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Abstract. In this paper, we consider the continuity of the inverse in (strongly) paratopological gyrogroups.
The conclusions are established as follows: (1) A compact Hausdorff paratopological gyrogroup G is a
topological gyrogroup. (2) A Hausdorff locally compact strongly paratopological gyrogroup is a strongly
topological gyrogroup. (3) If G is locally compact strongly paratopological gyrocommutative gyrogroup
(without any separation restrictions), then G is a strongly topological gyrocommutative gyrogroup. (4) If
a strongly paratopological gyrogroup G is a dense Gδ-set in a regular feebly compact space X, then G is
a strongly topological gyrogroup. (5) If a Hausdorff strongly paratopological gyrogroup G is countablly
compact and topologically periodic, then G is a strongly topological gyrogroup.

1. Introduction

Finding a natural compactness-type condition on a topological semigroup (or paratopological group)
that appear to suggest it is a topological group has many precedents in the literature. According to
Ellis’ theorem in [13], every locally compact Hausdorff semitopological group is a topological group.
Romaguera and Sanchis [24] generalized the famous Numakura’s theorem [20] and showed that every
compact Hausdorff topological semigroup with two-sided cancellation is a topological group. A conclusion
drawn from this result in [24] is that every compact T0 paratopological group is a topological group. It
turns out that in the latter situation, the T0 constraint can be dropped. Ravsky [22] proved that a compact
paratopological group is a topological group. Ellis [14], Grant [16], Brand [11], Bouziad [10], Bokalo and
Guran [9], Romaguera and Sanchis [24], Kenderov et al.[18], and others have all generalized the latter
fact. Reznichenko investigated automatic continuity in paratopological groups in [23], proving that every
completely regular pseu-docompact paratopological group G is a topological group, i.e., the inversion in G
is continuous. This result was extended to regular pseudocompact paratopological groups by Arhangelskiı̌
and Reznichenko in [1, 2].
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The study of gyrogroups began in the early 1980s with the work of Abraham Albert Ungar [28, 29].
He first developed the concept of gyrovector spaces and then introduced the more general notion of a
gyrogroup, which is a set equipped with a binary operation that combines gyrovector addition and scalar
multiplication [30–32]. A gyrogroup, broadly defined, is a group-like structure where the associative law
does not hold (see Definition 2.1). Since their introduction, gyrogroups have been a topic of interest for
researchers in various areas of mathematics, ranging from group theory and topology to geometry and
physics [5, 6]. The study of gyrogroups has led to the development of new algebraic structures and insights
into the geometry of hyperbolic spaces and special relativity. Other applications of gyrogroups include the
development of control algorithms in engineering and the study of dynamical systems [8].

Atiponrat [3] recently developed the idea of topological gyrogroups as a generalization of topological
groups. A paratopological gyrogroup is a gyrogroup with a topology such that its binary operation is
jointly continuous. If G is a paratopological gyrogroup and the inverse operation of G is continuous, then
G is a topological gyrogroup. Specially, Atiponrat [3] discovered that for a topological gyrogroup, T0
and T3 are equivalent. It is worth noting that Cai, Lin and He in [12] proved that every Hausdorff first
countable topological gyrogroup is metrizable. Atiponrat and Maungchang [4] studied some separation
axioms of paratopological gyrogroups. In [17], Jin and Xie proved that every regular (Hausdorff) locally
gyroscopic invariant paratopological gyrogroup G is completely regular (function Hausdorff), and extended
the Pontrjagin conditions of (para)topological groups to (para)topological gyrogroups.

Example 1.1. Suppose that (R, τs) is Sorgenfrey line and (G, τ) is a topological gyrogroup. ThenR×G with
product topology is a paratopological gyrogroup and not a topological gyrogroup.

As a generalization of paratopological groups, it is natural to consider the conditions for a partopo-
logical gyrogroup to turn out to be a topological gyrogroup. In this paper, we try to study whether a
paratopological gyrogroup satisfying a natural compactness-type condition and a separation axiom turns
out to be a topological gyrogroup. The paper is organized as follows: In Section 2, we mainly introduce the
related concepts and conclusions which are required in this article. In Section 3, we study the continuity of
the inverse in (strongly) paratopological gyrogroups. The following results are established. (1) A compact
Hausdorff paratopological gyrogroup G is a topological gyrogroup (see Theorem 3.1). (2) If G is a Haus-
dorff locally compact strongly paratopological gyrogroup, then G is a strongly topological gyrogroup(see
Theorem 3.5). (3) Let G be a strongly paratopological gyrogroup, and H be an invariant subgyrogroup of
G. If H and G/H are strongly topological gyrogroups, then so is G(see Theorem 3.6). (4) If G is locally
compact strongly paratopological gyrocommutative gyrogroup (without any separation restrictions), then
G is a strongly topological gyrocommutative gyrogroup(see Theorem 3.8). In Section 4, we consider feebly
compact paratopological gyrogroups. The following results are established. (1) If a strongly paratopolog-
ical gyrogroup G is a dense Gδ-set in a regular feebly compact space X, then G is a strongly topological
gyrogroup(see Theorem 4.6). (2) If a strongly paratopological gyrogroup G is Hausdorff countable compact
and topologically periodic, then G is a strongly topological gyrogroup(see Theorem 4.12).

No separation restrictions on the topological spaces considered in this paper are imposed unless we
mention them explicitly.Body of the paper.

2. Definitions and preliminaries

Definition 2.1. ([32]) Let (G,⊕) be a nonempty groupoid. We say that (G,⊕) or just G (when it is clear from
the context) is a gyrogroup if the followings hold:

(G1) There is an identity element 0 ∈ G such that

0 ⊕ x = x = x ⊕ 0 for all x ∈ G.

(G2) For each x ∈ G, there exists an inverse element ⊖x ∈ G such that

⊖x ⊕ x = 0 = x ⊕ (⊖x).
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(G3) For any x, y ∈ G, there exists an gyroautomorphism gyr[x, y] ∈ Aut(G,⊕) such that

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ gyr[x, y](z)

for all z ∈ G;
(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

For a gyrogroup G and x1, x2, · · ·, xk ∈ G, the formula (((x1 ⊕ x2)⊕ x3)⊕ · · · ⊕ xk−1)⊕ xk will be denoted by
x1 ⊕ x2 ⊕ · · · ⊕ xk.

Definition 2.2. ([32]) A gyrogroup (G,⊕) is gyrocommutative if its binary operation obeys the gyrocom-
mutative law

a ⊕ b = gyr[a, b](b ⊕ a)

for all a, b ∈ G.

Definition 2.3. ([32]) Let (G,⊕) be a gyrogroup with gyrogroup operation (or, addition) ⊕. The gyrogroup
cooperation (or, coaddition) ⊞ is a second binary operation in G given by the equation

(⋇) a ⊞ b = a ⊕ gyr[a,⊖b]b

for all a, b ∈ G. The groupoid (G,⊞) is called a cogyrogroup, and is said to be the cogyrogroup associated
with the gyrogroup (G,⊕).

Replacing b by ⊖b in (⋇), along with (⋇) we have the identity

a ⊟ b = a ⊖ gyr[a, b]b

for all a, b ∈ G, where we use the obvious notation, a ⊟ b = a ⊞ (⊖b).

Definition 2.4. ([27]) Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup,
denoted by H ≤ G, if the following statements hold:

(1) The restriction ⊕|H×H is a binary operation on H, i.e. (H,⊕|H×H) is a groupoid;
(2) For any x, y ∈ H, the restriction of gyr[x, y] to H, gyr[x, y]|H : H → gyr[x, y](H), is a bijective homo-

morphism; and
(3) (H,⊕|H×H) is a gyrogroup.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup [27], denoted by H ≤L G, if
gyr[a, h](H) = H for all a ∈ G and h ∈ H.

A semigroup is a non-void set S together with a mapping (x, y)→ xy of S × S to S such that x(yz) = (xy)z
for all x, y, z in S.

Proposition 2.5. ([26]) A nonempty subset H of G is a subgyrogroup if and only if a ∈ H implies ⊖a ∈ H and
a, b ∈ H implies a ⊕ b ∈ H.

Proposition 2.6. ([26]) A nonempty subset X of a gyrogroup G is a subgroup if and only if it is a subgyrogroup of
G and the restriction of gyr[a, b] to X equals the identity map on X for all a, b ∈ X.

In this paper, gyr[a, b](V) denotes {gyr[a, b](v) : v ∈ V}.

Theorem 2.7. ([32]) Let (G,⊕) be a gyrogroup. Then, for any a, b, c ∈ G we have

(1) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ gyr[b, a]c); Right Gyroassociative Law
(2) gyr[a, b] = gyr[a, b ⊕ a]; Right Loop Property
(3) (⊖a) ⊕ (a ⊕ b) = b;
(4) (a ⊖ b) ⊞ b = a;
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(5) (a ⊟ b) ⊕ b = a;
(6) gyr[a, b](c) = ⊖(a ⊕ b) ⊕ (a ⊕ (b ⊕ c));
(7) ⊖(a ⊕ b) = gyr[a, b](⊖b ⊖ a); Gyrosum Inversion
(8) gyr[a, b](⊖x) = ⊖gyr[a, b]x;
(9) gyr−1[a, b] = gyr[b, a]; Inversive symmetry

(10) ⊖(a ⊞ b) = (⊖b) ⊞ (⊖a); The Cogyroautomorphic Inverse Theorem
(11) gyr[⊖a,⊖b] = gyr[a, b]; Even symmetry
(12) gyr[a, 0] = gyr[0, b] = I.

Theorem 2.8. ([32]) Let (G,⊕) be a gyrocommutative gyrogroup. Then, for any a, b, c ∈ G we have

(1) ⊖(a ⊕ b) = ⊖a ⊖ b; Gyroautomorphic Inverse Property
(2) a ⊞ b = b ⊞ a;
(3) a ⊞ b = a ⊕ ((⊖a ⊕ b) ⊕ a).

Definition 2.9. ([26]) A subgyrogroup N of a gyrogroup G is normal in G, written N ⊴ G, if it is the kernel
of a gyrogroup homomorphism of G.

Theorem 2.10. ([26]) Let N be a subgyrogroup of a gyrogroup G. Then N is a normal subgyrogroup in G if and only
if a ⊕ (N ⊕ b) = (a ⊕ b) ⊕N = (a ⊕N) ⊕ b for all a, b ∈ G.

Since in Topology ’normal’ refers to a separation property of spaces, we will use the term ’invariant’ to
denote this property of subgyrogroups.

Definition 2.11. ([3]) A triple (G, τ,⊕) is called a topological gyrogroup if and only if

(1) (G, τ) is a topological space;
(2) (G,⊕) is a gyrogroup;
(3) The binary operation ⊕ : G×G→ G is continuous where G×G is endowed with the product topology

and the operation of taking the inverse ⊖(·) : G→ G, i.e. x→ ⊖x, is continuous.

If a triple (G, τ,⊕) satisfies the first two conditions and its binary operation is continuous, we call
such triple a paratopological gyrogroup [4]. Sometimes we will just say that G is a topological gyrogroup
(paratopological gyrogroup) if the binary operation and the topology are clear from the context.

Definition 2.12. ([7]) Let (G, τ,⊕) be a topological gyrogroup. We say that G is a strongly topological
gyrogroup if there exists a neighborhood base U of the identity 0 in G such that, for every U ∈ U,
gyr[x, y](U) = U for any x, y ∈ G.

Similarly, we called a paratopological gyrogroup (G, τ,⊕) a strongly paratopological gyrogroup if there
exists a neighborhood base U of the identity 0 in G such that, for every U ∈ U, gyr[x, y](U) = U for any
x, y ∈ G.

Proposition 2.13. ([4]) Let G be a paratopological gyrogroup, x, y ∈ G and A,B ⊆ G.

(1) The left translation Lx : G→ G, where Lx(y) = x ⊕ y for every y ∈ G, is homeomorphism;
(2) A is closed if and only if x ⊕ A is closed;
(3) A is open if and only if x ⊕ A and B ⊕ A are open;

Proposition 2.14. Let G be a paratopological gyrogroup, x, y ∈ G and A,B ⊆ G.

(1) gyr[x, y] : G→ G, for every x, y ∈ G, is homeomorphism;
(2) A is closed if and only if gyr[x, y](A) is closed;
(3) A is open if and only if gyr[x, y](A) is open.
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Proof. By definition, gyr[x, y] is bijective. Moreover, the gyrator identity provides that gyr[x, y] = L⊖(x⊕y) ◦

Lx ◦ Ly which is a homeomorphism by Proposition 2.13. So (2) and (3) are true.

Proposition 2.15. Let G be a paratopological gyrogroup and U be a neighborhood of the identity 0. Then there is an
open neighborhood V of 0 such that V ⊕ V ⊆ U.

Proof. For G is a paratopological gyrogroup, then op2 : G×G→ G defined by op2(x, y) = x⊕ y is continuous.
Because 0 ⊕ 0 = 0, and U is a neighborhood of the identity 0, there exist a neighborhood V of 0 such that
V ⊕ V = op2(V × V) = op2(V × V) ⊆ op2(V × V) = V ⊕ V ⊆ U.

Lemma 2.16. Let G be a paratopological gyrogroup andU be the neighborhood base at 0 of G. Then for B =
⋂
{U :

U ∈ U}, gyr[a, b](B) = B for any a, b ∈ G.

Proof. For a, b ∈ G, suppose f (x) = gyr[a, b](x) for any x ∈ G. By Proposition 2.14, f is homeomorphism.
Since f (0) = gyr[a, b](0) = 0, for U ∈ U, there exists V ∈ U such that gyr[a, b](V) = f (V) ⊆ f (V) ⊆ U. It
follows that gyr[a, b](B) ⊆ B, for each a, b ∈ G.

It is obvious that f−1(x) = gyr[b, a](x) by Theorem 2.7 (9), which is continuous. Since f−1(0) =
gyr[b, a](0) = 0, for U1 ∈ U, there exists V1 ∈ U such that gyr[b, a](V1) = f−1(V1) ⊆ f−1(V1) ⊆ U1. It
follows that gyr[b, a](B) ⊆ B, for each a, b ∈ G. Thus we have B ⊆ gyr[a, b](B). So we get gyr[a, b](B) = B for
any a, b ∈ G.

Theorem 2.17. ([17]) Let G be a Hausdorff topological gyrogroup andU an open base at the neutral element 0 of G.
The following conditions hold:

(8) for every U ∈ U and x ∈ G, there exists V ∈ U such that V ⊞ x ⊆ x ⊕U and x ⊕ V ⊆ x ⊞U;
(9) for every U ∈ U, there exists V ∈ U such that ⊖V ⊆ U.

Proposition 2.18. Let (G, τ,⊕) be a paratopological gyrogroup, F a compact subset of G, and O an open subset of
G such that F ⊆ O. Then there exists an open neighborhood V of the identity element 0 such that F ⊕ V ⊆ O and
V ⊕ F ⊆ O.

Proof. Since ⊕ : G × G → G is continuous in paratopological gyrogroup G, ⊕−1(O) is an open set in G × G
and {0} × F ⊆ ⊕−1(O) for F ⊆ O. Note that {0} × F is compact in G × G, there exist open sets V1,W in G such
that {0} × F ⊆ V1 ×W ⊆ ⊕−1(O). Thus V1 ⊕ F = ⊕(V1 × F) ⊆ ⊕(V1 ×W) ⊆ O.

Similarly, one can find an open set V2 in G such that F ⊕V2 ⊆ O. Take V = V1 ∩V2. Then we verify that
F ⊕ V ⊆ O and V ⊕ F ⊆ O.

Lemma 2.19. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Then
we have a ⊞U ⊆ a ⊕U and a ⊟U ⊆ a ⊖U for each a ∈ G,U ∈ U.

Proof. By Definitions 2.3 and 2.12, we can get a⊞U =
⋃

u∈U a⊞u =
⋃

u∈U a⊕gyr[a,⊖u]u = a⊕
⋃

u∈U gyr[a,⊖u]u ⊆
a ⊕U and a ⊟U =

⋃
u∈U a ⊟ u =

⋃
u∈U a ⊖ gyr[a,u]u = a ⊖

⋃
u∈U gyr[a,u]u ⊆ a ⊖U, for each a ∈ G,U ∈ U.

Lemma 2.20. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Then
for each U1,U2 ∈ U we have U1 ⊕U2 ∈ U.

Proof. By Definition 2.12, we have gyr[a, b](U1 ⊕ U2) = gyr[a, b](U1) ⊕ gyr[a, b](U2) = U1 ⊕ U2, for each
a, b ∈ G,U1,U2 ∈ U, which implies U1 ⊕U2 ∈ U.

Lemma 2.21. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Then
we have (a ⊕U) ⊕W = a ⊕ (U ⊕W) for each a ∈ G,U,W ∈ U.

Proof. By Definition 2.12 and Theorem 2.7 (1), we have (a⊕U)⊕W = a⊕ (U⊕
⋃

u∈U gyr[u, a]W) ⊆ a⊕ (U⊕W)
and a ⊕ (U ⊕W) = (a ⊕ U) ⊕

⋃
u∈U gyr[a,u]W ⊆ (a ⊕ U) ⊕W, for each a ∈ G,U,W ∈ U. Thus we get the

result.
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Lemma 2.22. Let the neighborhood base U at 0 of G witness that G is a strongly paratopological gyrogroup. If
U ⊕ V ⊆W, then ⊖V ⊖U ⊆ ⊖W, for each W,U,V ∈ U.

Proof. By Theorem 2.7 (7), we have⊖(U⊕V) =
⋃

u∈U,v∈V gyr[u, v](⊖v⊖u) ⊆ ⊖W. We can get gyr[u, v](⊖v⊖u) ∈
⊖W for every u ∈ U, v ∈ V. By Theorem 2.7(8)(9), ⊖v ⊖ u ∈ gyr[v,u](⊖W) = ⊖gyr[v,u](W) = ⊖W. Thus we
get ⊖V ⊖U ⊆ ⊖W.

Lemma 2.23. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Then
for each W ∈ U, there exists U ∈ U such that U ⊕ (U ⊕U) ⊆W and (⊖U ⊖U) ⊖U ⊆ ⊖W.

Proof. Since operator ⊕ is continuous in G, for each W ∈ U we can find neighbourhoods U1,V of 0 such
that U1 ⊕ V ⊆ W. And for V ∈ U there exists an open neighbourhood V1 of 0 such that V1 ⊕ V1 ⊆ V. So
⊖V ⊖U1 ⊆ ⊖W and ⊖V1 ⊖V1 ⊆ ⊖V by Lemma 2.22. Let U = U1 ∩V1. Thus we can get U⊕ (U⊕U) ⊆W and
(⊖U ⊖U) ⊖U ⊆ ⊖W.

Lemma 2.24. Let the neighborhood base U at 0 of G witness that G is a strongly paratopological gyrogroup. If
V ⊕ V ⊆ U where U,V ∈ U, then ⊖(⊖V) ⊆ U.

Proof. We show that ⊖V ⊆ ⊖U. Let x ∈ ⊖V. Then (x ⊕ V) ∩ (⊖V) , ∅. Therefore there exist v1, v2 ∈ V such
that x ⊕ v1 = ⊖v2 and x = ⊖v2 ⊟ v1 ∈ ⊖V ⊟ V ⊆ ⊖V ⊖ V by Lemma 2.19. For ⊖V ⊖ V ⊆ ⊖U by Lemma 2.22,
we get x ∈ ⊖U.

Let (G, τ,⊕) be a paratopological gyrogroup and H a L-subgyrogroup of G. It follows from [27, Theorem
20] that G/H = {a ⊕H : a ∈ G} is a partition of G. We denote by π the mapping a 7→ a ⊕H from G onto G/H.
Clearly, for each a ∈ G, we have π−1(π(a)) = a ⊕H. Denote by τ(G) the topology of G. In the left cosets G/H
of the gyrogroup G, we define a topology τ̃ = τ(G/H) of subsets as follows:

τ̃ = τ(G/H) = {O ⊆ G/H : π−1(O) ∈ τ(G)}.

A continuous mapping f : X → Y is perfect if f is a closed mapping and all fibers f−1(y) are compact
subsets of X.

Proposition 2.25. Let (G, τ,⊕) be a paratopological gyrogroup and H a L-subgyrogroup of G. Then the natural
homomorphism π from a paratopological gyrogroup G to its quotient topology on G/H is an open and continuous
mapping.

Proof. The continuity of the map π is obvious. If U ⊆ G is an open set then π−1(π(U)) = U ⊕ H and hence
π(U) is open.

Proposition 2.26. Let (G, τ,⊕) be a paratopological gyrogroup and H an invariant subgyrogroup of G. If H is a
compact subgyrogroup of G, then the quotient mapping π of G onto the quotient space G/H is perfect.

Proof. Let F be a closed subset of the gyrogroup G. Let x̃ ∈ G/H \ π(F). Consider an arbitrary point
x ∈ π−1(x̃). Then (x ⊕ H) ∩ F = ∅. By Proposition 2.18 there exists an open neighborhood U of the unit
such that (U ⊕ (x ⊕ H)) ∩ F = ∅. Then x̃ ∈ π(U ⊕ x) and π(U ⊕ x) = π(U) ⊕ π(x) = π(U) ⊕ (π(x) ⊕ π(H)) =
π(U⊕ (x⊕H))∩π(F) = ∅ thus the map π is closed. Furthermore, if y ∈ G/H and π(x) = y for some x ∈ G, we
obtain that π−1(y) = x⊕H is a compact subset of G. Hence, the fibers of π are compact. Thus π is perfect.

3. Compact (strongly) paratopological gyrogroups and locally compact (strongly) paratopological gy-
rogroups

We give the first of our non-trivial claims on the inverse mapping’s continuity in paratopological
gyrogroups.
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Theorem 3.1. 1) A compact Hausdorff paratopological gyrogroup G is a topological gyrogroup.

Proof. Let 0 be the neutral element of G. Since G is Hausdorff, the set M = {(x, y) ∈ G × G : x ⊕ y = 0} is
closed in G × G.

Let F be any closed subset of G, and P = (G × F) ∩M. Then F and G × F are compact, P closed in G × F,
since M is closed, and, therefore, P is compact. It is true that (x, y) ∈ P if and only if y ∈ F and x ⊕ y = 0,
that is, x = ⊖y. It follows that the image of P under the natural projection of G × G onto the first factor G
is precisely ⊖F. Since P is compact and the projection mappings are continuous, we conclude that ⊖F is
compact, and therefore, closed in G. Thus, the inverse operation in G is continuous. Hence G is a topological
gyrogroup.

A topological space X is called a locally compact space if for every x ∈ X there exists a neighbourhood U
of the point x such that U is a compact subspace of X.

It is natural to extend Theorem 3.1 to locally compact Hausdorff paratopological gyrogroups, We pose
the following problem.

Problem 3.2. Is a locally compact Hausdorff paratopological gyrogroup G with a countable base a topological gy-
rogroup?

Indeed, Theorem 3.1 can be extended to locally compact Hausdorff strongly paratopological gyrogroups
with a slightly more involved argument.

Lemma 3.3. Let the neighborhood base U1 at 0 of G witness that G is a strongly paratopological gyrogroup and a
familyU = {Un : n ∈ ω} ⊆ U1, and {xn : n ∈ ω} is a sequence of points in G such that xn ∈ Un for each n ∈ ω, and
the next conditions are satisfied:

(1) Un+1 ⊕Un+1 ⊆ Un for each n ∈ ω;
(2) the sequence {yk : k ∈N}, where yk = (((x1 ⊕ x2) ⊕ x3) ⊕ · · · ⊕ xk−1) ⊕ xk, has an accumulation point y in G.

Then there exists k ∈ ω such that ⊖xk+1 ∈ U0.

Proof. Since y ⊕ U1 is a neighbourhood of y, there exists k ∈ N such that yk ∈ y ⊕ U1. Put z =
gyr[⊖yk, yk+1](⊖yk+1 ⊕ y). For yk+1 = yk ⊕ xk+1, we can get xk+1 = ⊖yk ⊕ yk+1. Thus

⊖ xk+1 = ⊖(⊖yk ⊕ yk+1)
= gyr[⊖yk, yk+1](⊖yk+1 ⊕ yk) by Theorem 2.7 (7)
∈ gyr[⊖yk, yk+1](⊖yk+1 ⊕ (y ⊕U1))
= gyr[⊖yk, yk+1]((⊖yk+1 ⊕ y) ⊕ (gyr[⊖yk+1, y]U1)) by Definition 2.1
⊆ gyr[⊖yk, yk+1]((⊖yk+1 ⊕ y) ⊕U1) by Definition 2.12
= gyr[⊖yk, yk+1](⊖yk+1 ⊕ y) ⊕ gyr[⊖yk, yk+1](U1)
= gyr[⊖yk, yk+1](⊖yk+1 ⊕ y) ⊕U1 by Definition 2.12
= z ⊕U1.

Since by condition (2) the sequence {ym : m ∈ N} has an accumulation point y in G, for k ∈ N the sequence
{gyr[⊖yk, yk+1](⊖yk+1 ⊕ ym) : m ∈ N} has an accumulation point gyr[⊖yk, yk+1](⊖yk+1 ⊕ y) = z in G by
Propositions 2.13 and 2.14.

For each m > k + 2, ym = yk+1 ⊕ xk+2 ⊕ · · · ⊕ xm.
Since the neighborhood base U1 at 0 of G witness that G is a strongly paratopological gyrogroup and

the familyU ⊆ U1, we have

1)Through private communication, it was learned that Piyu Li and others obtained this conclusion independently.
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ym ∈ (((yk+1 ⊕Uk+2) ⊕Uk+3) ⊕ · · · ⊕Um−1) ⊕Um

= (((yk+1 ⊕Uk+2) ⊕Uk+3) ⊕ · · · ⊕Um−2) ⊕ (Um−1 ⊕Um) by Lemma 2.21
= (((yk+1 ⊕Uk+2) ⊕Uk+3) ⊕ · · · ⊕Um−3) ⊕ (Um−2 ⊕ (Um−1 ⊕Um)) by Lemmas 2.20, 2.21
= (((yk+1 ⊕Uk+2) ⊕Uk+3) ⊕ · · · ⊕Um−3) ⊕ ((Um−2 ⊕Um−1) ⊕Um) by Lemma 2.21
· · · · · ·

= yk+1 ⊕ (Uk+2 ⊕ · · · ⊕Um).

It follows from condition (1) of the lemma that,

⊖yk+1 ⊕ ym ∈ Uk+2 ⊕ · · · ⊕Um ⊆ Uk+1.

Therefore, gyr[⊖yk, yk+1](⊖yk+1 ⊕ ym) ∈ gyr[⊖yk, yk+1](Uk+1) ⊆ Uk+1. So we can get z ∈ Uk+1 ⊂ Uk, which
implies that

⊖xk+1 ∈ z ⊕U1 ⊆ Uk ⊕U1 ⊆ U0.

This finishes the proof.

Lemma 3.4. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Then G
is a strongly topological gyrogroup if and only if the inverse operation is continuous at the identity 0.

Proof. The ’only if’ part is clear. We just need to prove the ’if’ part. For G is a strongly paratopological
gyrogroup, by Lemma 2.19, we have that x ⊟ U ⊆ x ⊖ U. Thus we have that x ⊕ U ⊆ x ⊞ U by the the
following operation:

x ⊟U ⊆ x ⊖U by Lemma 2.19
⇒ x ⊞ (⊖U) = x ⊟U ⊆ x ⊖U by a ⊟ b = a ⊞ (⊖b)
⇒ ⊖(U ⊞ (⊖x)) = x ⊞ (⊖U) ⊆ x ⊖U by Theorem 2.7 (10)
⇒ U ⊞ (⊖x) ⊆ ⊖(x ⊖U)
⇒ U ⊟ x = U ⊞ (⊖x) ⊆ ⊖(x ⊖U) by a ⊟ b = a ⊞ (⊖b)
⇒ U ⊆ ⊖(x ⊖U) ⊕ x by Theorem 2.7 (4)

⇒ U ⊆
⋃
u∈U

(⊖(x ⊖ u) ⊕ x) by ⊖ (x ⊖U) ⊕ x =
⋃
u∈U

(⊖(x ⊖ u) ⊕ x)

⇒ U ⊆
⋃
u∈U

gyr[x,⊖u]u by Theorem 2.7 (6)

⇒ x ⊕U ⊆
⋃
u∈U

x ⊕ gyr[x,⊖u]u

⇒ x ⊕U ⊆ x ⊞U by x ⊞ u = x ⊕ gyr[x,⊖u]u (∗)

For each U ∈ U, x ∈ G, it is obvious that (x ⊕U) ⊖ x is a neighborhood of 0. Hence there exists V1 ∈ U

such that V1 ⊆ (x ⊕U) ⊖ x, which is equivalent to

V1 ⊞ x ⊆ x ⊕U. (∗∗)

Take any x ∈ G, O ∈ U. By (**), there is U1 ∈ U such that U1⊞ (⊖x) ⊆ ⊖x⊕O. For U1, there exists U2 ∈ U

such that ⊖U2 ⊆ U1. For U2, one can find V1 ∈ U such that x ⊕ V1 ⊆ x ⊞U2 by (*). Then we have that

⊖(x ⊕ V1) ⊆ ⊖(x ⊞U2)
= ⊖U2 ⊞ (⊖x)
⊆ U1 ⊞ (⊖x)
⊆ ⊖x ⊕O.
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Thus we show that the inverse operation is continuous at any x ∈ G. This finishes the proof.

Theorem 3.5. If G is a Hausdorff locally compact strongly paratopological gyrogroup, then G is a strongly topological
gyrogroup.

Proof. To prove G is a topological gyrogroup, it is just to show that the inverse operation is continuous at
0 ∈ G by Lemma 3.4.

Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. We shall
prove that for each U ∈ U one can find V ∈ U such that ⊖V ⊆ U. Assume the contrary, there is a U ∈ U
such that for each V ∈ U, ⊖V is not a subset of U. Since G is a Hausdorff locally compact space, so G is
regular. Thus, we can find a U0 ∈ U such that U ⊇ U0 is compact. G is a paratopological gyrogroup, so
we can define a sequence {Un : n ∈ ω} ofU such that Un+1 ⊕Un+1 ⊆ Un for each n ∈ ω and there is xn ∈ Un
satisfying ⊖xn < U0 for each n ∈ N. Put yk = (((x1 ⊕ x2) ⊕ x3) ⊕ · · · ⊕ xk−1) ⊕ xk, for each k ∈ N. Then from
Lemmas 2.19 and 2.21 it easily follows all elements yk are in U0. In fact,

yk = (((x1 ⊕ x2) ⊕ x3) ⊕ · · · ⊕ xk−1) ⊕ xk

∈ (((x1 ⊕U2) ⊕U3) ⊕ · · · ⊕Uk−1) ⊕Uk

= x1 ⊕ (U2 ⊕ · · · ⊕Uk) by Lemmas 2.20, 2.21
⊆ x1 ⊕U1

⊆ U1 ⊕U1

⊆ U0.

Since the closure of U0 is compact, there exists an accumulation point y for the sequence {yk : k ∈ N} in G.
Thus by Lemma 3.3 there is a k ∈ ω such that ⊖xk+1 ∈ U0. This is a contradiction with ⊖xk+1 < U0. Thus we
have proved that the inverse operation ⊖ is continuous at 0. This finishes the proof.

In the latter case we try to remove the Hausdorff restriction in Theorem 3.5 To demonstrate this, we
need the following theorem, which is inspired by Ravsky’s result [21].

Theorem 3.6. Let G be a strongly paratopological gyrogroup, and H be an invariant subgyrogroup of G. If H and
G/H are strongly topological gyrogroups, then so is G.

Proof. To prove G is a topological gyrogroup, it is just to show that the inverse operation is continuous at
0 ∈ G by Lemma 3.4.

Let the neighborhood base U at 0 of G witness that G is a strongly paratopological gyrogroup. We
shall prove that for each open neighborhood U ∈ U at 0 in G there exists an open neighborhood V2 ∈ U

such that ⊖V2 ⊆ U. For each open neighborhood U ∈ U, there exists an open neighborhood U1 ∈ U at 0
in G such that U1 ⊕ U1 ⊆ U. For U1, there exists an open neighborhood V1 ∈ U such that V1 ⊆ U1, and
(⊖V1 ⊖V1)∩H ⊆ U1 ∩H ⊆ U1, for H is a topological gyrogroup. For V1, there exists an open neighborhood
V2 ∈ U such that V2 ⊆ V1, and ⊖V2 ⊆ ⊖(V2 ⊕ H) = π−1(⊖π(V2)) ⊆ π−1(π(V1)) = V1 ⊕ H, for π is an
open mapping of G onto G/H and G/H is a topological gyrogroup. If x ∈ ⊖V2 then there exist elements
v ∈ V1, h ∈ H such that x = v⊕h. Then h = ⊖v⊕x ∈ (⊖V1⊖V2)∩H ⊆ U1. Therefore x ∈ V1⊕U1 ⊆ U1⊕U1 ⊆ U.
Thus we have proved that the inverse operation ⊖ is continuous. This finishes the proof.

Proposition 3.7. Let G be a paratopological gyrocommutative gyrogroup andU be the neighborhood base at 0 of G.
If G is locally compact, then B =

⋂
{U : U ∈ U} is a closed invariant subgyrogroup of G.

Proof. It is obvious that B is closed. Firstly, we shall prove that B is a subgyrogroup. By Proposition 2.15
we can get B =

⋂
{U ⊕U : U ∈ U}. Clearly, for every U ∈ U, we have that B ⊕ B ⊆ U ⊕U. Hence it follows

that B ⊕ B = B. Since G is locally compact, B is compact. A nonempty subset M of B is called a right ideal
in B if M ⊕ B ⊆ M. Since B is compact, closed and B ⊕ B = B, applying the Kuratowski-Zorn lemma to the
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family of all closed right ideals in B ordered by inverse inclusion, it contains a minimal closed right ideal,
denoted by H. For an arbitrary element x ∈ H, we have that x ⊕H ⊆ H ⊕ B ⊆ H. Following Lemma 2.16, it
is clear that (x⊕H)⊕B = x⊕ (H⊕

⋃
h∈H gyr[h, x]B) = x⊕ (H⊕B) ⊆ x⊕H, i.e., x⊕H is a right ideal in B. Since

x ⊕ H is closed in B, x ⊕ H ⊆ H, and H is a minimal right ideal in B, we conclude that x ⊕ H = H for each
x ∈ H. In particular, x⊕ (x⊕H) = H for any x ∈ H, whence it follows that x⊕ (x⊕ y) = x for some y ∈ H and
hence ⊖x = y ∈ H. In its turn, this implies that 0 ∈ H, H = B, and that B is a subgyrogroup of G.

Secondly, we shall prove that B is an invariant subgyrogroup.
Claim 1. a ⊕ B = B ⊕ a for each a ∈ G.
For a ∈ G, suppose f1(x) = ⊖a⊕ (x⊕ a) for any x ∈ G. So, f1 = L⊖a ◦Ra which is continuous by Proposition

2.13. Since f1(0) = ⊖a ⊕ (0 ⊕ a) = 0, for U ∈ U, there exists V ∈ U such that f1(V) = ⊖a ⊕ (V ⊕ a) ⊆ U. It
follows that ⊖a ⊕ (B ⊕ a) ⊆ B, for each a ∈ G, that is B ⊕ a ⊆ a ⊕ B.

On the other hand, for a ∈ G, suppose f2(x) = ⊖a⊕ (a⊕ (a⊕ x)⊖ a) for any x ∈ G. So, f2 = L⊖a ◦R⊖a ◦La ◦La
which is continuous by Proposition 2.13. Since f2(0) = ⊖a ⊕ (a ⊕ (a ⊕ 0) ⊖ a) = 0, for U1 ∈ U, there exists
V1 ∈ U such that f2(V1) = ⊖a⊕ (a⊕ (a⊕V1)⊖ a) ⊆ U1. It follows that ⊖a⊕ (a⊕ (a⊕B)⊖ a) ⊆ B, for each a ∈ G.
Since G is a gyrocommutative gyrogroup, for each h ∈ B we have

(a ⊕ h) ⊟ a = (a ⊕ h) ⊞ (⊖a)
= ⊖a ⊞ (a ⊕ h) by Theorem 2.8
= ⊖a ⊕ (a ⊕ (a ⊕ h) ⊖ a). by Theorem 2.8

So we can get (a ⊕ B) ⊟ a = ⊖a ⊕ (a ⊕ (a ⊕ B) ⊖ a) ⊆ B, which means a ⊕ B ⊆ B ⊕ a. In conclusion, we get
a ⊕ B = B ⊕ a.

Claim 2. (a ⊕ B) ⊕ b = (a ⊕ b) ⊕ B for each a, b ∈ G.
For a, b ∈ G, suppose f3(x) = ⊖(a ⊕ b) ⊕ ((a ⊕ x) ⊕ b) for any x ∈ G. So, f3 = L⊖(a⊕b) ◦ Rb ◦ La which is

continuous by Proposition 2.13. Since f3(0) = ⊖(a ⊕ b) ⊕ ((a ⊕ 0) ⊕ b) = 0, for U2 ∈ U, there exists V2 ∈ U

such that f3(V2) = ⊖(a ⊕ b) ⊕ ((a ⊕ V2) ⊕ b) ⊆ U2. It follows that ⊖(a ⊕ b) ⊕ ((a ⊕ B) ⊕ b) ⊆ B, for each a, b ∈ G,
that is (a ⊕ B) ⊕ b ⊆ (a ⊕ b) ⊕ B.

Also, for a, b ∈ G, suppose f4(x) = ⊖a⊕(⊖b⊕((b⊕(a⊕b⊕x))⊖b)) for any x ∈ G. So, f4 = L⊖a◦R⊖b◦L⊖b◦Lb◦La⊕b
which is continuous by Proposition 2.13. Since G is a gyrocommutative gyrogroup, for each h ∈ B we have

((a ⊕ b) ⊕ h) ⊟ b = ((a ⊕ b) ⊕ h) ⊞ (⊖b)
= (⊖b) ⊞ ((a ⊕ b) ⊕ h) by Theorem 2.8
= ⊖b ⊕ ((b ⊕ (a ⊕ b ⊕ h)) ⊖ b). by Theorem 2.8

So f4(0) = ⊖a⊕ (⊖b⊕ ((b⊕ (a⊕b⊕0))⊖b)) = ⊖a⊕ (((a⊕b)⊕0)⊟b) = 0, for U3 ∈ U, there exists V3 ∈ U such that
f4(V3) = ⊖a⊕ (((a⊕ b)⊕V3)⊟ b) ⊆ U3. It follows that ⊖a⊕ (((a⊕ b)⊕B)⊟ b) ⊆ B, that is (a⊕ b)⊕B ⊆ (a⊕B)⊕ b.
for each a, b ∈ G. In conclusion, we get (a ⊕ B) ⊕ b = (a ⊕ b) ⊕ B for each a, b ∈ G.

Claim 3. a ⊕ (B ⊕ b) = (a ⊕ b) ⊕ B for each a, b ∈ G.
For a, b ∈ G, suppose f5(x) = ⊖(a ⊕ b) ⊕ (a ⊕ (b ⊕ x)) = gyr[a, b](x) for any x ∈ G. By Lemma 2.16, we can

get gyr[a, b](B) = B, that is ⊖(a ⊕ b) ⊕ (a ⊕ (b ⊕ B)) = B. Thus, ⊖(a ⊕ b) ⊕ (a ⊕ (B ⊕ b)) = B, by Claim 1. In
conclusion, we have (a ⊕ b) ⊕ B = a ⊕ (B ⊕ b).

From Claims 1, 2 and 3 it follows that B is an invariant subgyrogroup of G by Theorem 2.10. Hence we
prove that B is a closed invariant subgyrogroup of G.

Theorem 3.8. If G is locally compact strongly paratopological gyrocommutative gyrogroup, then G is a strongly
topological gyrocommutative gyrogroup.

Proof. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup. Since
B =
⋂
{U : U ∈ U} is a closed invariant subgyrogroup of G by Proposition 3.7, the quotient paratopological

gyrogroup G/B is a T1−space. Since B is compact, the quotient homomorphism π : G → G/B is a closed
mapping by Proposition 2.26. So we can get the space G/B is locally compact. We prove that G/B is
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Hausdorff. Suppose for a contradiction that two distinct elements a, b ∈ G/B cannot be separated by open
neighborhoods. Take x, y ∈ G with π(x) = a and π(y) = b. Then (x ⊕ B) ∩ (y ⊕ B) = ∅. Since G is locally
compact, it exists V ∈ U such that V is compact. By our assumption, for distinct elements a, b ∈ G/B, and
any pair of open sets U1,V1 ⊆ G/B, a ∈ U1, b ∈ V1, we have U1 ∩ V1 , ∅. So the family

{(x ⊕U) ∩ (y ⊕U) : U ∈ U,U ⊆ V}

of closed subsets of the compact space x ⊕ V has the finite intersection property, which in its turn implies
that (x ⊕ B) ∩ (y ⊕ B) , ∅. This contradiction proves that G/B is Hausdorff. Since G/B is a locally compact
paratopological gyrogroup, it must be a topological gyrogroup by Theorem 3.5. According to Theorem 3.6,
G is also a topological gyrogroup.

Problem 3.9. Can the condition ’gyrocommutative’ in Theorem 3.8 be omitted?

4. Pseudocompact strongly paratopological gyrogroups

Theorem 3.5 will be extended to pseudocompact (and regular countably compact) paratopological
gyrogroups in the following section. The following lemmas can be used to derive additional necessary
conditions for a paratopological gyrogroup to be a topological gyrogroup.

Lemma 4.1. Suppose that G is a paratopological gyrogroup, and U is any open neighborhood of the neutral element
0 in G. Then M ⊆ ⊖U ⊕M for each subset M of G.

Proof. If x < ⊖U ⊕M, that is (U ⊕ x) ∩M = ∅, which implies there exists an open set U ⊕ x containing x that
has no intersection with M. So, x <M.

Lemma 4.2. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup and not a
topological gyrogroup. Then there exists an open neighbourhood U of the neutral element 0 inU such that U∩ (⊖U)
is nowhere dense in G, that is, the interior of the closure of U ∩ (⊖U) is empty.

Proof. Since (G, τ,⊕) is not a topological gyrogroup, the inverse operation in G is discontinuous. Therefore, it
is discontinuous at 0 by Lemma 3.4, and we can choose an open neighbourhood W of 0 such that 0 < int(⊖W).
Since operator ⊕ is continuous in G, we can find an open neighbourhood U of 0 such that U ⊕ (U ⊕U) ⊆W.
That is (⊖U ⊖U) ⊖U ⊆ ⊖W by Lemma 2.23. We claim that the set U ∩ (⊖U) is nowhere dense in G.

Assume the contrary. Then there exists a non-empty open set V in G such that V ⊆ U ∩ (⊖U). From
Lemma 4.1 it follows that V ⊆ U ∩ (⊖U) ⊆ ⊖U ⊕ (U ∩ (⊖U)) ⊆ ⊖U ⊖U. Then V ⊖U ⊆ (⊖U ⊖U) ⊖U ⊆ ⊖W.
Clearly, V∩U , ∅, and since V is open and the left translation is homeomorphism, the set V⊖U = V⊕ (⊖U)
is open in G. Therefore, 0 ∈ V ⊖U ⊆ int(⊖W), a contradiction.

The next lemma easily follows from Lemma 4.2.

Lemma 4.3. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup such that

0 ∈ int(⊖U), for each U ∈ U, Then G is a strongly topological gyrogroup.

Lemma 4.4. Suppose that G is a T1-paratopological gyrocommutative gyrogroup which is not a topological gyrogroup.
Then, for each compact subset F of G such that 0 < F, there exist an open neighborhood O(F) of F and an open
neighborhood O(0) of 0 such that O(F) ∩ (⊖O(0)) = ∅.

Proof. For each x ∈ F, we select an open neighborhood Vx of 0 such that⊖x < Vx⊕Vx. Then (⊖Vx⊖x)∩Vx = ∅.
We can get Vx ⊕ x = ⊖(⊖Vx ⊖ x) and ⊖(⊖Vx ⊖ x) ∩ (⊖Vx) = ∅ by Theorem 2.8 (1). Since γ = {Vx ⊕ x : x ∈ F}
is a family of open sets in G covering the compact subspace F, there exists a finite subset K of F such that
F ⊆

⋃
{Vx ⊕ x : x ∈ K}. Put O(0) =

⋂
{Vx : x ∈ K} and O(F) =

⋃
{V ⊕ x : x ∈ K}. Then O(0) is an open

neighborhood of 0, O(F) is an open neighborhood of F, and O(F) ∩ (⊖O(0)) = ∅.
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Theorem 4.5. Suppose that f is a perfect homomorphism of a T1-strongly paratopological gyrocommutative gy-
rogroup G onto a strongly topological gyrogroup H. Then G is also a strongly topological gyrocommutative gyrogroup.

Proof. Assume that G is not a strongly topological gyrogroup. and let the neighborhood base U at 0 of G
witness that G is a strongly paratopological gyrogroup. Then, according to Lemma 4.3, there exists an open
neighborhood U ∈ U such that 0 is not in int(⊖U). Put F = f−1 f (0) and F1 = F \U. Since F1 is compact and 0
is not in F1, Lemma 4.4 implies that there exist an open neighborhood O(F1) of F1 and an open neighborhood
O(0) of 0 such that O(F1) ∩ (⊖O(0)) = ∅.

Since W = O(F1) ∪ U is an open neighborhood of F and the mapping f is closed, there exists an open
neighborhood V of f (0) in H such that f−1(V) ⊆W. We can also assume that⊖V = V, since H is a topological
gyrogroup. Then ⊖ f−1(V) = f−1(⊖V) = f−1(V) ⊆ W. Finally, put W0 = f−1(V) ∩ O(0) ∩ U. Clearly, W0 is
an open neighborhood of 0 contained in U. We also have ⊖W0 ⊆ ⊖ f−1(V) ⊆ W and ⊖W0 ⊆ ⊖O(0). Since
O(F1) ∩ (⊖O(0)) = ∅, it follows that ⊖W0 ⊆ U. Therefore, 0 ∈W0 ⊆ int(⊖U), a contradiction.

Here, we demonstrate that every pseudocompact paratopological gyrogroup is a topological gyrogroup.
It is well known that a Tychonoff space X is pseudocompact if and only if every locally finite family of
open sets in X is finite. To present results in a broad sense, we recall that a topological space X is
called feebly compact if every locally finite family of open sets in X is finite. Therefore, ’feebly compact’ is
equivalent to ’pseudocompact’ for Tychonoff spaces. This result is improved on A. V. Arhangel’skiı̌ and E.
A. Reznichenko’s results.

Theorem 4.6. If a strongly paratopological gyrogroup G is a dense Gδ-set in a regular feebly compact space X, then
G is a strongly topological gyrogroup.

Proof. Let the open neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup.
Assume the contrary. Then, by Lemma 4.2, there exists an open neighbourhood U of the neutral element
0 in U such that U ∩ (⊖U) is nowhere dense. Let W be an open neighborhood of 0 such that W ⊕W ⊆ U.
Put O = W \U ∩ (⊖U). Then, clearly, O ⊆ W ⊆ O and ⊖O ∩U = ∅. First, we fix a sequence {Mn : n ∈ ω} of
open sets in X such that G =

⋂
∞

n=0 Mn. We are going to define a sequence {Un : n ∈ ω} of open subsets of X
and a sequence {xn : n ∈ ω} of elements of G such that xn ∈ Un, for each n ∈ ω. Put U0 = O, and pick a point
x0 ∈ U0 ∩ G.

Assume now that, for some n ∈ ω, an open subset Un of X and a point xn ∈ Un ∩ G are already defined.
Since 0 ∈ W ⊆ O, we have xn ∈ xn ⊕ O = xn ⊕O. Since Un is an open neighbourhood of xn, it follows that
Un ∩ xn ⊕ O , ∅. We take xn+1 to be any point of Un ∩ xn ⊕ O. Note that xn+1 ∈ G, since xn ⊕ O ⊆ G. Using
the regularity of X, we can find an open neighbourhood Un+1 of xn+1 in X such that the closure of Un+1 is
contained in Un ∩Mn, and Un+1 ∩ G ⊆ xn ⊕O. The definition of the sets Un and points xn, for each n ∈ ω, is
complete. Note that Ui ⊆ U j whenever j < i. We also have xn+1 ∈ xn ⊕O, for each n ∈ ω. Put F =

⋂
n∈ωUn.

Clearly, F ⊆ G, and F , ∅ since X is feebly compact. The set F ⊕W is an open neighbourhood of F in G.
Consider the closure P of F⊕W in X, and let H be the closure of X \P in X. Then H is a regular closed subset
of X, so that H is feebly compact.

We claim that H ∩ F = ∅. Indeed, assume the contrary, and fix x ∈ H ∩ F. Since F ⊕ W is an open
neighbourhood of F in G, from x ∈ F it follows that there exists an open neighbourhood V of x in X such
that V ∩ G ⊆ F ⊕W. Then the density of G in X implies that V ⊆ P, while x ∈ V ∩H implies that V \ P , ∅,
which is a contradiction. Thus, H ∩ F = ∅.

Since H is feebly compact, our definition of F implies that Uk ∩ H = ∅, for some k ∈ ω (we use that
Ui ⊆ U j whenever j < i). Then Uk ⊆ P. Since xk ∈ Uk ∩ G, it follows that xk ∈ F ⊕W. However,
F ⊆ Uk+2 ∩ G ⊆ xk+1 ⊕ O ⊆ xk+1 ⊕W. Hence, xk ∈ F ⊕W ⊆ (xk+1 ⊕W) ⊕W = xk+1 ⊕ (W ⊕W) ⊆ xk+1 ⊕ U, by
the definition ofU. Taking into account that xk+1 ∈ xk ⊕O, we obtain that xk ∈ (xk ⊕O) ⊕U = xk ⊕ (O ⊕U).
Hence, 0 ∈ O⊕U and ⊖O∩U , ∅, which is again a contradiction. We prove that G is a strongly topological
gyrogroup.

Naturally, Tychonoff spaces are mentioned in the following two corollaries of Theorem 4.6.
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Corollary 4.7. Every pseudocompact strongly paratopological gyrogroup is a strongly topological gyrogroup.

Corollary 4.8. Every Čech-complete strongly paratopological gyrogroup is a strongly topological gyrogroup.

Because countably compact spaces are feebly compact, Theorem 4.6 implies the following fact.

Corollary 4.9. Every regular countably compact strongly paratopological gyrogroup is a strongly topological gy-
rogroup.

In [26], the authors gave an explicit description of m · a for a gyrogroup G, an element a ∈ G and m ∈ Z
as following:

0 · a = 0,m · a = a ⊕ ((m − 1) · a),m ≥ 1,m · a = (−m) · (⊖a),m < 0,

a · 0 = 0, a ·m = (a · (m − 1))a ⊕ a,m ≥ 1, a ·m = (⊖a) · (−m),m < 0,

and a ·m = m · a for all m ∈ Z.

Theorem 4.10. ([26]) Let a be an element of a gyrogroup. For all m, k ∈ Z, (m · a) ⊕ (k · a) = (m + k) · a.

Definition 4.11. A paratopological gyrogroup G is called topologically periodic if for each x ∈ G and every
neighborhood U of the identity there exists an integer n such that n · x ∈ U.

Theorem 4.12. If a strongly paratopological gyrogroup G is Hausdorff countably compact and topologically periodic,
then G is a strongly topological gyrogroup.

Proof. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup, U ∈ U
and {Vi|i ∈ ω} a family of neighborhoods of the identity 0 such that Vi ∈ U, V0 = U and Vi+1 ⊕Vi+1 ⊆ Vi for
each i ∈ ω. By lemma 2.24 we have ⊖(⊖Vi+1) ⊆ Vi

We show that F = ∩{⊖Vi|i ∈ ω} ⊆ U. Let x ∈ F, x ∈ ⊖Vi for each i ∈ ω. Then ⊖x ∈ ⊖(⊖Vi+1) for each i ∈ ω.
Choose n ∈ ω such that n · x ∈ V1, then (n − 1) · (⊖x) ∈ (⊖(⊖Vi+1)) ⊕ · · · ⊕ (⊖(⊖Vi+1))︸                               ︷︷                               ︸

n−1

⊆ Vi ⊕ · · · ⊕ Vi︸         ︷︷         ︸
n−1

for each

i ∈ ω. Now choose i0 ∈ ω such that Vi0 ⊕ · · · ⊕ Vi0︸           ︷︷           ︸
n−1

⊂ V1. Then (n − 1) · (⊖x) ∈ V1. By Theorem 4.10 we can

get (n · x) ⊕ ((n − 1) · (⊖x)) = ((−n) · (⊖x)) ⊕ ((n − 1) · (⊖x)) = ((−n) + (n − 1)) · (⊖x) = (−1) · (⊖x) = x. Then
x = (n · x) ⊕ ((n − 1) · (⊖x)) ∈ V1 ⊕ V1 ⊆ U. Therefore F ⊂ U. Since G is a countably compact gyrogroup,
there exist i1, . . . , ik such that ∩{⊖Vi j | j = 1, . . . , k} ⊆ U. Thus we have proved that the inverse operation ⊖ is
continuous at 0. Hence G is a strongly topological gyrogroup by Lemma 3.4.
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