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Abstract. In this study, we introduce a new concept of θ-parametric metric space as a generalization of
metric and parametric metric space. We also prove some fixed point theorems for self-mappings defined
in the context of such spaces. The utility of our findings is further demonstrated by some examples and
some illustrated remarks. The findings presented extend and generalise several existing findings in the
literature.

1. Introduction and Preliminaries

Fixed point theory is one of the increasingly prominent fields of nonlinear functional analysis research.
It has various applications in a variety of disciplines, including computer sciences (see e.g. [1, 2, 22, 23, 25]),
economics, and game theory, among many others. In the setting of numerous abstract metric spaces, the
revolutionary Banach contraction principle has been developed, generalized, and refined, and it constitutes
an important step in the theoretical progression of metric fixed point theory. (see [5–9, 12–21, 24, 26].

In 2014, Hussain et al. [11] established various fixed point results and defined the idea of parametric
metric as an intuitive generalization of metric.

Definition 1.1. [11] Let X be a nonempty set and let P : X × X × (0,+∞)→ [0,+∞) be a mapping. We say that P
is a parametric metric on X if

(i): P(x, y,ℑ) = 0 for all ℑ > 0 if and only if x = y for all x, y ∈ X,
(ii): P(x, y,ℑ) = P(y, x,ℑ) for all ℑ > 0,

(iii): P(x, y,ℑ) ≤ P(x, z,ℑ) +P(z, y,ℑ) for all x, y ∈ X and all ℑ > 0.

and one says the pair (X,P) is a parametric space.

Example 1.2. [11] Let X denote the set of all functions f : (0,+∞)→ R.Define P : X×X× (0,+∞)→ [0,+∞) by

P( f , 1,ℑ) = | f (ℑ) − 1(ℑ)|

for all f , 1 ∈ X and all ℑ > 0. Then (X,P) is a parametric metric space.
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In order to provide a characterisation of well-known fixed point theorems as the Banach and Caristi
types, Khojasteh et al. [10] developed a novel generalization of metric spaces known as θ-metric spaces in
2013, by altering out the triangular inequality with a broader inequality based on the notion of B-actions.

Definition 1.3. [10] Let θ : [0,+∞)× [0,+∞) −→ [0,+∞) be a continuous mapping with respect to both variables.
Let Im(θ) = {θ(ζ, ϑ) : ζ ≥ 0, ϑ ≥ 0}. The mapping θ is called an B-action if and only the following hold :

(B1) θ(0, 0) = 0 and θ(ζ, ϑ) = θ(ϑ, ζ) for all ζ, ϑ ≥ 0,
(B2)

θ(ζ, ϑ) < θ(u, v)⇒
{

either ζ < u, ϑ ≤ v
or ζ ≤ u, ϑ < v,

(B3) for each r ∈ Im(θ) and for each ζ ∈ [0, r], there exists ϑ ∈ [0, r] such that θ(ϑ, ζ) = r,
(B4) θ(ζ, 0) ≤ ζ for all ζ > 0 .

The set of all B-actions is denoted by Y.

Example 1.4. [10] The following functions are examples of B-action :

1. θ1(ζ, ϑ) = ϑ + ζ + ϑζ,
2. θ2(ζ, ϑ) = ϑζ

1+ϑζ ,
3. θ3(ζ, ϑ) = k(ϑ + ζ + ϑζ) where k ∈ (0, 1],
4. θ4(ζ, ϑ) =

√
ϑ2 + ζ2.

Definition 1.5. [10] A mapping Eθ : X × X −→ [0,+∞) is called a θ-metric on a nonempty set X with respect to
B-action θ ∈ Y if dθ satisfies the following:

(1) Eθ(x, y) = 0 if and only if x = y for all x, y ∈ X,
(2) Eθ(x, y) = Eθ(y, x) for all x, y ∈ X,
(3) Eθ(x, y) ≤ θ(Eθ(x, z),Eθ(z, y)) for all x, y, z ∈ X.

The pair (X,Eθ) is called a θ-metric space.
It is proved in [10] that, in a θ-metric space (X,Eθ) every open ball is an open set and each θ-metric dθ on X generates
a Hausdorff first countable topology τEθ on X where the set {BEθ (x, 1

n ) : n ∈N} is a local base at x.

2. θ-parametric metric space

First, we introduce the concept of θ-parametric metric space and study some of its properties needed in
the following section.

Definition 2.1. Let X be a non-empty set. A mapping Dθ : X × X × (0,+∞) → [0,+∞) is called θ-parametric
metric space on X if

(Dθ1) Dθ(x, y,ℑ) = 0 for all ℑ > 0 if and only if x = y for all x, y ∈ X,
(Dθ2) Dθ(x, y,ℑ) = Dθ(y, x,ℑ) for all ℑ > 0,
(Dθ3) Dθ(x, y,ℑ) ≤ θ(Dθ(x, z,ℑ),Dθ(z, y,ℑ)) for all x, y ∈ X and all ℑ > 0.

Then the pair (X,Dθ) is called a θ-parametric metric space.

Remark 2.2. We mention that every parametric metric space is effectively a θ-parametric metric space with θ(u, v) =
u + v, But the converse is not true. We provide the following example to support this claim.
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Example 2.3. Let X = {x, y, z}. Define θ : [0,+∞)× [0,+∞) −→ [0,+∞) andDθ : X ×X × (0,+∞)→ [0,+∞) as

θ(u, v) = u + v +
√

uv

Dθ(x, x,ℑ) = Dθ(y, y,ℑ) = Dθ(z, z,ℑ) = 0,

Dθ(x, y,ℑ) =
1
ℑ
, Dθ(x, z,ℑ) =

3
ℑ
, Dθ(z, y,ℑ) =

4 +
√

2
ℑ

Dθ(x, y,ℑ) = Dθ(y, x,ℑ) , Dθ(x, z,ℑ) = Dθ(z, x,ℑ) , Dθ(z, y,ℑ) = Dθ(y, z,ℑ) .

The pair (X,Dθ) is θ-parametric metric space.

Note that,Dθ(x, y,ℑ)+Dθ(x, z,ℑ) < Dθ(z, y,ℑ), thus condition (iii) fails andDθ does not define a parametric
metric.

Remark 2.4. Every θ-parametric metric space (X,Dθ) with respect to θ(u, v) = k(u + v), k ∈ (0, 1], is a parametric
metric space.
The converse, however, is false in general, for θ(u, v) = k(u+ v), k ∈ (0, 1), there exits parametric metric space (X,D)
which is not θ-parametric metric space. To see this, let X = {1, 2, 3} andD : X × X × (0,+∞)→ [0,+∞) defined by

D(1, 1,ℑ) = D(2, 2,ℑ) = D(3, 3,ℑ) = 0

D(1, 2,ℑ) = 3ℑ , D(1, 3,ℑ) = 3ℑ , D(2, 3,ℑ) = 6ℑ , k =
1
3
.

It is easy to see thatD is a parametric metric space. Note thatD(2, 3,ℑ) > θ(D(2, 1,ℑ),D(1, 3,ℑ)), that is, D
is not a θ-parametric metric space.

Definition 2.5. Let (X,Dθ) be a θ-parametric metric space. The open ball BDθ (x, r) with center x ∈ X and r ∈Im(θ)
is defined as follows :

BDθ (x, r) = {y ∈ X : Dθ(x, y,ℑ) < r} for all ℑ > 0

Definition 2.6. Let (X,Dθ) be a θ-parametric metric space. A sequence {xn} in X is said to be convergent to
x ∈ X, if for every ℏ > 0 there exists n0 ∈ N such that Dθ(xn, x,ℑ) < ℏ for all n ≥ n0 and all ℑ > 0. that is,
limn→+∞Dθ(xn, x,ℑ) = 0.

Definition 2.7. Let (X,Dθ) be θ-parametric metric space and let {xn} be a sequence in X :

(1) A sequence {xn} is called a Cauchy sequence if, limn,m→+∞Dθ(xn, xm,ℑ) = 0 for all t > 0.
(2) A θ-parametric metric space (X,Dθ) is said to be complete if every Cauchy sequence {xn} in X converges to

x ∈ X.

Proposition 2.8. Let (X,Dθ) be a θ-parametric metric space, If the sequence {xk} in X converges to a point x. Then
x is unique.

Proof. Suppose that {xk} converges to x and y. Then, there exists A > 0 such that Dθ(xk, x,ℑ) < 1
k and

Dθ(xk, y,ℑ) < 1
k for each k ∈N, all ℑ > 0.

By the third condition of θ-parametric metric, we have

0 ≤ Dθ(x, y,ℑ) ≤ θ(Dθ(xk, x,ℑ),Dθ(xk, y,ℑ)) < θ(
1
k
,

1
k

)

Taking limit as k→ +∞ in the above inequality and using the continuity of θ with respect to each variable,
we have that θ( 1

k ,
1
k )→ 0 and soDθ(x, y,ℑ) = 0, which implies that x = y.

Lemma 2.9. Let (X,Dθ) be a θ-parametric metric space, then the functionDθ is continuous in its two arguments.
In other words, if there exist sequences {xk} and {yk} such that limk→+∞ xk = x and limk→+∞ yk = y, Then

lim
k→+∞

Dθ(xk, yk,ℑ) = Dθ(x, y,ℑ) for all ℑ > 0.

Definition 2.10. Let (X,Dθ) be a θ-parametric metric space and let G : X −→ X be a self-mapping. G is said to be
a continuous mapping at x ∈ X, if for any sequence {xn} in X such that xn → x as n→ +∞, Gxn → Gx as n→ +∞.
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3. Some Fixed Point Results

In this section, we initiate several fixed point results in the setting of θ-parametric metric space. First,
we establish the Banach contraction principle in such settings.

Theorem 3.1. Let (X,Dθ) be a complete θ-parametric metric space and G : X→ X a mapping that satisfies

Dθ(Gx,Gy,ℑ) ≤ KDθ(x, y,ℑ), (1)

for all x, y ∈ X, withK ∈ [0, 1). Then G has a unique fixed point u ∈ X.

Proof. Let x0 ∈ X be arbitrary and define an iterative sequence {xn} in X by letting xn+1 = Gxn for all
n ≥ 0. Trivially, we note that whenever there exists an index m such that xm = xm+1, then the equalities
xm = xm+1 = Gxm leads to the occurrence that xm is a fixed point of G. Therefore, to continue our proof we
assume That xn+1 , xn for all n ∈N.
We will show that limn→+∞Dθ(xn+1, xn,ℑ) = 0.

It follows from (1) that

Dθ(xn+1, xn,ℑ) = Dθ(Gxn,Gxn−1,ℑ)
≤ KDθ(xn, xn−1,ℑ).

for all n ∈N and all ℑ > 0. Therefore

Dθ(xn+1, xn,ℑ) ≤ KDθ(xn, xn−1,ℑ)

≤ K
2
Dθ(xn−1, xn−2,ℑ)

.

.

.

≤ K
n
Dθ(x1, x0,ℑ) −→ 0 as (n −→ +∞).

Hence,

Dθ(xn+1, xn,ℑ) −→ 0 as (n −→ +∞). (2)

Now, we will show that the sequence {xn} is bounded. By contradiction, assume that the sequence {xn} is
unbounded. That is, there exists subsequence {n(i)} with n(1) = 1 and for all i ∈ N, n(i + 1) is the lowest
index for which

Dθ(xn(i+1), xn(i),ℑ) > ℏ, (3)

is not fulfilled, and

Dθ(xm(i), xn(i),ℑ) ≤ ℏ, (4)

is satisfied for all m ∈ {n(i),n(i) + 1, ...,n(i + 1) − 1}. Now, Using the triangular inequality, we obtain

1 < Dθ(xn(i+1), xn(i),ℑ)
≤ θ(Dθ(xn(i+1), xn(i+1)−1,ℑ),Dθ(xn(i+1)−1, xni ,ℑ))
≤ θ(Dθ(xn(i+1), xn(i+1)−1,ℑ), 1).

Taking the limit as i→ +∞ and using (B2), we get limi→+∞Dθ(xn(i+1), xn(i),ℑ) = 1+. And, also

1 < Dθ(xn(i+1), xn(i),ℑ)
≤ Dθ(xn(i+1)−1, xn(i)−1,ℑ)
≤ θ(Dθ(xn(i+1), xn(i),ℑ),Dθ(xn(i), xn(i)−1,ℑ))
≤ θ(1,Dθ(xn(i), xn(i)−1,ℑ)).
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Consequently, limi→+∞Dθ(xn(i+1)−1, xn(i)−1,ℑ) = 1+.Taking into account thatDθ(xn(i+1), xn(i),ℑ) ≤ KDθ(xn(i+1)−1, xn(i)−1,ℑ),
we arrive to the contradiction 1 ≤ K1. Hence, the sequence {xn} is bounded. Next, wi will show that {xn} is
a Cauchy sequence. Let n, l ∈Nwith l > n, we have

Dθ(xl, xn,ℑ) ≤ KDθ(Gxl−1,Gxn−1,ℑ)
≤ KDθ(Gxl−2,Gxn−2,ℑ)
.

.

.

≤ K
n
Dθ(Gxl−n,Gx0,ℑ).

As {xn} is bounded, then limn,l→+∞Dθ(xl, xn,ℑ) = 0, which means that {xn} is a Cauchy sequence. Therefore,
there exists x ∈ X such that xn → x, we have

Dθ(xn+1,Gxn,ℑ) ≤ KDθ(xn, x,ℑ)→ 0 as (n −→ +∞).

Thus, xn+1 → Gx and Gx = x.

Now, we prove Boyd-Wang type theorem in the frame of θ-parametric metric space. First denote byΨ
the set of all functions ψ : [0,+∞) −→ [0,+∞) with the following properties

(ψ1) : ψ is upper semi-continuous from the right i.e. for all sequence {ℑn} in [0,+∞) such that ℑn → t as
n→ +∞, we have limn→+∞ supψ(ℑn) ≤ ψ(ℑ);

(ψ2) : ψ(ℑ) < ℑ for each ℑ > 0.

Theorem 3.2. Let (X,Dθ) be a complete θ-parametric metric space and G : X→ X a mapping that satisfies

Dθ(Gx,Gy,ℑ) ≤ ψ(Dθ(x, y,ℑ)) (5)

where ℑ > 0 and ψ ∈ Ψ. Assume that there exists an element x ∈ X such that Dθ(x,Gx,ℑ) < ∞. Then G has a
unique fixed point u ∈ X. Moreover, for each x ∈ X, limn→+∞G

nx = u.

Proof. Define the sequence δn(ℑ) = Dθ(Gnx,Gn+1x,ℑ) for an element x ∈ X. We shall prove that δn(ℑ)→ 0
as n→ 0. We have,

δn(ℑ) = Dθ(Gnx,Gn+1x,ℑ) = Dθ(GGn−1x,GGnx,ℑ)

≤ ψ(Dθ(Gn−1x,Gnx,ℑ))

< Dθ(Gn−1x,Gnx,ℑ) = δn−1(ℑ).

That is, {Dθ(Gnx,Gn+1x,ℑ)} is a decreasing sequence of nonnegative reals. Therefore, there exist η(ℑ) ≥ 0
such that limn→+∞Dθ(Gnx,Gn+1x,ℑ) = η(t) for all ℑ > 0. we show that η(ℑ) = 0 for all ℑ > 0. Indeed,
we assume that there exists ℑ0 > 0 such that η(ℑ0) > 0. Using δn(ℑ) ≤ ψ(δn−1(ℑ)) together with the upper
semicontinuity from the right of ψ, and letting n→ +∞, we obtain

η(ℑ0) ≤ lim
n→+∞

supψ(δn−1(ℑ0))

≤ ψ(η(ℑ0)).

This contradicts the assumption (ψ2) on ψ. Hence, we obtain

lim
n→+∞

Dθ(Gnx,Gn+1x,ℑ) = 0 for all ℑ > 0. (6)



A. Moussaoui et al. / Filomat 38:15 (2024), 5475–5485 5480

Now, we shall prove that {Gnx} is a Cauchy sequence. Reasoning by contradiction, we assume that {Gnx} is
not Cauchy sequence. Then there exist ℏ > 0, ℑ0 > 0 and for each n ∈N there is m = m(n) > n such that

Dθ(Gnx,Gmx,ℑ0) ≥ ℏ. (7)

Where m(n) is chosen as the smallest integer such that (7) is satisfied, which means

Dθ(Gnx,Gm−1x,ℑ0) < ℏ. (8)

On account of (7), (8) and the triangular inequality, we derive that

ℏ ≤ Dθ(Gnx,Gmx,ℑ0)

≤ θ(Dθ(Gnx,Gm−1x,ℑ0),Dθ(Gm−1x,Gmx,ℑ0))

≤ θ(ℏ,Dθ(Gm−1x,Gmx,ℑ0)).

Taking the limit as m→ +∞ in the previous inequality and applying (6) and (B4) , we get

ℏ ≤ lim
m→+∞

Dθ(Gnx,Gmx,ℑ0) ≤ θ(ℏ, 0) ≤ ℏ.

Consequently,

lim
m→+∞

Dθ(Gnx,Gmx,ℑ0) = ℏ. (9)

Again, by using the triangular inequality and (5), we also derive that

ℏ ≤ Dθ(Gnx,Gmx,ℑ0)

≤ θ(Gθ(Gnx,Gn+1x,ℑ0),Dθ(Gn+1x,Gmx,ℑ0))

≤ θ(Dθ(Gnx,Gn+1x,ℑ0), θ(Dθ(Gn+1x,Gm+1x,ℑ0),Dθ(Gm+1x,Gmx,ℑ0)))

≤ θ(Dθ(Gnx,Gn+1x,ℑ0), θ(ψ(Dθ(Gnx,Gmx,ℑ0)),Dθ(Gm+1x,Gmx,ℑ0))).

Then, letting n→ +∞, and using (6) and (B4), we derive that

ℏ ≤ θ(0, θ( lim
n→+∞

supψ(Dθ(Gnx,Gmx,ℑ0)), 0))

≤ θ( lim
n→+∞

supψ(Dθ(Gnx,Gmx,ℑ0)), 0) (10)

≤ lim
n→+∞

supψ(Dθ(Gnx,Gmx,ℑ0)).

As ψ is continuous, we get

ℏ ≤ lim
m→+∞

ψ(Dθ(Gnx,Gmx,ℑ0)) ≤ ψ(ℏ). (11)

A contradiction with the assumption (ψ2). Hence, {Gnx} is Cauchy sequence. Owing to the fact that (X,Dθ)
is a complete, there exists u ∈ X such that

lim
n→+∞

G
nx = u. (12)

Since G is continuous, we derive that

Gu = G( lim
n→+∞

G
nx) = lim

n→+∞
GG

nx = lim
n→+∞

G
n+1x = u

That is, G has a fixed point.
Now we show that u is a unique fixed point of G. The proof of this claim is obtained by contradiction,

let v be another fixed point of G. Hence,

Dθ(u, v,ℑ) = Dθ(Gu,Gv,ℑ) ≤ ψ(Dθ(u, v,ℑ)) < Dθ(u, v,ℑ).

Which is a contradiction. Thus, u = v .
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Theorem 3.3. Let (X,Dθ) be a complete θ-parametric metric space and letG : X→ X be a continuous self-mapping
satisfying

Dθ(Gx,Gy, t) ≤ αΛθ(x, y,ℑ) (13)

where

Λθ(x, y,ℑ) = max{Dθ(x, y,ℑ),Dθ(x,Gx,ℑ),Dθ(y,Gy,ℑ),
Dθ(x,Gx,ℑ)Dθ(y,Gy,ℑ)

Dθ(x, y,ℑ)
}

for all x, y ∈ X, x , y and all ℑ > 0, with α ∈ [0, 1[. Then G has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and define an iterative sequence {xn} in X by letting xn+1 = Gxn for all
n ≥ 0. Trivially, we note that whenever there exists an index m such that xm = xm+1, then the equalities
xm = xm+1 = Gxm leads to the occurrence that xm is a fixed point of G. Therefore, to continue our proof we
assume That xn+1 , xn for all n ∈N.
We will show that limn→+∞Dθ(xn+1, xn,ℑ) = 0

It follows from (13) that

Dθ(xn+1, xn,ℑ) = Dθ(Gxn,Gxn−1,ℑ)
≤ αΛθ(xn, xn−1,ℑ)

Where
Λθ(xn, xn−1,ℑ) = {Dθ(xn, xn−1, t),Dθ(xn,Gxn,ℑ),Dθ(xn−1,Gxn−1,ℑ),

Dθ(xn,Gxn,ℑ)Dθ(xn−1,Gxn−1,ℑ)
Dθ(xn, xn−1,ℑ)

}

= max{Dθ(xn, xn−1,ℑ),Dθ(xn, xn+1,ℑ),Dθ(xn−1, xn,ℑ),
Dθ(xn, xn+1,ℑ)Dθ(xn−1, xn,ℑ)

Dθ(xn, xn−1,ℑ)
}

= max{Dθ(xn, xn−1,ℑ),Dθ(xn, xn+1,ℑ)}.

Thus, we get two cases :

max{Dθ(xn, xn−1,ℑ),Dθ(xn, xn+1,ℑ)} = Dθ(xn, xn+1,ℑ),

or

max{Dθ(xn, xn−1,ℑ),Dθ(xn, xn+1,ℑ)} = Dθ(xn, xn−1, t).

Now if max{Dθ(xn, xn−1,ℑ),Dθ(xn, xn+1,ℑ)} = Dθ(xn, xn+1,ℑ), the consequence of the above inequality, also
rewritable as

Dθ(xn+1, xn,ℑ) ≤ αDθ(xn, xn+1,ℑ) < Dθ(xn, xn+1,ℑ).

This leads to a contradiction. Hence

Dθ(xn+1, xn,ℑ) ≤ αDθ(xn, xn−1,ℑ), (14)

for all n ∈N and all ℑ > 0. Therefore

Dθ(xn+1, xn,ℑ) ≤ αDθ(xn, xn−1,ℑ)

≤ α2
Dθ(xn−1, xn−2,ℑ)

.

.

.

≤ αn
Dθ(x1, x0,ℑ) −→ 0 as (n −→ +∞).
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Thus we have

Dθ(xn+1, xn,ℑ) −→ 0 as (n −→ +∞). (15)

Now, we claim that {xn} is a Cauchy sequence. Reasoning by contradiction, we assume that is not a
Cauchy sequence. Then there exists ℑ0 > 0 and ℏ > 0 and two subsequences {xmi } and {xni } such that ni is
the smallest index for which

ni > mi > i and Dθ(xmi , xni ,ℑ0) ≥ ℏ (16)

and

Dθ(xmi , xni−1,ℑ0) < ℏ (17)

Now, Using (14) and the triangular inequality, we derive that

ℏ ≤ Dθ(xmi , xni ,ℑ0)
≤ θ(Dθ(xmi , xni−1,ℑ0),Dθ(xni−1, xni ,ℑ0))
≤ θ(θ(Dθ(xmi , xmi−1,ℑ0),Dθ(xmi−1, xni−1,ℑ0)),Dθ(xni−1, xni ,ℑ0))

Taking the limit as i→ +∞ and then using (13) and (B4), we get

ℏ ≤ lim
i→+∞

Dθ(xmi−1, xni−1,ℑ0). (18)

We also have

Dθ(xmi−1, xni−1,ℑ0) ≤ θ(Dθ(xmi−1, xmi ,ℑ0),Dθ(xmi , xni−1,ℑ0))
≤ θ(Dθ(xmi−1, xmi ,ℑ0), ℏ)

Taking the limit as i→ +∞ on both sides of the above inequality and then using (13) and (B4), we get

lim
i→+∞

Dθ(xmi−1, xni−1,ℑ0) ≤ ℏ (19)

Therefore, from (16) and (17), we deduce

lim
i→+∞

Dθ(xmi−1, xni−1,ℑ0) = ℏ (20)

Applying the condition (9), we obtain

Dθ(xmi , xni ,ℑ0) = Dθ(Gxmi−1,Gxni−1,ℑ0)
≤ αΛθ(xmi−1, xni−1,ℑ0) (21)

Where

Λθ(xmi−1, xni−1,ℑ0) = max{Dθ(xmi−1, xni−1,ℑ0),Dθ(xmi−1,Gxmi−1,ℑ0),
Dθ(xni−1,Gxni−1,ℑ0),

Dθ(xmi−1,Gxmi−1,ℑ0)Dθ(xni−1,Gxni−1,ℑ0)
Dθ(xmi−1, xni−1,ℑ0)

}

= max{Dθ(xmi−1, xni−1,ℑ0),Dθ(xmi−1, xmi ,ℑ0),
Dθ(xni−1, xni ,ℑ0),

Dθ(xmi−1, xmi ,ℑ0)Dθ(xni−1, xni ,ℑ0)
Dθ(xmi−1, xni−1,ℑ0)

}

(22)
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Letting i→ +∞ and applying (13) and (18), we obtain

lim
i→+∞

Λθ(xmi−1, xni−1,ℑ0) = ℏ (23)

Now, taking limit as i→ +∞ in (19), using (14)and (21), we obtain

ℏ ≤ lim
i→+∞

Dθ(xmi , xni ,ℑ0) ≤ αℏ < ℏ.

Which is a contradiction. Thus {xn} is a Cauchy sequence.
Since (X,Dθ) is a complete θ-parametric metric space, there exists u ∈ X such that xn → u as n → +∞. By
the continuity of G, we have

u = lim
i→+∞

xn+1 = lim
i→+∞

Gxn = Gu

So we can conclude that u is a fixed point of G. Finally, we prove by contradiction the uniqueness of the
fixed of G. Suppose that G has another fixed point z , u. It follows from (9) that

Dθ(u, z,ℑ) = Dθ(Gu,Gz,ℑ)
≤ αΛθ(u, z,ℑ)

Where

Λθ(u, z,ℑ) = max{Dθ(u, z,ℑ),Dθ(u,Gu,ℑ),Dθ(z,Gz,ℑ),
Dθ(u,Gu,ℑ)Dθ(z,Gz,ℑ)

Dθ(u, z,ℑ)
}

= max{Dθ(u, z,ℑ), 0, 0, 0}
= Dθ(u, z,ℑ).

Which implies that

Dθ(u, z,ℑ) ≤ αDθ(u, z,ℑ) < Dθ(u, z,ℑ), (24)

having in this way a contradiction, completing therefore the proof.

Corollary 3.4. Let (X,Dθ) be a complete θ-parametric metric space and let G : X → X be a continuous a mapping
such that satisfies the following :

Dθ(Gx,Gy,ℑ) ≤ λmax{Dθ(x,Gx,ℑ),Pθ(y,Gy,ℑ)} (25)

for each x, y ∈ X and all ℑ > 0, where λ ∈ [0, 1[. Then G has a unique fixed point.

Application

As an application, we will prove that a continuous mapping G : X → X in a complete θ-parametric
metric space (X,Dθ) and satisfying the following inequality

Dθ(Gx,Gy, t) ≤ η
Dθ(x,Gx,ℑ)Dθ(y,Gy,ℑ)

Dθ(x, y,ℑ)
+ δDθ(x, y,ℑ) (26)

for all x, y ∈ X with x , y and all ℑ > 0, where η, δ ≥ 0, with η + δ < 1. Then G has a unique fixed point.
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Proof. Applying (26), for all x, y ∈ X with x , y, ℑ > 0, we get that

Dθ(Gx,Gy,ℑ) ≤ η
Dθ(x,Gx,ℑ)Dθ(y,Gy,ℑ)

Dθ(x, y,ℑ)
+ δDθ(x, y,ℑ)

≤ (η + δ) max{
Dθ(x,Gx,ℑ)Dθ(y,Gy,ℑ)

Dθ(x, y,ℑ)
,Dθ(x, y,ℑ)}

≤ (η + δ) max{Dθ(x, y,ℑ),Dθ(x,Gx,ℑ),Dθ(y,Gy,ℑ),
Dθ(x,Gx,ℑ)Dθ(y,Gy,ℑ)

Dθ(x, y,ℑ)
}.

Thus, all conditions of Theorem 3.3 are satisfied and G has unique fixed point.

Conclusion

In this study, we introduced a new metric space, namely the concept of θ-parametric metric space as a
generalization of metric and parametric metric spaces. Then, we investigated the existence and uniqueness
of fixed point for various contraction principles. Since a θ-parametric metric space is a parametric space
when θ(u, v) = u + v, our results can be considered as generalization of several comparable results. The
approach we propose may pave the way for new developments in generalized metrical structures and
fixed point theory. The results obtained can be further used to investigate coincidence, common, and
relation-theoretic fixed point results.
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Math., 24 (2008), 10-19.
[13] S.Melliani and A.Moussaoui, Fixed point theorem using a new class of fuzzy contractive mappings, Universal Mathematics,

Vol.1 No.2 pp.148-154 (2018).
[14] N. Hussain, P.Salimi and V.Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces,

J. Nonlinear Sci. Appl., 8(2015), 719-739.
[15] A. Moussaoui, N. Hussain and S. Melliani, Global optimal solutions for proximal fuzzy contractions involving control functions,

J. Math. (2021), Article ID 6269304.
[16] A. Moussaoui, N. Saleem, S. Melliani and M. Zhou, Fixed point results for new types of fuzzy contractions via admissible functions

and FZ-simulation functions, Axioms, 11 (2022), Paper No. 87.
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