have that C = (CS)I is a
σE-closed set. Therefore, σE ⊆ σF .

(c) ⇒ (a): From (c), clσE (I) is a σE-closed set containing I. Then clσF (I) ⊆ clσE (I) because clσF (I) is the
smallest σF -closed set containing I. By Definition 3.18, we have F ≤C E.

(d)⇒ (a): By definition, clσE (I) is a σE-closed subset, and since σE is F -compact, we have that clσE (I) is
F -compact. According to Remark 3.19, clσE (I) is τF -closed. Therefore, clσE (I) is a τF -closed set that contains
I. Using a similar argument to the one given in the previous implication, we have F ≤C E.

(e) ⇒ (b): Let C ⊆ Spec(
∏

i∈I Ri) be a τE-closed subset. Since τE is F -compact, C is F -compact. By
Remark 3.19, C is τF -closed. Therefore, τE ⊆ τF .

Corollary 3.22. Let {Ri}i∈I be a collection of quasi-local rings, where I is an infinite set such that | I |> ω and
every uniform ultrafilter on I is decomposable. Then there exist 2|I| pairwise non-homeomorphic F -topologies on
Spec(

∏
i∈I Ri).
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Proof. According to [9, Theorem 2.7], we have 2|I| pairwise ≤RK-incomparable uniform ultrafilters (F :=
{A ⊆ I : |A| = |I|}) on I. Since each uniform ultrafilter is decomposable, the Rudin-Kiesler pre-order is
equivalent to the Comfort pre-order on the set of uniform ultrafilters (a direct consequence of [4, Theorem
3.11 (3)]). By Theorem 3.21, the topologies {τF : F ∈ I∗} are pairwise non-homeomorphic. Therefore, we
have 2|I| pairwise non-homeomorphic topologies on Spec(

∏
i∈I Ri).

Example 3.23. As stated in [9], every uniform ultrafilter on I with | I |= ℵn for n < ω is decomposable.
Therefore, we have 2ℵn pairwise non-homeomorphic topologies on Spec(

∏
i∈I Ri), as shown in [9].
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