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Abstract. In this paper, we have studied the geometric properties of topologically charged Ellis-Bronnikov-
type wormhole (briefly, TCEBW) spacetime. The TCEBW spacetime is a static and spherically symmetric
solution of the Einstein field equations with a non-zero cosmological constant. We obtained several im-
portant geometric properties viz. pseudosymmetry due to conformal curvature as well as conharmonic
curvature, Ricci generalized pseudosymmetry and Ricci generalized projectively pseudosymmetry. Also,
it is shown that the TCEBW spacetime is generalized Roter type, 2-quasi-Einstein, Einstein manifold of
level 3 and its conformal 2-forms are recurrent. As a special case, the geometric properties of Morris-
Thorne wormhole spacetime are analyzed. Also, we have shown that the TCEBW spacetime admits an
almost η-Ricci-Yamabe soliton and an almost η-Ricci soliton. Finally, a comparison between Morris-Thorne
wormhole and TCEBW spacetime regarding their geometric structures is exhibited.

1. Introduction

Black holes are the most fascinating objects in the universe, both in observational and theoretical cases,
and as the researchers throughout the globe progress in this field every moment, it gives us the better
understanding of the nature. The study of black hole physics has been of growing research interest for a
long time. After the theory of general relativity proposed by A. Einstein in 1915, many authors attempted
to construct exact solutions of black holes in 3, 4 and higher dimensions. Some well-known black hole
solutions are the non-rotating Schwarzschild vacuum solution with or without cosmological constant, ro-
tating Kerr solution, Kerr-Newman solution, Bardeen regular solution, Hayward solution, and some other
solutions in the literature.

Another interesting type of spacetime geometry that is also an exact solutions of the Einstein field
equations, is the (Lorentzian) traversable wormholes. Conceptually, a wormhole can be defined as a tunnel
connecting two different regions of a spacetime by a bridge or narrow throat, and the two regions may be
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from same universe (intra-universe wormhole) or two different universes (inter-universe wormhole). From
a point of view, the possibility of the existence of wormholes draws attention to the questions related to
the causality (time travel), the geometric structure and topology of spacetime, quantum gravity and energy
constraints. The study of wormholes was commenced in the work of Flamm [44] together with the paper
[39] by Einstein and Rosen. After a seminal work by Morris and Thorne [68], many authors have focused
on the investigation of wormholes, which is now an active field of research in mathematical physics. The
principal work [68] by Morris and Thorne has clarified that some form of exotic matter violating the weak
energy conditions (WEC) as well as the null energy conditions (NEC) is necessary in order to keep the throat
of the wormhole open. It is noteworthy to mention that before the Morris-Thorne wormhole, the simplest
example of a traversable wormhole was constructed independently by Ellis [40] and Bronnikov [13], which
is called Ellis-Bronnikov wormhole spacetime later. It is an exact solution of the Einstein field equations
minimally coupled with a massless phantom scalar field and also an example of a traversable wormhole,
which appears in the literature with a plenty of papers on the investigation of its geometric properties.

In the context of this study, we consider a topologically charged Ellis-Bronnikov-type wormhole space-
time whose curvature properties are the main concern here because of its simple form. The line element
of a static and spherically symmetric metric in the coordinates (t, x, θ, ϕ), which describes a topologically
charged Ellis-Bronnikov-type wormhole (briefly, TCEBW) spacetime (Refs. [13, 40, 70]), is given by

ds2 = −dt2 +
dx2

α2 + (x2 + b2) (dθ2 + sin2 θ dϕ2) = 1µν dxµ dxν, (1)

where µ, ν = 1, 2, 3, 4, the constant b is the radius of the wormhole throat, and α < 1 is the topologi-
cal defect parameter depending on the energy scale η. Here, the coordinates (t, x, θ, ϕ) are in the ranges
−∞ < t, x < +∞, 0 ≤ θ ≤ π2 , and 0 ≤ ϕ < 2π. This wormhole solution has been studied in the context of the
relativistic wave equations in Refs. [2, 7, 69, 118]. For α→ 1, the above spacetime becomes Ellis-Bronnikov-
type wormhole, also known as Morris-Thorne wormhole (briefly, MTW) spacetime [11], whose curvature
properties have been studied in Ref. [42]. Whereas for b → 0, the spacetime becomes a point-like global
monopole whose geometric properties have been studied in Ref. [83].

Let M be an n-dimensional (n ≥ 3) smooth and connected manifold with a semi-Riemannian metric 1
of signature (ζ,n − ζ), 0 ≤ ζ ≤ n. Now if (i) ζ = 1 or ζ = n − 1; (ii) ζ = 0 or ζ = n, then (M, 1) is said to be a
(i) Lorentzian; (ii) Riemannian manifold respectively, and we note that M with Lorentzian signature (1, 3)
or (3, 1) is physically treated as a spacetime. A semi-Riemannian manifold (M, 1) primarily occupies three
notions of curvature, specifically, Riemann curvature tensor (R) of type (0, 4), Ricci tensor (S) of type (0, 2)
and scalar curvature (κ).

The geometric structure of a spacetime describes the geometry and the physical nature of the space. So
the determination of geometric structure of spacetime is crucial in differential geometry, and such geometric
structures can be obtained by investigating its curvature properties, even though extracting the curvature
properties of a given metric is very cumbersome due to rigorous calculations. There are various ways to de-
fine and generalize the notion of symmetry of a manifold, such as, the notion of locally symmetric manifold
has been introduced by Cartan [14] and it is defined as ∇rRm

nop = 0, the notion of semisymmetric manifold
has been also introduced by Cartan [15] and it is defined as (R · R)mnopqs = 0 (which were classified later
by Szabó [120–122] for the Riemann case), the notion of pseudosymmetric manifold has been introduced
by Adamów and Deszcz [1] and it is defined as R · R = LQ(1,R), recurrent manifold has been introduced
by Walker [127] (see also [75–77]), several generalized notions of recurrent manifold have been introduced
by Shaikh and his co-authors (see [84, 106, 109–113]), curvature 2-forms of recurrent manifold have been
introduced by Besse [54, 58–60], weakly symmetric manifold has been introduced by Tamássy and Binh
[124, 125], etc. It may be noted that in the above geometric structures, various curvature tensors are involved
along with their first or second order covariant derivatives. By extending the notion of pseudosymmetry
to other curvature tensors, different kinds of pseudosymmetric type curvature conditions are obtained in
TCEBW spacetime, which are significant in the literature as several spacetimes (see, [8, 36, 79–81, 86, 91]) are
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basically different types of pseudosymmetric manifolds. We mention that the notions of pseudosymmetries
introduced by both Chaki [16] and Deszcz [20] are absolutely different.

Ricci flow, a process of evolving a Riemanninan metric over time, was introduced by Hamilton [51] in
1982 during the study of 3-dimensional compact manifolds with positive Ricci curvature. Ricci solitons are
the self-similar solutions of Ricci flow, which are natural generalizations of Einstein metrics [9, 12, 78, 115].
Again, Hamilton [52] simultaneously established the concept of another geometric flow, known as Yamabe
flow. Recently, Güler and Cráşmareǎnu [50] introduced the notion of a new geometric flow in terms of the
scalar combination of Ricci flow and Yamabe flow, called Ricci-Yamabe flow, whose self-similar solutions
are known as Ricci-Yamabe solitons.

If a semi-Riemannian manifold M realizes the relation

1
2

£ξ1 + S − µ1 = 0,

with a constant µ, then M is said to be a Ricci soliton, where £ξ denotes the Lie derivative with respect to
the soliton vector field ξ. If µ < 0, µ = 0 or µ > 0, then it is expanding, steady or shrinking respectively. If µ
is allowed to be a non-constant smooth function, M is called an almost Ricci soliton [73]. We note that the
Ricci soliton turns into an Einstein manifold if ξ is a Killing vector field. Again, if M possesses the relation

1
2

£ξ1 + S − ℓ21 + ℓ3(η ⊗ η) = 0,

for some constants ℓ2, ℓ3 and non-zero 1-form η, then M is known as an η-Ricci soliton [18]. Further, M is
an almost η-Ricci soliton [10] if ℓ2, ℓ3 are non-constant smooth functions. If the Ricci curvature S, the metric
tensor 1 and scalar curvature κ satisfy the relation

1
2

£ξ1 + ℓ1S +
(
λ −

1
2
ℓκ

)
1 = 0,

with the constants ℓ1, ℓ, λ, and the soliton vector field ξ, then M is called a Ricci-Yamabe soliton [116]. We
mention that if (ℓ1, ℓ) = (0, 2) and (1, 0), then the Ricci-Yamabe soliton becomes Yamabe soliton and Ricci
soliton respectively. Moreover, M is called an almost Ricci-Yamabe soliton [116] if ℓ1, ℓ, λ are non-constant
smooth functions. In addition, if there is a non-zero 1-form η on M realizing the relation

1
2

£ξ1 + ℓ1S +
(
λ −

1
2
ℓκ

)
1 + ℓ3η ⊗ η = 0,

with the constants ℓ1, ℓ3, ℓ, λ, then M is called an η-Ricci-Yamabe soliton [116], and M is said to be an almost
η-Ricci-Yamabe soliton [116] if the constants ℓ1, ℓ3, ℓ, λ are non-constant smooth functions. During last three
decades, a lot of research articles (see, [3–5, 88] and the references therein) on Ricci soliton, Yamabe soliton
and their generalizations have been appeared, which turns it into an active area of research for geometers.

The motto of this paper is to investigate the geometric properties of the above mentioned TCEBW
spacetime. It is shown that although the spacetime defies both the semisymmetric and pseudosymmtric
properties, it agrees several pseudosymmetric type structures, such as, pseudosymmetry due to conformal
curvature as well as conharmonic curvature, Ricci generalized pseudosymmetry and Ricci generalized pro-
jectively pseudosymmetry. Further, it is proved that the TCEBW spacetime is an Einstein manifold of level
3, 2-quasi-Einstein and generalized Roter type. The Ricci tensor of TCEBW spacetime is neither Codazzi
type nor cyclic parallel. Also, it is shown that the TCEBW spacetime possesses almost η-Ricci soliton as well
as almost η-Ricci-Yamabe soliton. We mention that as a special case of TCEBW spacetime, the curvature
properties of MTW spacetime can also be obtained for α→ 1.
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The paper is composed as follows: Section 2 deals with the definitions and backgrounds of geometric
structures as preliminaries. Section 3, which is the crucial part of this manuscript, presents the calculation
of several tensor components and exhibits different geometric structures of TCEBW spacetime. Section 4 is
devoted to the study of almost η-Ricci soliton and almost η-Ricci-Yamabe soliton admitted by the TCEBW
spacetime. In Section 5, a comparison between MTW and TCEBW spacetime has been articulated with
respect to their curvature restricted geometric structures. Finally, the conclusion of the paper has been
drawn in the last section.

2. Preliminaries

Let E and D be two (0, 2)-type symmetric tensors. Then their Kulkarni-Nomizu product E∧D is defined
as (see, [26, 35, 48, 53, 87, 105]):

(E ∧D)mnop = 2Em[pDo]n + 2En[oDp]m,

where [.] denotes the antisymmetrization of index pairs. The (1, 3)-type Riemann (resp., concircular,
conharmonic, conformal and projective) curvature tensor R (resp.,W, K, C and P) is given as below:

Rm
nop = 2

(
Γs

n[oΓ
m
p]s + ∂[pΓ

m
o]n

)
,

Wm
nop = Rm

nop − κ
2

n(n − 1)
δm

[n1o]p,

Km
nop = Rm

nop −
2

n − 2

(
Su

[n1o]p + δ
m
[nSo]p

)
,

Cm
nop = Rm

nop +
2

n − 2

(
δm

[nSo]p +S
m
[n1o]p

)
− κ

2
(n − 1)(n − 2)

δm
[n1o]p,

Pm
nop = Rm

nop −
2

n − 1
δm

[nSo]p,

where Sn
o is the Ricci curvature of type (1, 1), ∂m =

∂
∂xm and Γn

op are the connection coefficients. By lowering
the indices, the (0, 4)-type Riemann (resp., concircular, conharmonic, conformal and projective) curvature
tensor R (resp., W, K, C and P) can be obtained as follows:

Rmnop = 1mα(∂pΓ
α
no − ∂oΓ

α
no + Γ

ᾱ
noΓ
α
ᾱp − Γ

ᾱ
npΓ
α
ᾱo),

Wmnop = Rmnop −
κ̄

2n(n − 1)
(1 ∧ 1)mnop,

Kmnop = Rmnop −
1

n − 2
(1 ∧ S)mnop,

Cmnop = Rmnop −
1

n − 2
(1 ∧ S)mnop +

κ̄
2(n − 1)(n − 2)

(1 ∧ 1)mnop,

Pmnop = Rmnop −
1

n − 1
(1mpSno − 1npSmo).

Let βbe a tensor of rank (0, v) on M with v ≥ 1. Then the tensor U·βof (0, v+2) type (see, [24, 25, 34, 93, 100])
is defined as

(U · β)p1p2···pvab = −

[
Uαabp1

βαp1···pv + · · · +Uαabpv
βp1···α

]
,

where Um
nop is a tensor of rank (1, 3). Again, for a tensor X of type (0, 2), the Tachibana tensor (see,

[33, 93, 100, 123]) Q(X, β) of type (0, v + 2), is defined as

Q(X, β)p1p2···pvab = Xbp1βap2···pv + · · · + Xbpvβp1p2···a

− Xap1βbp2···pv − · · · − Xbpvβp1p2···b.

If the curvature relation

(U · β)p1p2···pvab = FβQ(X, β)p1p2···pvab (2)
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holds on (Mn, 1), where Fβ is some scalar function, then (Mn, 1) is said to be a β-pseudosymmetric mani-
fold due to U (see, [1, 19–21, 27, 28, 100, 103, 104]) and a β-semisymmetric type manifold due to U (see,
[15, 120–122]) is defined by the relation U · β = 0. In particular, if Umnop = βmnop = Rmnop and Xab = 1ab, then
(Mn, 1) is simply said to be pseudosymmetric manifold. Again, for Umnop = βmnop = Wmnop (resp., Kmnop,
Cmnop and Pmnop) and Xab = 1ab, M is called concircular (resp., conharmonic, conformal and projective) pseu-
dosymmetric manifold. Similarly, Ricci generalized pseudosymmetric manifold is defined for Xab = Sab and
several kinds of pseudosymmetric manifolds can be defined accordingly. For instance, Robertson-Walker
spacetime, Friedmann-Lemaître-Robertson Walker (FLRW) spacetime, Reissner-Nordström spacetime and
Kottler spacetime as well as Schwarzschild spacetime are the “old” examples of pseudosymmetric mani-
folds. We mention that Morris-Thorne spacetime [42] and Gödel spacetime [35] agree pseudosymmetric
Weyl curvature tensor. Further, recently various spacetimes of pseudosymmetric type structures are stud-
ied in [41, 43, 47, 82, 83, 89, 92, 94–97]. It is noteworthy to mention that the notion of geodesic mappings on
various generalizations of symmetric Riemannian manifolds has been investigated by Mikeš et al. [61–67].

Definition 2.1. ([78, 99, 105, 115]) A semi-Riemannian manifold M is called 2-quasi-Einstein (resp., quasi-Einstein
and Einstein) manifold if rank of (S − α11)=2 (resp., 1 and 0), for some scalar α1. In particular, one can obtain
Ricci simple manifold for α1 = 0 in quasi-Einstein manifold. For instance, Vaidya spacetime [108] as well as Gödel
spacetime [35] are Ricci simple manifolds.

In addition, Kantowski-Sachs spacetime [87] and Som-Raychaudhuri spacetime [102] are 2-quasi-Einstein,
Robertson-Walker spacetime [6, 71, 119] is quasi-Einstein and Kaigorodov spacetime [91] is Einstein.

Again, the notion of Einstein manifolds has been generalized to Ein(4) [9, 100, 105], and it is defined by
the relation of linear dependency of 1 and Si (i = 1, 2, 3, 4) given by

ℵ11 + ℵ2S + ℵ3S2 + ℵ4S3 + S4 = 0,

and Ein(3) and Ein(2) are defined respectively by the linear dependency relations

ℵ51 + ℵ6S + ℵ7S2 + S3 = 0 and ℵ81 + ℵ9S + S2 = 0,

where ℵi(1 ≤ i ≤ 9) are smooth functions on M and Si+1(V1,V2) = Si(V1,SV2) for i = 1, 2, 3.
For example, Vaidya-Bonner spacetime [90] is Ein(3) while Robinson-Trautman spacetime [79] is Ein(2).

Definition 2.2. If the Riemann tensor R of M entails the form

Rmnop = R11(1 ∧ 1)mnop + R12(1 ∧ S)mnop + R22(S ∧ S)mnop

+ R13(1 ∧ S2)mnop + R23(S ∧ S2)mnop + R33(S2
∧ S2)mnop,

then M is called generalized Roter type manifold [22, 23, 29, 30, 32, 101, 105], where Ri j are some scalars. Also, it
reduces to Roter type manifold ([22, 24, 31, 37, 38, 49]) for R13 = R23 = R33 = 0.

We mention that Lifshitz spacetime [114] is a model of generalized Roter type manifold but Melvin magnetic
spacetime [80] is Roter type.

Definition 2.3. The Ricci tensor of a manifold M is called Codazzi type [45, 117] if the relation

∇oSmn − ∇mSno = 0

holds, and if M agrees the condition
∇oSmn + ∇nSom + ∇mSno = 0,

then the Ricci tensor of M is called cyclic parallel [46, 85, 98].
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Definition 2.4. [124, 125] A weakly symmetric manifold is defined the relation

∇qRmnop = ΠqRmnop + γmRqnop + γnRmqop + λoRmnqp + λpRmnoq,

whereΠ, γ, λ are 1-forms on M. If 1
2Πm = γm = λm (resp., γm = λm = 0), then M is called a Chaki pseudosymmetric

manifold [16, 17] (resp., recurrent manifold [72, 75–77, 127]).

Definition 2.5. ([19, 25, 29, 33, 55–57]) Let Σ be a tensor of (0, 4)-type on a manifold M. If M admits the condition

A
m,n,o
S

q
mΣnopq = 0,

A being the cyclic sum over m, n, o, then the Ricci tensor is known as Σ-compatible. Further, an 1-form ϱ is termed
as Σ-compatible if Σ-compatibility occurs for the tensor ϱ ⊗ ϱ.

If Σ is chosen as R, C, K, P and W, one can obtain the compatibility of Ricci tensor for Riemann, conformal,
conharmonic, projective and concircular curvature respectively. Again, if the relation (see, [54, 58–60])

A
m,n,o
∇mΣnopq = A

m,n,o
πmΣnop

holds, then the corresponding curvature 2-forms for Σ are recurrent. For a (0, 2)-type symmetric tensor E,
the 1-forms are recurrent if ∇mEno − ∇nEmo = πmEno − πnEmo, for some covector π.

Definition 2.6. ([74, 101, 126]) Let Σ be a (0, 4)-type tensor on M and the linear spaceV(M) be defined by

V(M) =
{
π : A

m,n,o
πaΣnopq = 0, where π is an 1-form

}
.

If dimV(M) ≥ 1, then M is termed as Σ-space by Venzi.

We refer to [107] for an in-depth definition of semi-Riemannian spaces using algebraic computations in
Wolfram Mathematica relevant to various types of tensor, including the projective, conformal, concircular,
and conharmonic curvature tensors.

3. Curvature restricted geometric structures on topologically charged Ellis-Bronnikov-type wormhole
spacetime

In the coordinates (t, x, θ, ϕ), the metric tensor of TCEBW spacetime is given as follows:

1 =


−1 0 0 0
0 1

α2 0 0
0 0 (x2 + b2) 0
0 0 0 (x2 + b2) sin2 θ


That is,

111 = −1, 122 =
1
α2 , 133 = (x2 + b2), 144 = (x2 + b2) sin2 θ, 1i j = 0, otherwise.

The non-zero components of the second kind christoffel symbols Γh
ij are given below:

Γ3
23 = Γ

4
24 =

x
b2+x2 , Γ2

33 = −xα2, Γ4
34 = cotθ, Γ2

44 = sin2 θ Γ2
33, Γ

3
44 = − cosθ sinθ.

Also, for the spacetime geometry under consideration in this work, the non-zero components (upto
symmetry) of the Riemann curvature tensor Rµναβ are

R2323 = −
b2

b2+x2 , R2424 = sin2 θR2323, R3434 = (b2
− x2 (α2

− 1)) sin2 θ.
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The non-zero components of the Ricci tensor Sµν are

S22 =
2 b2

(b2+x2)2 , S33 = α2
− 1, S44 = sin2 θS33.

And the scalar curvature κ, which does not vanish, is given by

κ = 2 b2(2α2
−1)+2 x2 (α2

−1)
(b2+x2)2 .

Again, the components (upto symmetry) of the covariant derivatives ∇R and ∇S, which are found
non-zero, are shown as follows:

∇2R2323 =
4b2x

(b2+x2)2 , ∇4R2334 =
x(b2+x2+(b2

−x2)α2) sin2 θ
(b2+x2) , ∇2R2424 = sin2 θ ∇2R2323,

∇3R2434 =
x(x2(α2

−1)−b2(α2+1)) sin2 θ
b2+x2 , ∇2R3434 = −2∇4R2334;

∇2S22 = −
8b2x

(b2+x2)3 , ∇3S23 =
x(b2+x2+(b2

−x2)α2)
(b2+x2)2 , ∇4S24 = sin2 θ∇3S23,

∇2S33 = −
2x(α2

−1)
(b2+x2) ,∇2S44 = sin2 θ∇2S33.

The components of S2, S3, which do not vanish, are listed as follows:

S2
22 =

4b4α2

(b2+x2)4 , S2
33 =

(α2
−1)2

b2+x2 , S2
44 =

(α2
−1)2

b2+x2 sin2 θ,

S3
22 =

8b6α4

(b2+x2)6 , S3
33 =

(α2
−1)3

(b2+x2)2 , S3
44 =

(α2
−1)3

(b2+x2)2 sin2 θ.

Let 1 ∧ S = L1, S ∧ S = L2, 1 ∧ S2 = L3, S2
∧ S2 = L4, 1 ∧ 1 = L5 and S ∧ S2 = L6. Then the non-vanishing

components of Li (1 ≤ i ≤ 6) are computed as follows:

L1
1212 =

2b2

(b2+x2)2 , L1
1313 = −1 + α2, L1

3434 = −2(b2 + x2)(−1 + α2) sin2 θ,

L1
1414 = sin2 θL1

1313, L1
2323 = −1 − 2b2

b2+x2 +
1
α2 , L1

2424 = sin2 θ L1
2323;

L2
2323 = −

4b2(−1+α2)
(b2+x2)2 , L2

2424 = sin2 θL2
2323, L2

3434 = −2(−1 + α2)2 sin2 θ;

L3
1212 =

4b4α2

(b2+x2)4 , L3
1313 =

(−1+α2)
b2+x2 , L3

1414 = sin2 θL3
1313,

L3
2323 =

−4b4α4
−(b2+x2)2(−1+α2)2

α2(b2+x2)3 , L3
2424 = sin2 θL3

2323, L3
3434 = −2(−1 + α2)2 sin2 θ;

L4
2323 = −

8b4α2(−1+α2)2

(b2+x2)5 , L4
2424 = sin2 θL4

2323, L4
3434 = −

2(−1+α2)4 sin2 θ
(b2+x2)2 ;

L5
1212 =

2
α2 , L5

1414 = sin2 θL5
1313 = 2(b2 + x2) sin2 θ,

L5
2424 = sin2 θL5

2323 = −
2(b2+x2) sin2 θ

α2 , L5
3434 = −2(b2 + x2)2 sin2 θ;

L6
2424 = −

2b2(α2
−1)[x2(α2

−1)+b2(3α2
−1)]

(b2+x2)4 sin2 θ = sin2 θL6
2323, L6

3434 = −
2(α2
−1)3 sin2 θ
b2+x2 .

From the above tensor components, we obtain the following relation of dependency:

Rmnop = R11(1 ∧ 1)mnop + R12(1 ∧ S)mnop + R22(S ∧ S)mnop

+ R13(1 ∧ S2)mnop + R23(S ∧ S2)mnop + R33(S2
∧ S2)mnop, (3)

where Ri j’s (i ≤ j with i, j = 1, 2, 3) are computed as follows:

R11 = 1, R23 = 0, R13 =
(b2 + x2)3

b2α2(α2 − 1)
,

R12 =
(b2 + x2)[b2 + x2

− α2(3b2 + x2)]
b2α2(α2 − 1)

,

R22 = −
b2α2[b2x2 + α2(b2

− x2)] + 2(b2 + x2)2[b2 + x2
− α2(3b2 + x2)]

4b2α2(α2 − 1)2 ,

R33 =
(b2 + x2)3[b2α2

− 2(b2 + x2)2]
4b2α2(α2 − 1)3 .


(4)
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From the above calculations of tensor components, we can state the following:

Proposition 3.1. The TCEBW spacetime satisfies the following curvature properties:

(i) it is 2-quasi-Einstein as rank (S − λ1) = 2 for λ = 1
2 (b2 + x2

−

√
4 + (b2 + x2)2,

(ii) it is generalized Roter type as it possesses the relation (3), where Ri j’s (i, j = 1, 2, 3) are given in (4),

(iii) it is Einstein manifold of level 3 as it realizes S3 +
b2+x2

−α2(3b2+x2)
(b2+x2)2 S2 +

2b2α2(α2
−1)

(b2+x2)3 S = 0,

(iv) its Ricci tensor is Riemann, projective, conharmonic, conformal and concircular compatible,

(v) its Ricci 1-forms are recurrent for the associated 1-form π =
{
0,− x(−b2

−x2+3b2α2+x2α2)
(b2+x2)2(−1+α2) , 0, 0

}
.

Again, the components (upto symmetry) of the conformal curvature Cmnop, which do not vanish, are given
below

C1212 =
x2(α2

−1)−b2(α2+1)
3α2(b2+x2)2 , C1313 =

b2+x2+(b2
−x2)α2

6(b2+x2) , C1414 = sin2 θC1313,

C2323 = −
b2+x2+(b2

−x2)α2

6(b2+x2)α2 , C2424 = sin2 θC2323, C3434 =
1
3 (b2 + x2 + (b2

− x2)α2) sin2 θ.

The components (upto symmetry) of the projective curvature Pmnop, which are found non-zero, are listed
as follows:

P1221 =
2b2

3(b2+x2)2 , P1331 =
1
3 (α2

− 1), P1441 = sin2 θP1331, P2323 = −
b2

3(b2+x2) ,

P2332 =
1
3 (−1 + 3b2

b2+x2 +
1
α2 ), P2424 = sin2 θP2323, P2442 = sin2 θP2332,

P3434 =
1
3 (−2x2(α2

− 1) + b2(α2 + 2)) sin2 θ = −P3443.

The components (upto symmetry) of the tensor (R · R)mnopqs, which do not vanish, are given below

(R · R)243423 =
b2(b2+x2+(b2

−x2)α2) sin2 θ
(b2+x2)2 , (R · R)233424 = −

b2(b2+x2+(b2
−x2)α2) sin2 θ

(b2+x2)2 .

The non-zero components (upto symmetry) of the tensor (P · R)mnopqs are listed as follows:

(P · R)243423 =
2b2(b2+x2+(b2

−x2)α2) sin2 θ
3(b2+x2)2 = (P · R)233442,

(P · R)233424 = −
2b2(b2+x2+(b2

−x2)α2) sin2 θ
3(b2+x2)2 = (P · R)243432.

The components (upto symmetry) of the Tachibana tensor Q(S,R)mnopqs, which do not vanish, are given
below

Q(S,R)243423 =
b2(b2+x2+(b2

−x2)α2) sin2 θ
(b2+x2)2 , Q(S,R)233424 = −

b2(b2+x2+(b2
−x2)α2) sin2 θ

(b2+x2)2 .

Let C1 = C · C. Then the non-vanishing components (upto symmetry) of the tensor C1 are computed as
below

C
1
122313 = −

(b2+x2+(b2
−x2)α2)2

12α2(b2+x2)3 = −C1
121323, C

1
122414 = −

(b2+x2+(b2
−x2)α2) sin2 θ

12α2(b2+x2)3 = −C1
121424,

C
1
143413 = −

(b2+x2+(b2
−x2)α2)2 sin2 θ

12(b2+x2)2 = −C1
133414, C

1
243423 =

(b2+x2+(b2
−x2)α2)2 sin2 θ

12α2(b2+x2)3 = −C1
233424.

LetC2 = Q(1,C). Then the non-zero components (upto symmetry) of the tensorC2 are shown as follows:

C
2
122313 =

1
2 −

b2

b2+x2 −
1

2α2 = −C
2
121323, C

2
143413 = −

1
2 (b2 + x2 + (b2

− x2)α2) sin2 θ = −C2
133414,

C
2
122414 = −

(b2+x2+(b2
−x2)α2) sin2 θ

2α2(b2+x2) = −C2
121424, C

2
243423 =

(b2+x2+(b2
−x2)α2) sin2 θ
2α2 = −C2

233424.

From the above calculation, it can be concluded that the TCEBW spacetime agrees several geometric
structures, which are stated as follows:

Theorem 3.2. The TCEBW spacetime possesses the following curvature properties:

(i) it admits Ricci generalized pseudosymmetry as R · R = Q(S,R),
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(ii) it admits C · C = − (−b2
−x2
−b2α2+x2α2)

6(b2+x2)2 Q(1,C) and hence C · K = − (−b2
−x2
−b2α2+x2α2)

6(b2+x2)2 Q(1,K),

(iii) also it admits K · C = − (−1+α2)
2(b2+x2) Q(1,C) and hence K · K = − (−1+α2)

2(b2+x2) Q(1,K),

(iv) its conformal 2-forms are recurrent for the 1-form
{
0, x(b2+x2

−(3b2+x2)α2)
(b2+x2)(b2+x2+(b2−x2)α2) , 0, 0

}
,

(v) Ricci 1-forms are recurrent for the associated 1-form π =
{
0,− x(−b2

−x2+3b2α2+x2α2)
(b2+x2)2(−1+α2) , 0, 0

}
,

(vi) 2-quasi Einstein manifold as rank(S − λ1) = 2 for λ = 1
2 (b2 + x2

−

√

4 + b4 + 2b2x2 + x4),

(vii) it is generalized Roter type as it possesses the relation (3), where Ri j’s (i, j = 1, 2, 3) are given in (4),

(viii) it is Ein(3) manifold as it satisfies S3 +
b2+x2

−α2(3b2+x2)
(b2+x2)2 S2 +

2b2α2(α2
−1)

(b2+x2)3 S = 0,

(ix) the general form of R-compatible tensor is given below
T11 0 0 0
T21 T22 T23 T24

T31 −
(b2+x2

−x2α2)T23

b2α2 T33 T34

T41 −
(b2+x2

−x2α2)T24

b2α2 T34 T44


where Ti j are arbitrary scalars,

(x) the general form of C-compatible and K-compatible tensors are given below
T11 T21 0 0
T21 T22 0 0
0 0 T33 T34
0 0 T34 T44


where Ti j are arbitrary scalars,

(xi) the general form of P-compatible tensor is given below
T11 T12 0 0

−
(b2+x2+2b2α2

−x2α2)T12

(b2+x2)(−1+α2) T22 −
(b2+x2+2b2α2

−x2α2)T32

2b2+2x2+b2α2−2x2α2 −
(b2+x2+2b2α2

−x2α2)T42

2b2+2x2+b2α2−2x2α2

0 T32 T33 T34
0 T42 T34 T44


where Ti j are arbitrary scalars,

(xii) the general form of W-compatible tensor is given below
T11 T12 0 0

−
(b2+x2+4b2α2

−x2α2)T12

−b2−x2+2b2α2+x2α2 T22 0 0
0 0 T33 T43
0 0 T43 T44


where Ti j are arbitrary scalars,

(xiii) its Ricci tensor is compatible for R, P, W, K and C.

Corollary 3.3. Since the TCEBW spacetime is Ricci generalized pseudosymmetric (i.e., R · R = Q(S,R)), it follows
that the spacetime also realizes the relation P ·R = 2

3 Q(S,R), i.e., it is Ricci generalized projectively pseudosymmetric
spacetime.
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Remark 3.4. The TCEBW spacetime has the following curvature restricted geometric properties of disagreement:
The TCEBW spacetime does not satisfy

(i) any semisymmetric type condition,

(ii) cyclic parallel Ricci tensor and Codazzi type Ricci tensor,

(iii) Chaki pseudosymmetry,

(iv) K ·R = fRQ(1,R) for any smooth function fR, and consequently it is not pseudosymmetric as well as projectively,
conformally and concircularly pseudosymmetric.

Also, the TCEBW spacetime is not

(v) Roter type,

(vi) Σ-Venzi space for Σ = R, P, W, C and K,

(vii) recurrent for P, W and K.

4. Ricci soliton admitted by topologically charged Ellis-Bronnikov-type wormhole spacetime

The set K (M) of all Killing vector fields on M constitutes a Lie subalgebra of the Lie algebra χ(M)
of all smooth vector fields on M. It is well-known that K (M) consists of maximum n(n + 1)/2 linearly
independent Killing vector fields and M is called maximally symmetric ifK (M) contains exactly n(n+ 1)/2
linearly independent Killing vector fields. A sufficient condition for M to be maximally symmetric is that
the scalar curvature of M is constant. We must mention that the TCEBW spacetime has non-constant
scalar curvature given by κ = 2b2(2α2

−1)+2x2(α2
−1)

(b2+x2)2 . By proceeding a little straightforward calculation, it can

be obtained that the vector fields ∂
∂t and ∂

∂ϕ are Killing (i.e., £ξ1 = 0 for ξ = ∂
∂t ,

∂
∂ϕ ) on TCEBW spacetime.

Hence, the vector field λ1
∂
∂t + λ2

∂
∂ϕ is also Killing for each real number λ1 and λ2.

IfD = £ξ1 for the non-Killing vector field ξ = ∂
∂x , then the non-zero components ofA are calculated as

follows:
D33 = 2r, D44 = 2r sin2 θ.

From the above components of £ ∂
∂x
1, it can be concluded that the TCEBW spacetime satisfies the following

relation:

£ ∂
∂x
1 + 2ℓ1S + 2ℓ21 + 2ℓ3η ⊗ η = 0,

where the 1-form η =
(

2bα
√

x
√

(b2+x2)2+α2(b4−x4)
, 0, 0, 0

)
and ℓ1, ℓ2, ℓ3 are computed as follows:

ℓ1 =
x(b2 + x2)

b2 + x2 + α2(b2 − x2)
,

ℓ2 = −
2b2xα2

(b2 + x2)[b2 + x2 + α2(b2 − x2)]
,

ℓ3 = −
1
2
.


(5)

Hence, we can state the following:
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Theorem 4.1. The TCEBW spacetime admits almost η-Ricci-Yamabe soliton with respect to the soliton vector field
∂
∂x and the 1-form η =

(
2bα
√

x
√

(b2+x2)2+α2(b4−x4)
, 0, 0, 0

)
if b2 + x2 + α2(b2

− x2) , 0 and (b2 + x2)2 + α2(b4
− x4) , 0, i.e.,

the TCEBW spacetime satisfies
1
2

£ξ1 + ℓ1S +
(
λ −

1
2
ℓκ

)
1 + ℓ3η ⊗ η = 0,

for the non-Killing soliton vector field ξ = ∂
∂x , where ℓ = 2, λ = ℓ2 + κ, and ℓ1, ℓ2, ℓ3 are given in (5).

Theorem 4.2. If (x − 1)(b2 + x2) = α2(b2
− x2), then the TCEBW spacetime realizes an almost η-Ricci soliton for

the soliton vector field ∂
∂x with the 1-form η =

(
2bα
√

x
√

(b2+x2)2+α2(b4−x4)
, 0, 0, 0

)
provided b2 + x2 + α2(b2

− x2) , 0 and

(b2 + x2)2 + α2(b4
− x4) , 0, i.e., the TCEBW spacetime possesses the relation

1
2

£ξ1 + S + ℓ21 + ℓ3η ⊗ η = 0,

for the non-Killing vector field ξ = ∂
∂x , where ℓ2, ℓ3 is given in (5).

5. Morris-Thorne wormhole metric and topologically charged Ellis-Bronnikov-type wormhole metric

MTW spacetime [42] is a stationary solution of Einstein field equations with a cosmological constant. In
spherical coordinates (t, l, v, ϕ), the metric of MTW spacetime is given as follows:

ds2 = 1i jdxidx j = −c2 dt2 + dl2 + (b2 + l2) dv2 + (b2 + l2) sin2 vdϕ2,

where c is the speed of light, t is the global time, b is the shape constant and l is the proper radial coordinate
respectively. It represents a model of wormhole and theoretically a wormhole can be traversed. We note
that the TCEBW spacetime is also a model of a wormhole. Hence we compare the curvature restricted
geometric properties of MTW and TCEBW spacetime, described as follows:
Similarities:

(i) both are Ricci generalized pseudosymmetric,

(ii) conformal 2-forms of both the spacetimes are recurrent,

(iii) both the spacetimes are pseudosymmetric due to conformal curvature,

(iv) Ricci tensor of both the spacetimes are R, P, K, W and C compatible.

Dissimilarities:

(i) MTW spacetime defies to be generalized Roter type, whereas TCEBW spacetime is generalized Roter
type,

(ii) MTW spacetime is Ricci simple, but TCEBW spacetime agrees to be 2-quasi Einstein instead of Ricci
simple,

(iii) MTW spacetime is Ein(2), whereas TCEBW spacetime is Ein(3).



A. A. Shaikh et al. / Filomat 38:15 (2024), 5527–5541 5538

6. Conclusions

The paper is concerned about the investigation of geometrical properties of TCEBW spacetime. It is
shown that the TCEBW spacetime admits several pseudosymmetric type structures (see, Theorem 3.2), such
as, pseudosymmetry due to conformal curvature as well as conharmonic curvature, Ricci generalized pseu-
dosymmetry and Ricci generalized projectively pseudosymmetry, even though it is neither semisymmetric
nor pseudosymmtric. Also, we have found that the TCEBW spacetime is an Einstein manifold of degree 3,
generalized Roter type and 2-quasi-Einstein (see, Theorem 3.2), but its Ricci tensor is neither Codazzi type
nor cyclic parallel. In Theorem 4.1 and 4.2, it is shown that the TCEBW spacetime realizes almost η-Ricci
soliton as well as almost η-Ricci-Yamabe soliton. Finally, a comparative study between MTW and TCEBW
spacetime has been exhibited in Section 5.
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[15] É. Cartan, La géométrie des espaces de Riemann, 1st Ed., Gauthier-Villars, Paris, 1925, Cahiers scientifiques fascicule II., Gauthier-
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[67] J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic mappings and some generalizations, Palacky Univ. Press, Olomouc, 2009.
[68] M. S. Morris, K. S. Thorne, Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity, Amer. J.

Phys. 56 (1988), 395–412.
[69] A. Moussa, H. Aounallah, P. Rudra, F. Ahmed, Klein–Gordon oscillator with scalar and vector potentials in topologically charged

Ellis–Bronnikov-type wormhole, Int. J. Geom. Meth. Mod. Phys. 20 (06), 2350102 (2023).
[70] J. R. Nascimento, G. J. Olmo, P. J. Porfirio, A. Yu. Petrov, and A. R. Soares, Global monopole in Palatini f(R) gravity, Phys. Rev., D 99

(2019), 064053.
[71] B. O’Neill, Semi-Riemannian geometry with applications to the relativity, Academic Press, New York-London, 1983.
[72] E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27 (1952), 287–295.
[73] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., X(5) (2011), 757–799.
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