Filomat 38:15 (2024), 5543–5557 https://doi.org/10.2298/FIL2415543A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Kachurovskij spectra nonlinear block operator matrices

Aymen Ammara,, Sami Baraket^b , Anis Ben Ghorbal^b , Aref Jeribi^b

^aDepartment of Mathematics, University of Sfax, Faculty of Sciences of Sfax Soukra Road Km 3.5, B. P. 1171, 3000, Sfax, Tunisia ^bDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh, Saudi Arabia

Abstract. In this paper we extend the results obtained by X. Dong and D. Wu in [1] to 3×3 Lipschitz continuous nonlinear operator matrices. In this work, the Kachurovskij spectrum of 3×3 Lipschitz continuous nonlinear operator matrices are studied. Firstly, some connections between the Kachurovskij spectrum of certain 3×3 Lipschitz continuous nonlinear operator matrices and that of their entries are established, and the relationship between the Kachurovskij spectrum of 3×3 Lipschitz continuous nonlinear operator matrices and that of their Schur complement is presented by means of Schur decomposition.

1. Introduction

The spectrum for Lipschitz continuous operators which was defined by Kachurovskij in 1969, as well as a spectrum for linearly bounded operators introduced by Dörfner in 1997. In [1] X. Dong and D. Wu study the Kachurovskij spectrum of 2×2 Lipschitz continuous nonlinear operator matrices. The authors give some connections between the Kachurovskij spectrum of certain 2×2 nonlinear operator matrices and that of their entries.

In this paper, the Kachurovskij spectrum of 3×3 Lipschitz continuous nonlinear operator matrices are studied. Firstly, some connections between the Kachurovskij spectrum of certain 3×3 Lipschitz continuous nonlinear operator matrices and that of their entries are established, and the relationship between the Kachurovskij spectrum of 3×3 Lipschitz continuous nonlinear operator matrices and that of their Schur complement is presented by means of Schur decomposition.

Let *X* be an infinite dimensional complex Hilbert space. Let $C(X)$ denote the set of all continuous (in general, nonlinear) operators from *X* into *X*, and let $\mathcal{L}(X)$ denote the set of all bounded linear operators from *X* into *X*. For $F \in C(X)$,

$$
[F]_{Lip} := \sup_{x \neq y} \frac{\|F(x) - F(y)\|}{\|x - y\|}
$$

$$
[F]_{lip} := \inf_{x \neq y} \frac{\|F(x) - F(y)\|}{\|x - y\|}
$$
 (1)

Keywords. Kachurovskij spectrum, Lipschitz continuous nonlinear operator matrices.

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A10; Secondary 47A12.

Received: 01 May 2023; Revised: 11 August 2023; Accepted: 07 February 2024

Communicated by Snežana Č. Živković-Zlatanović

^{*} Corresponding author: Aymen Ammar

Email addresses: ammar.aymen@fss.usf.tn (Aymen Ammar), SMBaraket@imamu.edu.sa (Sami Baraket),

assghorbal@imamu.edu.sa (Anis Ben Ghorbal), abjeribi@imamu.edu.sa (Aref Jeribi)

If $[F]_{Lip} < \infty$, we write $F \in \mathfrak{Lip}(\mathfrak{X})$, and call F Lipschitz continuous. Let $\mathfrak{Lip}(\mathfrak{X})$ denote the set of all Lipschitz continuous operators from *X* into *X*, which map 0 into 0. Note that if *F* is a bounded linear operator, we have $[F]_{Lip} = ||F||$. In addition, we define subset of C by means of the lower characteristic (2):

$$
\sigma_{lip}(F) := \{ \lambda \in \mathbb{C} \text{ such that } [F - \lambda]_{lip} = 0 \}.
$$

If $[F - \lambda]_{lip} > 0$, then *F* is injective and closed.

Definition 1.1. *Given* $F \in \mathfrak{Lip}(\mathfrak{X})$ *, we call the set*

$$
\rho_K(F) := \{ \lambda \in \mathbb{C} \text{ such that } F - \lambda \text{ is bijective and } (F - \lambda)^{-1} \in \mathfrak{Lip}(\mathfrak{X}) \}.
$$

The Kachurovskij resolvent set and its complement

$$
\sigma_K(F) = \mathbb{C} \backslash \rho_K(F)
$$

the Kachurovskij spectrum of F. \diamond

 λ ∈ ρ _K(*F*) if, and only if, *F* − λ is a lipeomorphism, i.e., *F* − λ is bijective, and satisfies [*F* − λ]_{*Lip*} < ∞ and $[F - \lambda]_{lip} > 0.$

In the case of a bounded linear operator *F*, $\sigma_{lip}(F)$ is the approximate point spectrum of *F* and $\sigma_K(F)$ is the usual spectrum of *F*.

Definition 1.2. *Let X be a Hilbert space, F* : *X* → *X be continuous, the numerical range* $W_Z(F)$ *of F is denoted by*

$$
W_Z(F):=\left\{\frac{\langle F(x)-F(y),x-y\rangle}{\|x-y\|^2},\ x,\ y\in X,\ x\neq y\right\}.
$$

Obviously, this definition coincides with the numerical range of Toeplitz [2] in the linear case.

Lemma 1.3. *Let X be a Banach space and* $F : X \longrightarrow X$ *a lipeomorphism. Suppose that* $G \in \mathfrak{Lip}(\mathfrak{X})$ *satisfies* [*G*]*Lip* < [*F*]*lipF*. *Then, F* + *G is also a lipeomorphism and*

$$
[(F+G)^{-1}]_{Lip} \le \frac{[F^{-1}]_{Lip}}{1 - [G]_{Lip}[F^{-1}]_{Lip}} = \frac{1}{[F]_{lip} - [G]_{Lip}}.
$$

−¹

Lemma 1.4. *Let X be a Hilbert space,* $F \in \mathfrak{Lip}(\mathfrak{X})$ *with* $F(0) = 0$ *, and* $\lambda \in \mathbb{C}$ *with*

$$
d_{\lambda} := dist(\lambda, W_Z(F)) > 0.
$$

Then F − λ*I is a lipeomorphism with*

$$
[(F - \lambda)^{-1}]_{Lip} \le \frac{1}{d_{\lambda}}.
$$

♢

♢

2. Main results

First, we study the Kachurovskij spectrum of 3×3 diagonal block operator matrices.

♢

Proposition 2.1. *Let*

$$
L_0 = \begin{pmatrix} A & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & K \end{pmatrix} \in C(X \times X \times X)
$$

with A, E, and K are in Lip(X)*.Then,*

 $(i) \sigma_{lip}(\mathcal{L}_0) = \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$. $(iii) \sigma_K(L_0) = \sigma_K(A) \cup \sigma_K(E) \cup$ $\sigma_K(K)$.

Proof. (*i*) Let $\lambda \in \sigma_{lip}(A)$, then there exist sequences $(x_n^{(1)})$ and $(y_n^{(1)})$ of X with $x_n^{(1)} \neq y_n^{(1)}$, such that

$$
\frac{\| (A - \lambda)x_n^{(1)} - (A - \lambda)y_n^{(1)} \|}{\|x_n^{(1)} - y_n^{(1)}\|} \to 0 \text{ as } n \to \infty.
$$

Set $x_n =$ $\begin{pmatrix} x_n^{(1)} \\ 0 \end{pmatrix}$ $\overline{}$ $\boldsymbol{0}$ Í $\begin{array}{c} \n\end{array}$, $y_n =$ $\begin{pmatrix} y_n^{(1)} \\ 0 \end{pmatrix}$ $\overline{\mathcal{C}}$ $\boldsymbol{0}$ λ $\begin{array}{c} \end{array}$, then $x_n \neq y_n$, $n = 1, 2, \dots$, and (1)

$$
\frac{\|[(L_0 - \lambda)x_n - (L_0 - \lambda)y_n\|}{\|x_n^-\,y_n^{\parallel}} = \frac{\|(A - \lambda)x_n^{(1)} - (A - \lambda)y_n^{(1)}\|}{\|x_n^{(1)} - y_n^{(1)}\|} \to 0 \text{ as } n \to \infty
$$

i.e., $\lambda \in \sigma_{lip}(L_0)$. By a similar argument, we can show that

$$
\sigma_{lip}(E)\bigcup \sigma_{lip}(K)\subset \sigma_{lip}(\mathrm{L}_0).
$$

Conversely, let $\lambda \in \sigma_{lip}(L_0)$, assume that $\lambda \notin \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$. Then, $[A - \lambda]_{lip} > 0$, $[E - \lambda]_{lip} > 0$, and $[K - \lambda]_{lip} > 0$. Thus, for any vectors *x* = $\int x_1$ $\overline{\mathcal{C}}$ *x*2 *x*3 λ $\begin{array}{c} \end{array}$ $, y =$ $\int y_1$ $\overline{\mathcal{C}}$ *y*2 *y*3 λ $\begin{array}{c} \end{array}$ with $x \neq y$, we have $||(L_0 - \lambda)x - (L_0 - \lambda)y||$ ∥*x* − *y*∥

$$
= \sqrt{\frac||(A - \lambda)x_1 - (A - \lambda)y_1||^2 + ||(E - \lambda)x_2 - (E - \lambda)y_2||^2 + ||(K - \lambda)x_3 - (K - \lambda)y_3||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$

\n
$$
\geq \sqrt{\frac{|A - \lambda]_{lip}||x_1 - y_1||^2 + [E - \lambda]_{lip}||x_2 - y_2||^2 + [K - \lambda]_{lip}||x_3 - y_3||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}}
$$

\n
$$
\geq \min(|A - \lambda]_{lip}, [A - \lambda]_{lip}, [K - \lambda]_{lip}) > 0,
$$

and hence $[L_0 - \lambda]_{lip} > 0$, which lead a contradiction. Thus $\lambda \in \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$. Therefore, $\sigma_{lip}(\mathcal{L}_0) = \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K).$

(*ii*) From (*i*), we know that $[L_0 - \lambda]_{lip} > 0$ if and only if $[A - \lambda]_{lip} > 0$, $[A - \lambda]_{lip} > 0$, and $[K - \lambda]_{lip} > 0$. Clearly, L₀ is bijective if and only if $A - \lambda$, $K - \lambda$, and $K - \lambda$ are bijective. Thus, $\rho_K(L_0) = \rho_K(A) \cup \rho_K(E) \cup \rho_K(K)$, therefore $\sigma_K(L_0) = \sigma_K(A) \cup \sigma_K(E) \cup \sigma_K(K)$.

Now, we consider upper triangular operator matrices.

Proposition 2.2. *Let*

$$
\mathcal{L}_0 = \left(\begin{array}{ccc} A & B & C \\ 0 & E & F \\ 0 & 0 & K \end{array} \right) \in C(X \times X \times X)
$$

with A, B, C, E, F, and K are in Lip(X)*. Then,*

$$
\sigma_{lip}(A) \subset \sigma_{lip}(L_0) \subset \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K).
$$

Proof. It is easy to see that $\sigma_{lip}(A) \subset \sigma_{lip}(L_0)$, and so we only need to prove that $\sigma_{lip}(L_0) \subset \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$. Let $\lambda \in \sigma_{lip}(L_0)$, then $[L_0 - \lambda]_{lip} = 0$. Evidently, the factorization formula

$$
L_0 - \lambda = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & K - \lambda \end{pmatrix} \begin{pmatrix} I & 0 & C \\ 0 & I & F \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & E - \lambda & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & B & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} A - \lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}
$$
 (3)

holds. Write

$$
U = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & K - \lambda \end{pmatrix}
$$

$$
R = \begin{pmatrix} I & 0 & C \\ 0 & I & F \\ 0 & 0 & I \end{pmatrix}
$$

$$
V = \begin{pmatrix} I & 0 & 0 \\ 0 & E - \lambda & 0 \\ 0 & 0 & I \end{pmatrix}
$$

$$
W = \begin{pmatrix} I & B & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}
$$

$$
Z = \begin{pmatrix} A - \lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix}
$$

Clearly, *R* and *W* are a lipeomorphism, and hence [*R*]*lip* > 0 and [*W*]*lip* > 0. Since

$$
[L_0 - \lambda]_{lip} = [URV W Z]_{lip} \geq [U]_{lip} [R]_{lip} [V]_{lip} [W]_{lip} [Z]_{lip}
$$

it follows that $[U]_{lip} = 0$ or $[V]_{lip} = 0$ or $[Z]_{lip} = 0$, which implies that $\lambda \in \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$. Consequently, $\sigma_{lip}(\mathring{L}_0) \subset \sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)$.

 \Box

Corollary 2.3. *Let*

$$
\mathcal{L}_0 = \left(\begin{array}{ccc} A & B & C \\ 0 & E & F \\ 0 & 0 & K \end{array} \right) \in C(X \times X \times X)
$$

with A, B, C, E, F, and K are in $\mathfrak{Lip}(\mathfrak{X})$. If $\sigma_K(A) \cap \sigma_K(E) \cap \sigma_K(K) = \emptyset$, then $\sigma_K(L_0) = \sigma_K(A) \cup \sigma_K(E) \cup \sigma_K(K)$. \diamond

Theorem 2.4. *Let*

$$
\mathcal{L}_0 = \left(\begin{array}{ccc} A & B & C \\ 0 & E & F \\ 0 & 0 & K \end{array} \right) \in C(X \times X \times X)
$$

 σ *ivith A, B, C, E, F, and K are in* $\mathfrak{Lip}(\mathfrak{X})$ *. Then,* $\sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K) = \sigma_{lip}(L_0) \cup (\sigma_{lip}(E) \cap \Delta_1) \cup (\sigma_{lip}(K) \cap \Delta_2)$ *, where* $\Delta_1 = \{ \lambda \in \mathbb{C} : [A - \lambda]_{lip} > 0$, and $A - \lambda$ is not surjective} and $\Delta_2 = \{ \lambda \in \mathbb{C} : [E - \lambda]_{lip} > 0$, and $E - \lambda$ λ *is not surjective*}*.* \diamond

Proof. It is easy to prove that

$$
\sigma_{lip}(K)\bigcup \sigma_{lip}(A)\bigcup \sigma_{lip}(E)\supset \sigma_{lip}(\mathbf{L}_0)\bigcup \big[\sigma_{lip}(E)\bigcap \Delta_1\big]\bigcup [\sigma_{lip}(K)\bigcap \Delta_2].
$$

Conversely, let $\lambda \in [\sigma_{lip}(K) \cup \sigma_{lip}(A) \cup \sigma_{lip}(E)] \setminus \sigma_{lip}(L_0)$; then we have from Proposition 2.2(*i*), $\lambda \in [\sigma_{lip}(E) \cup \sigma_{lip}(K)] \setminus \sigma_{lip}(A)$, and hence $\lambda \in \Delta_1 \cup \rho_K(A)$. Assume that $\lambda \in \rho_K(A)$, then $A - \lambda$ is a lipeomorphism. Make the factorisation as in (3), we have that

$$
[U]_{lip}=[(\mathrm{L}_0-\lambda)Z^{-1}W^{-1}V^{-1}R^{-1}]_{lip}\geq [\mathrm{L}_0-\lambda]_{lip}[Z^{-1}]_{lip}[W^{-1}]_{lip}[V^{-1}]_{lip}[R^{-1}]_{lip}>0.
$$

Thus $[K - \lambda]_{lip} > 0$. So, $\lambda \notin \sigma_{lip}(K)$. Make the factorisation as in (3), we have that

$$
[V]_{lip} = [R^{-1}U^{-1}(L_0 - \lambda)Z^{-1}W^{-1}]_{lip} \geq [R^{-1}]_{lip}[U^{-1}]_{lip}[L_0 - \lambda]_{lip}[Z^{-1}]_{lip}[W^{-1}]_{lip} > 0.
$$

Thus $[E - \lambda]_{lip} > 0$. So, $\lambda \notin \sigma_{lip}(E)$. Which is a contradiction to $\lambda \in \sigma_{lip}(K) \cup \sigma_{lip}(E)$. Hence, $\lambda \in \Delta_1$. Therefore

$$
[\sigma_{lip}(A)\bigcup \sigma_{lip}(E)\bigcup \sigma_{lip}(K)]\backslash \sigma_{lip}(\mathsf{L}_0)\subset \sigma_{lip}(E)\bigcap \Delta_1.
$$

The same, we can prove $[\sigma_{lip}(A) \cup \sigma_{lip}(E) \cup \sigma_{lip}(K)] \setminus \sigma_{lip}(L_0) \subset \sigma_{lip}(K) \cap \Delta_2$.

Corollary 2.5. *Let*

$$
L_0 = \left(\begin{array}{ccc} A & B & C \\ 0 & E & F \\ 0 & 0 & K \end{array}\right) \in C(X \times X \times X)
$$

with A, B, C, E, F, and K are in Lip(X)*. Then,*

$$
\sigma_{lip}(A) \bigcup \sigma_{lip}(E) \bigcup \sigma_{lip}(K) = \sigma_{lip}(L_0) \tag{4}
$$

if and only if $\sigma_{lip}(E) \cap \Delta_1 \subset \sigma_{lip}(L_0)$ and $\sigma_{lip}(K) \cap \Delta_2 \subset \sigma_{lip}(L_0)$. Moreover, if $\sigma_{lip}(E) \cap \Delta_1 = \sigma_{lip}(K) \cap \Delta_2 = \emptyset$, then (19) is hold. \diamond

3. Frobenius-Schur's decomposition

In this section, we are concerned with a 3×3 block operator matrix

$$
L_0 := \left(\begin{array}{ccc} A & B & C \\ D & E & F \\ G & H & L \end{array}\right),\tag{5}
$$

where the entries of the matrix are in general unbounded operators. The operator (5) is defined on $(D(A) \cap D(D) \cap D(G)) \times (D(B) \cap D(E) \cap D(H)) \times (D(C) \cap D(F) \cap D(L))$. The essential work in this section is to impose some conditions on the entries of the operator L_0 in order to establish its closedness. In the product of Banach spaces $X \times Y \times Z$, we consider the operator L_0 defined by (5) where the operator *A* acts on *X* and has a domain $\mathcal{D}(A)$, the operator *E* acts on *Y* and has a domain $\mathcal{D}(E)$, and the operator *L* acts on *Z* and has a domain $\mathcal{D}(L)$. The intertwining operator *B* is defined on the domain $\mathcal{D}(B) \subset Y$ into *X*, the operator *H* is defined on the domain $\mathcal{D}(H) \subset Y$ into *Z*, the operator *C* is defined on the domain $\mathcal{D}(C) \subset Z$ into *X*, the operator *F* is defined on the domain $\mathcal{D}(F) \subset Z$ into *Y*, the operator *D* is defined on the domain $\mathcal{D}(D) \subset X$ into *Y*, and the operator *G* is defined on the domain $\mathcal{D}(G) \subset X$ into *Z*. In what follows, we will consider the following hypotheses(see [5]):

 $(M1)$ The operator *A* is a closed, densely defined linear operator on *X*, with a nonempty resolvent set $\rho(A)$.

(*M*2) The operator *D* (resp. *G*) verifies that $\mathcal{D}(A) \subset \mathcal{D}(D)$ (resp. $\mathcal{D}(A) \subset \mathcal{D}(G)$) and, for some (hence for all) $\mu \in \rho(A)$, the operator $D(A - \mu)^{-1}$ (resp. $G(A - \mu)^{-1}$) is bounded.

Let $F_1(\mu) := D(A - \mu)^{-1}$, and $F_2(\mu) := G(A - \mu)^{-1}$.

• In particular, if *D* (resp. *G*) is closable then, from the closed graph theorem, it follows that $F_1(\mu)$ (resp. $F_2(\mu)$ is bounded.

(*M*3) The operator *B* (resp. *C*) is densely defined on *Y* (resp. *Z*) and, for some (hence for all) $\mu \in \rho(A)$, the operator $(A - \mu)^{-1}B$ (resp. $(A - \mu)^{-1}C$) is bounded on its domain.

Now, let
$$
G_1(\mu) := \overline{(A - \mu)^{-1}B}
$$
, and $G_2(\mu) := \overline{(A - \mu)^{-1}C}$.

(*M*4) The lineal $\mathcal{D}(B) \cap \mathcal{D}(E)$ is dense in *Y* and, for some (hence for all) $\mu \in \rho(A)$, the operator $S_1(\mu)$:= $E - D(A - \mu)^{-1}B$ is closed.

(*M*5) $\mathcal{D}(C) \subset \mathcal{D}(F)$, and the operator $F - D(A - \mu)^{-1}C$ is bounded on its domain, for some $\mu \in \rho(A)$ and therefore, for all $\mu \in \rho(A)$. We will also suppose that there exists μ such that $\mu \in \rho(A) \cap \rho(S_1(\mu))$ and we will denote $G_3(\mu)$ by

$$
G_3(\mu) := \overline{(S_1(\mu) - \mu)^{-1}(F - D(A - \mu)^{-1}C)}.
$$

• To explain this, let $\mu \in \rho(A)$, such that $F - D(A - \mu)^{-1}C$ is bounded on its domain. Then, for an arbitrary $\lambda \in \rho(A)$, we have

$$
F - D(A - \lambda)^{-1}C = F - D(A - \mu)^{-1}C + (\mu - \lambda)F_1(\mu)(A - \lambda)^{-1}C.
$$

From the assumptions (*M*2) and (*M*3), it follows that the operator on the right-hand side is bounded on its domain. Then, the boundedness of the operator $F - D(A - \mu)^{-1}C$ does not depend on $\mu \in \rho(A)$. We will denote $G_4(\mu)$ by $G_4(\mu) := \overline{F - D(A - \mu)^{-1}C}$.

Remark 3.1. If the operators A and E generate C₀-semigroups, and if the operators D and B are bounded, then there exists $\mu \in \mathbb{C}$, such that $\mu \in \rho(A) \cap \rho(S_1(\mu))$. Indeed, it is well known that, if the operators A and E generate C_0 -semigroups then, there exist two constants $M > 0$ and $w > 0$, such that $\|(\mu - T)^{-1} \| \leq \frac{M}{Re \mu - w}$, where $T \in \{A, E\}$ *for all* µ *such that Re*µ > *w. For a fixed* µ ∈ C *chosen in such a way that Re*µ > *w* + α, *where* α > 0, *we consider the following resolvent equation of* $S_1(\mu)$

$$
(\lambda - E + D(A - \mu)^{-1}B)\varphi = \psi.
$$
\n⁽⁶⁾

Since $\lambda \in \rho(E)$, we deduce that, for $Re \lambda > w + \alpha$, Eq. (6) may be transformed into

$$
[I + (\lambda - E)^{-1}D(\mu - A)^{-1}B]\varphi = (\lambda - E)^{-1}\psi.
$$

The fact that

$$
\| (\lambda - E)^{-1} D(\mu - A)^{-1} B \| \le \frac{M^2 \|D\| \|B\|}{\alpha (Re\lambda - w)}
$$

allows us to conclude that $\lim_{Re\lambda\to+\infty}$ $||(\lambda - E)^{-1}D(\mu - A)^{-1}B|| = 0$. *Hence, there exists* $\beta > w + \alpha$ *such that, for Re* $\lambda > \beta$, ωe have $r_{\sigma}((\lambda - E)^{-1}D(\mu - A)^{-1}B) < 1$, where r_{σ} (.) represents the spectral radius. Hence for μ , such that $Re\mu > \beta$, *we have* $\mu \in \rho(A)$ *and* $\mu \in \rho(S_1(\mu))$ *. Moreover, we can write*

$$
(\mu - S_1(\mu))^{-1} = \sum_{n \geq 0} [(\mu - E)^{-1} D(\mu - A)^{-1} B]^n (\mu - E)^{-1}.
$$

(*M*6) The operator *H* satisfies the fact that $\mathcal{D}(B) \subset \mathcal{D}(H)$ and, for some (hence for all) $\mu \in \rho(A) \cap \rho(S_1(\mu))$, the operator $(H - G(A – μ)⁻¹B)(S_1(μ) – μ)⁻¹$ is bounded. Set

$$
F_3(\mu):=(H-G(A-\mu)^{-1}B)(S_1(\mu)-\mu)^{-1}.
$$

(*M7*) For the operator *K*, we will assume that $\mathcal{D}(C) \subset \mathcal{D}(K)$ and, for some (hence for all) $\mu \in \rho(A) \cap \rho(S_1(\mu))$, the operator

$$
L - G(A - \mu)^{-1}C - [H - G(A - \mu)^{-1}B](S_1(\mu) - \mu)^{-1}[F - D(A - \mu)^{-1}C]
$$

is closable. Let us denote by $S_2(\mu)$ this operator, and by $\overline{S}_2(\mu)$ its closure.

Remark 3.2. (*i*) *From the Hilbert identity, we get for* $\lambda, \mu \in \rho(A)$

$$
S_1(\lambda) - S_1(\mu) = (\mu - \lambda)F_1(\mu)(A - \lambda)^{-1}B.
$$

Since the operator $F_1(\mu)$ *is bounded and* $(A - \lambda)^{-1}B$ *is bounded on its domain, we deduce that neither the domain of* $S_1(\mu)$ *nor the property of being closable depends on the choice of* μ . *Then,*

$$
S_1(\lambda) - S_1(\mu) = (\mu - \lambda) F_1(\mu) G_1(\lambda).
$$
 (7)

(*ii*) Let $\lambda \in \rho(A) \cap \rho(S_1(\lambda))$ and $\mu \in \rho(A) \cap \rho(S_1(\mu))$. Then,

$$
S_2(\lambda) - S_2(\mu) = (\mu - \lambda)F_2(\mu)(A - \lambda)^{-1}C - F_3(\lambda)[F - D(A - \lambda)^{-1}C] +
$$

\n
$$
F_3(\mu)[F - D(A - \mu)^{-1}C]
$$

\n
$$
= (\mu - \lambda)F_2(\mu)(A - \lambda)^{-1}C - F_3(\lambda)[F - D(A - \lambda)^{-1}C] +
$$

\n
$$
F_3(\mu)[F - D(A - \lambda)^{-1}C - (\mu - \lambda)D(A - \mu)^{-1}(A - \lambda)^{-1}C]
$$

\n
$$
= (\mu - \lambda)F_2(\mu)(A - \lambda)^{-1}C + [F_3(\mu) - F_3(\lambda)][F - D(A - \lambda)^{-1}C] +
$$

\n
$$
(\lambda - \mu)F_3(\mu)F_1(\mu)(A - \lambda)^{-1}C.
$$

*Since the operators F*_i(.), with i = 1, 2, 3 are bounded everywhere and since the operators $(A-\mu)^{-1}C$ and F−D $(A-\lambda)^{-1}C$ *are bounded on their domains then, the closedness of the operator* $S_2(\mu)$ *does not depend on the choice of* μ *. Hence,*

$$
\overline{S}_{2}(\lambda) - \overline{S}_{2}(\mu) = (\mu - \lambda)F_{2}(\mu)G_{2}(\lambda) + [F_{3}(\mu) - F_{3}(\lambda)]G_{4}(\lambda) + (\lambda - \mu)F_{3}(\mu)F_{1}(\mu)G_{2}(\lambda).
$$
\n(8)

First, we will search the Frobenius-Schur's decomposition of the operator *L*⁰ defined in (5). For this purpose, let *x* $\overline{\mathcal{C}}$ *y z* Í $\begin{array}{c} \end{array}$ $\in \mathcal{D}(L_0)$ and $\lambda \in \mathbb{C}$. Then,

$$
(L_0 - \lambda) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
 if, and only if,
$$
\begin{pmatrix} A - \lambda & B & C \\ D & E - \lambda & F \\ G & H & K - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

This leads to the following system

 $\sqrt{ }$ $\left\{ \right.$ $\overline{\mathcal{L}}$

$$
\begin{cases}\n(A - \lambda)x + By + Cz = 0 \\
Dx + (E - \lambda)y + Fz = 0 \\
Gx + Hy + (K - \lambda)z = 0.\n\end{cases}
$$
\n
$$
(A - \lambda)x = -By - Cz
$$
\n
$$
Dx + (E - \lambda)y + Fz = 0
$$
\n
$$
Gx + Hy + (K - \lambda)z = 0.
$$
\n(9)

Suppose that $\rho(A)$ is nonempty and let $\lambda \in \rho(A)$. Then, the first equation of the system (9) gives $x =$ $-(A - \lambda)^{-1}By - (A - \lambda)^{-1}Cz$. Consequently, the second equation of (9) becomes

$$
\begin{cases}\nD[(A - \lambda)^{-1}By + (A - \lambda)^{-1}Cz] - Fz + (\lambda - E)y = 0 \\
Gx + Hy + (K - \lambda)z = 0.\n\end{cases}
$$
\n(10)

From Eq. (10), we must assume that $D(A) \subset D(C)$. Then, Eq. (10) becomes

$$
\begin{cases} [E - \lambda - D(A - \lambda)^{-1}B]y = [(A - \lambda)^{-1}C - F]z \\ Gx + Hy + (K - \lambda)z = 0. \end{cases}
$$

Let $S_1(\lambda) = E - D(A - \lambda)^{-1}B$. If $\lambda \in \rho(S_1(\lambda))$, then

$$
y = (S_1(\lambda) - \lambda)^{-1} [(A - \lambda)^{-1}C - F]z.
$$

Hence

$$
\begin{aligned}\n\{-G(A - \lambda)^{-1}B(S_1(\lambda) - \lambda)^{-1}[(A - \lambda)^{-1}C - F] - G(A - \lambda)^{-1}C + \\
&\quad H(S_1(\lambda) - \lambda)^{-1}[(A - \lambda)^{-1}C - F] + (K - \lambda)\}z = 0 \\
\text{Let } S_2(\lambda) = K - G(A - \lambda)^{-1}B(S_1(\lambda) - \lambda)^{-1}[(A - \lambda)^{-1}C - F] - G(A - \lambda)^{-1}C + \\
&\quad H(S_1(\lambda) - \lambda)^{-1}[(A - \lambda)^{-1}C - F].\n\end{aligned}
$$

Now we can search $F_i(\mu)$, $i = 1, 2, 3$ and $G_i(\mu)$, $i = 1, 2, 3$ such that the operator

$$
\begin{pmatrix}\nI & 0 & 0 \\
F_1(\mu) & I & 0 \\
F_2(\mu) & F_3(\mu) & I\n\end{pmatrix}\n\begin{pmatrix}\nA - \mu & 0 & 0 \\
0 & S_1(\mu) - \mu & 0 \\
0 & 0 & S_2(\mu) - \mu\n\end{pmatrix}\n\begin{pmatrix}\nI & G_1(\mu) & G_2(\mu) \\
0 & I & G_3(\mu) \\
0 & 0 & I\n\end{pmatrix}
$$
\nis equal to\n
$$
\begin{pmatrix}\nA - \mu & B & C \\
D & E - \mu & F \\
G & H & L - \mu\n\end{pmatrix}.
$$
\nIt follows that for\n
$$
\begin{pmatrix}\nx \\
y \\
z\n\end{pmatrix} \in \mathcal{D}(\mathcal{L}_0)
$$
\n
$$
\begin{pmatrix}\nA - \mu & 0 & 0 \\
F_1(\mu)(A - \mu) & S_1(\mu) - \mu & 0 \\
F_2(\mu)(A - \mu) & F_3(\mu)(S_1(\mu) - \mu) & S_2(\mu) - \mu\n\end{pmatrix}\n\begin{pmatrix}\nI & G_1(\mu) & G_2(\mu) \\
0 & I & G_3(\mu) \\
0 & 0 & I\n\end{pmatrix}\n\begin{pmatrix}\nx \\
y \\
z\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\nA - \mu & B & C \\
D & E - \mu & F \\
G & H & E - \mu\n\end{pmatrix}\n\begin{pmatrix}\nx \\
y \\
z\n\end{pmatrix}.
$$
\n(11)

From the last matrix equality (11), we can choose $F_i(\mu)$, $i = 1, 2, 3$ and $G_i(\mu)$, $i = 1, 2, 3$, for a necessary condition as follows:

$$
(A - \mu)x + (A - \mu)G_1(\mu)y + (A - \mu)G_2(\mu)z = (A - \mu)x + By + Cz
$$

then for $\mu \in \rho(A)$ we have

$$
x + G_1(\mu)y + G_2(\mu)z = x + (A - \mu)^{-1}By + (A - \mu)^{-1}Cz.
$$

Take

$$
G_1(\mu) := (A - \mu)^{-1} B \tag{12}
$$

and

$$
G_2(\mu) := (A - \mu)^{-1} C. \tag{13}
$$

The second equation of (11) gives:

$$
F_1(\mu)(A - \mu)x + (F_1(\mu)(A - \mu)G_1(\mu) + S_1(\mu) - \mu)y + (F_1(\mu)(A - \mu)G_2(\mu) + (S_1(\mu) - \mu)G_3(\mu))z
$$

must be equal to

$$
Dx + (E - \mu)y + Fz.
$$

Take

$$
F_1(\mu) := D(A - \mu)^{-1}.
$$
\n(14)

From the third equation of (11) we have

$$
F_2(\mu)(A - \mu)x + (F_2(\mu)(A - \mu)G_1(\mu) + F_3(\mu)(S_1(\mu) - \mu))y + (F_2(\mu)(A - \mu)G_2(\mu) + F_3(\mu)(S_1(\mu) - \mu) + S_2(\mu) - \mu)z = Gx + Hy + (L - \mu)z
$$

Take

$$
F_2(\mu) := G(A - \mu)^{-1}.
$$
\n(15)

For the action on *y*, we choose

$$
GG_1(\mu) + F_3(\mu)(S_1(\mu) - \mu) - H = 0
$$

therefore for $\mu \in \rho(A) \cap \rho(S_1(\mu))$, take

$$
F_3(\mu) = [H - G(A - \mu)^{-1}B](S_1(\mu) - \mu)^{-1}
$$

i.e.,

 $F_3(\mu) = \Theta(\mu)(S_1(\mu) - \mu)^{-1}$. (16)

Now for the action on *z* take,

$$
[F_2(\mu)(A - \mu)G_2(\mu) + F_3(\mu)(S_1(\mu) - \mu)G_3(\mu) + S_2(\mu) - \mu - L + \mu] = 0
$$

then

$$
G(A - \mu)^{-1}C + \Theta(\mu)G_3(\mu) = L - S_2(\mu).
$$

From the expression of $S_2(\mu)$ we can choose

$$
G_3(\mu) = (S_1(\mu) - \mu)^{-1}(F - D(A - \mu)^{-1}C). \tag{17}
$$

We shall now verify the sufficient condition.

We denote by T_{μ} the operator defined for every $\mu \in \rho(A) \cap \rho(S_1(\mu))$ by

$$
T_{\mu}:=\left(\begin{array}{cccc}I&0&0\\F_1(\mu)&I&0\\F_2(\mu)&F_3(\mu)&I\end{array}\right)\left(\begin{array}{cccc}A-\mu&0&0\\0&S_1(\mu)-\mu&0\\0&0&S_2(\mu)-\mu\end{array}\right)\left(\begin{array}{cccc}I&G_1(\mu)&G_2(\mu)\\0&I&G_3(\mu)\\0&0&I\end{array}\right)
$$

where $F_i(\mu)$, $i = 1, 2, 3$ and $G_i(\mu)$, $i = 1, 2, 3$ are the operators defined in (12)-(17). Let be *x* $\overline{}$ *y z* λ $\begin{array}{c} \end{array}$ $\in \mathcal{D}(\mathcal{L}_0)$. The first row in the product of T_μ gives:

$$
(A - \mu)x + (A - \mu)G_1(\mu)y + (A - \mu)G_2(\mu)z = (A - \mu)x + By + Cz
$$

The second row of T_{μ} gives:

$$
F_1(\mu)(A - \mu)x + [F_1(A - \mu)G_1(\mu) + S_1(\mu) - \mu]y + [F_1(\mu)(A - \mu)G_2(\mu) + (S_1(\mu) - \mu)G_3(\mu)]z
$$

= Dx + (E - S_1(\mu) + (S_1(\mu) - \mu))y + Fz
= Dx + (E - \mu)y + Fz.

We can show also that the left side of the third row of T_u , i.e.,

$$
F_2(\mu)(A - \mu)x + [F_2(\mu)(A - \mu)G_1(\mu) + F_1(S_1(\mu) - \mu)]y + [F_2(\mu)(A - \mu)G_2(\mu) + F_3(\mu)(S_1(\mu) - \mu)G_3(\mu) + S_1(\mu) - \mu]z
$$

is equal to $Gx + Hy + (L - \mu)z$. It follows that $\mathcal{L}_0 - \mu$ is an extension of the operator T_μ , i.e., $\mathcal{L}_0 - \mu \subset T_\mu$. Now it remains to prove that $\mathcal{D}(T_\mu) \subset \mathcal{D}(\mathcal{L}_0)$. Observe that

$$
\mathcal{D}(T_{\mu}) = \left\{ \left(\begin{array}{c} x' \\ y' \\ z' \end{array} \right) = \left(\begin{array}{ccc} I & -G_1 & G_1G_3 - G_2 \\ 0 & I & -G_3 \\ 0 & 0 & I \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right), \begin{array}{c} x \in \mathcal{D}(A) \\ y \in \mathcal{D}(S_1(\mu)) \\ z \in \mathcal{D}(S_2(\mu)) \end{array} \right\}.
$$

Let be *x* ′ $\overline{}$ *y* ′ *z* ′ Í $\begin{array}{c} \n\end{array}$ $\in \mathcal{D}(\mathcal{T}_\mu)$ then $\Bigg\{$ $\overline{\mathcal{L}}$ $x' = x - G_1(\mu)y + [G_1(\mu)G_3(\mu) - G_2(\mu)]z$ $y' = y - G_3(\mu)z$ $\overline{z}' = \overline{z}.$

Observe that $z \in Y_2 \subset \mathcal{D}(C) \cap \mathcal{D}(F) \cap \mathcal{D}(L)$, $y' = y - G_3(\mu)z \in \mathcal{N}(S(\mu) - \mu) \subset Y_1$, $Y_1 \subset \mathcal{D}(B) \cap \mathcal{D}(E)$ and $x' = x - G_1(\mu)y + (G_1(\mu)G_3(\mu) - G_2(\mu))z \in D(A)$.

Now, we are able to establish the closedness of the operator L_0 .

Theorem 3.3. Let the hypotheses (M1)-(M6) be satisfied. Then, the operator L_0 is closable if, and only if, $S_2(\mu)$ is *closable on Z, for some* $\mu \in \rho(A) \cap \rho(S_1(\mu))$ *. Moreover, the closure* L of L₀ is given by

$$
L = \mu - \begin{pmatrix} I & 0 & 0 \\ F_1(\mu) & I & 0 \\ F_2(\mu) & F_3(\mu) & I \end{pmatrix} \begin{pmatrix} \mu - A & 0 & 0 \\ 0 & \mu - S_1(\mu) & 0 \\ 0 & 0 & \mu - \overline{S}_2(\mu) \end{pmatrix} \begin{pmatrix} I & G_1(\mu) & G_2(\mu) \\ 0 & I & G_3(\mu) \\ 0 & 0 & I \end{pmatrix}
$$
(18)

or, spelled out,

$$
\left\{\n\begin{array}{l}\nL: \mathcal{D}(L) \subset X \times Y \times Z \longrightarrow X \times Y \times Z \\
L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} A[x + G_1(\mu)y + G_2(\mu)z] - \mu[G_1(\mu)y + G_2(\mu)z] \\
D[x + G_1(\mu)y + G_2(\mu)z] + S_1(\mu)[y + G_3(\mu)z] - \mu G_3(\mu)z \\
G[x + G_1(\mu)y + G_2(\mu)z] + [H - G(A - \mu)^{-1}B][y + G_3(\mu)z] + \overline{S}_2(\mu)z\n\end{pmatrix}\n\right\}.
$$
\n
$$
\mathcal{D}(L) = \left\{\n\begin{array}{l}\nx \\
y \\
z\n\end{array}\n\right\} \in X \times Y \times Z \text{ such that } \n\begin{array}{l}\nx + G_1(\mu) y + G_2(\mu) z \in \mathcal{D}(A), \\
y + G_3(\mu) z \in \mathcal{D}(S_1(\mu)) \\
and \quad z \in \mathcal{D}(\overline{S}_2(\mu))\n\end{array}\n\right\}.
$$

Theorem 3.4. *Let the hypotheses* (*M*1)*-*(*M*6) *be satisfied. If C, E, L, H, F, and B are in* Lip(X) *and G and D are in* $\mathcal{L}(X)$, then for $\mu \in \rho(A) \cap \rho(S_1(\mu))$, the following cases hold

(i)
$$
\mu \in \sigma_{lip}(L)
$$
 if and only if $0 \in \sigma_{lip}(S_1(\mu)) \cup \sigma_{lip}(S_2(\mu))$.
(ii) $\mu \in \sigma_K(L)$ if and only if $0 \in \sigma_K(S_1(\mu)) \cup \sigma_K(S_2(\mu))$.

Proof. Since $\mu \in \rho(A)$, then $L - \mu$ has the factorization (18). Denote it by

$$
L - \mu = URV,
$$

where

$$
U=\left(\begin{array}{ccc}I&0&0\\F_1(\mu)&I&0\\F_2(\mu)&F_3(\mu)&I\end{array}\right)
$$

A. Ammar et al. / *Filomat 38:15 (2024), 5543–5557* 5553

$$
R = \left(\begin{array}{ccc} \mu - A & 0 & 0 \\ 0 & \mu - S_1(\mu) & 0 \\ 0 & 0 & \mu - \overline{S}_2(\mu) \end{array}\right)
$$

and

$$
V = \left(\begin{array}{ccc} I & G_1(\mu) & G_2(\mu) \\ 0 & I & G_3(\mu) \\ 0 & 0 & I \end{array} \right).
$$

Obviously, *U* and *V* are lipeomorphisms on $X \times X \times X$. (*i*) Let $\mu \in \sigma_{lip}(L)$, then $[L - \mu]_{lip} = 0$. Since $[U]_{lip} > 0$, $[V]_{lip} > 0$, and

$$
[L - \mu]_{lip} = [URV]_{lip} = [U]_{lip} [R]_{lip} [V]_{lip},
$$

it follows that $[R]_{lip} = 0$, and $[S_1(\mu)]_{lip} = 0$ and $[S_2(\mu)]_{lip} = 0$, i.e., $0 \in \sigma_{lip}(S_1(\mu)) \cup \sigma_{lip}(S_2(\mu))$. Conversely, let $0 ∈ σ_{lip}(S₁(μ)) ∪ σ_{lip}(S₂(μ)),$ then $[R]_{lip} = 0$. Since $[U]_{lip} > 0$, $[V]_{lip} > 0$, and

$$
[R]_{lip}=[U^{-1}(L-\mu)V^{-1}]_{lip}\geq [U^{-1}]_{lip}[L-\mu]_{lip}[V^{-1}]_{lip},
$$

it follows that $[L - \mu]_{lip} = 0$, i.e., $\mu \in \sigma_{lip}(L)$.

(*ii*) Since *U* and *V* are lipeomorphisms, then by the factorization (18), the desired result follows immediately. \square

Theorem 3.5. *Let the hypotheses* (*M*1)*-*(*M*6) *be satisfied. If C, E, L, H, F, and B are in* L(*X*) *and G and D are in* $\mathfrak{Lip}(\mathfrak{X})$ *, then if* $\rho(K) \neq \emptyset$ *, then for* $\mu \in \rho(K)$ *, the following cases hold*

(*i*) $\mu \in \sigma_{lip}(L)$ *if and only if* $0 \in \sigma_{lip}(S_3(\mu)) \cup \sigma_{lip}(S_4(\mu))$ *.* (*ii*) $\mu \in \sigma_K(L)$ *if and only if* $0 \in \sigma_K(S_3(\mu)) \cup \sigma_K(S_4(\mu))$ *, where*

$$
S_3(\mu) = A - B(K - \mu)^{-1}D
$$

$$
S_4(\mu) = L - G(A - \mu)^{-1}C - [H - G(A - \mu)^{-1}B](S_1(\mu) - \mu)^{-1}[F - D(A - \mu)^{-1}C]
$$

Proof. The proof is analogue of Theorem 3.5. □

Theorem 3.6. *Let*

$$
\mathcal{L}_0 = \left(\begin{array}{ccc} 0 & 0 & C \\ 0 & E & 0 \\ G & 0 & 0 \end{array} \right) \in C(X \times X \times X)
$$

with C, E, and G are in $\mathfrak{Lip}(\mathfrak{X})$ *. If C, E* $\in \mathcal{L}(X)$ *and G* $\in \mathfrak{Lip}(\mathfrak{X})$ *, then the following cases holds* (*i*) $\sigma_{lip}(L_0)\setminus\{0\} = {\lambda \in \mathbb{C} \text{ such that } \lambda^3 \in \sigma_{lip}(GCE)\setminus\{0\}}.$ $(iii) \sigma_K(L_0)\setminus\{0\} = \{\lambda \in \mathbb{C} \text{ such that } \lambda^3 \in \sigma_K(GCE)\setminus\{0\}\}.$

Theorem 3.7. *Let*

$$
\mathcal{L}_0 = \left(\begin{array}{ccc} 0 & 0 & C \\ 0 & E & 0 \\ G & 0 & 0 \end{array} \right) \in C(X \times X \times X)
$$

with C, E, and G are in $\mathfrak{Lip}(\mathfrak{X})$ *. If C, G* \in $\mathcal{L}(X)$ *and E* \in $\mathfrak{Lip}(\mathfrak{X})$ *, then the following cases holds* (*i*) $\sigma_{lip}(L_0)\setminus\{0\} = {\lambda \in \mathbb{C} \text{ such that } \lambda^3 \in \sigma_{lip}(CGE)\setminus\{0\}}.$ $(iii) \sigma_K(L_0)\setminus\{0\} = \{\lambda \in \mathbb{C} \text{ such that } \lambda^3 \in \sigma_K(CGE)\setminus\{0\}\}.$

♢

Theorem 3.8. *Let*

$$
F := \left(\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right) \in C(X \times X \times X),
$$

where $A_{ij} \in \mathfrak{Lip}(\mathfrak{X})$ $1 \le i, j \le 3$. Then, $\sigma_K(F) \subset G_1 \cup G_2 \cup G_3$, where $G_i = \sigma_K(A_{ii}) \cup \{ \lambda \in \rho_K(A_{ii}) \text{ such that } [A_{ii} - A_{ii}] \}$ λ *]lip*</sub> \leq $[A_{ji}]$ *lip* $\}$ *.*

Proof. Let $\lambda \notin G_1 \cup G_2 \cup G_3$. Then, $\lambda \notin \rho_K(A_{11}) \cup \rho_K(A_{22}) \cap \rho_K(A_{33})$ and $[A_{ii}-\lambda]_{lip} > [A_{ji}-\lambda]_{lip}$ for $i, j = 1, 2, 3$. Write

$$
T_{\lambda} = \begin{pmatrix} A_{11} - \lambda & 0 & 0 \\ 0 & A_{22} - \lambda & 0 \\ 0 & 0 & A_{33} - \lambda \end{pmatrix}.
$$

Then,

$$
F-\lambda I=[(F-\lambda I)T_{\lambda}^{-1}]T_{\lambda}.
$$

Thus, we have the following factorization

$$
(F - \lambda I)T_{\lambda}^{-1}
$$
\n
$$
= \begin{pmatrix} A_{11} - \lambda & A_{12} & A_{13} \\ A_{21} & A_{22} - \lambda & A_{23} \\ A_{31} & A_{32} & A_{33} - \lambda \end{pmatrix} \begin{pmatrix} (A_{11} - \lambda)^{-1} & 0 & 0 \\ 0 & (A_{22} - \lambda)^{-1} & 0 \\ 0 & 0 & (A_{33} - \lambda)^{-1} \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} I & A_{12}(A_{22} - \lambda)^{-1} & A_{13}(A_{33} - \lambda)^{-1} \\ A_{21}(A_{11} - \lambda)^{-1} & I & A_{23}(A_{33} - \lambda)^{-1} \\ A_{31}(A_{11} - \lambda)^{-1} & A_{32}(A_{22} - \lambda)^{-1} & I \end{pmatrix}
$$
\n
$$
= I + M(\lambda),
$$

where

$$
M(\lambda) = \begin{pmatrix} 0 & A_{12}(A_{22} - \lambda)^{-1} & A_{13}(A_{33} - \lambda)^{-1} \\ A_{21}(A_{11} - \lambda)^{-1} & 0 & A_{23}(A_{33} - \lambda)^{-1} \\ A_{31}(A_{11} - \lambda)^{-1} & A_{32}(A_{22} - \lambda)^{-1} & 0 \end{pmatrix}.
$$

Note that $[M(\lambda)]_{lip}$ < 1. Then, from Lemma 1.3, we have

$$
I+M(\lambda)=(F-\lambda I)T_\lambda^{-1}
$$

is a lipeomorphism. Therefore, $\lambda \in \rho_K(F)$. \Box

Theorem 3.9. *Let*

$$
F := \left(\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right),
$$

where $A_{ii} \in \mathcal{L}(X)$ and $A_{ij} \in \mathfrak{Lip}(\mathfrak{X})$ with $i \neq j1 \leq i, j \leq 3$. Then, $\sigma_K(F) \subset \{ \lambda \in \mathbb{C} : dist(\lambda, W_Z(A_{112}) \cup W_Z(A_{22}) \cup W_Z(A_{33}) \leq \lambda \}$ $max([A_{12}]_{lip}, [A_{13}]_{lip}, [A_{21}]_{lip}, [A_{23}]_{lip}, [A_{32}]_{lip})$

Proof. The proof follows from Theorem 3.8 and Lemma 1.4. \Box

Corollary 3.10. *We assume that the diagonal operator matrices*

$$
\left(\begin{array}{ccc} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & A_{33} \end{array}\right),
$$

is a hyponormal operator. Then, we have

$$
dist(0, \sigma(A_{112}) \bigcup \sigma(A_{22}) \bigcup \sigma(A_{33})) \ge \max([A_{12}]_{lip}, [A_{13}]_{lip}, [A_{21}]_{lip}, [A_{23}]_{lip}, [A_{32}]_{lip}).
$$

♢

Theorem 3.11. *Let*

$$
F = \left(\begin{array}{ccc} A & B & C \\ 0 & D & E \\ 0 & 0 & G \end{array}\right) \in C(X \times X \times X)
$$

with A, B, C, D, E and $G \in \mathfrak{Lip}(\mathfrak{X})$ *.*

(*i*) *If A, D, G, and F are lipeomorphism, then B and C are lipeomorphism.* (*ii*) *If F is lipeomorphismand satisfies*

 $\min([A]_{lip}^2,[B]_{lip}^2+[D]_{lip}^2,[C]_{lip}^2+[E]_{lip}^2+[G]_{lip}^2]-[A]_{lip}[B]_{lip}\geq ([B]_{lip}+[C]_{lip}+[G]_{lip})^2,$

then A, D and G are lipeomorphism. ◇

Proof. (*i*) It follows immediately from Proposition 2.2 (*ii*). (*ii*) Let

T = *A* 0 0 $\overline{\mathcal{C}}$ 0 *D* 0 0 0 *G* λ $\begin{array}{c} \end{array}$, *S* = 0 *B* 0 $\overline{\mathcal{C}}$ 0 0 0 0 0 0 λ $\begin{array}{c} \end{array}$, $K =$ 0 0 *C* $\overline{\mathcal{C}}$ 0 0 0 0 0 0 λ $\begin{array}{c} \hline \end{array}$, $W =$ 0 0 0 $\overline{\mathcal{C}}$ 0 0 *E* 0 0 0 Í $\begin{array}{c} \end{array}$.

and

 $\frac{f(x)-f(y)}{||x-y||^2} =$

We have $F = T + S + K + W$. Then, for any vectors $x =$ $\int x_1$ $\overline{\mathcal{C}}$ *x*2 *x*3 λ \int and *y* = $\int y_1$ $\overline{\mathcal{C}}$ *y*2 *y*3 Í $\begin{array}{c} \end{array}$ in *X* × *X* × *X* with *x* \neq *y*, we have ∥*F*(*x*)−*F*(*y*)∥ 2

$$
\frac{||A(x_1) - A(y_1) + B(x_2) - B(y_2) + C(x_3) - C(y_3)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2} + \frac{||D(x_2) - D(y_2) + E(x_3) - E(y_3)||^2 + ||G(x_3) - G(y_3)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$

$$
\geq \frac{||A(x_1) - A(y_1)||^2 - ||B(x_2) - B(y_2)||^2 + ||C(x_3) - C(y_3)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2} + \frac{||D(x_2) - D(y_2)||^2 + ||E(x_3) - E(y_3)||^2 + ||G(x_3) - G(y_3)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$
\n
$$
\geq \frac{||A(x_1) - A(y_1)||^2 + ||B(x_2) - B(y_2)||^2 + ||C(x_3) - C(y_3)||^2 + ||D(x_2) - D(y_2)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2} + \frac{2||E(x_3) - E(y_3)||^2 + ||G(x_3) - G(y_3)||^2 + ||A(x_1) - A(y_1)|| ||B(x_2) - B(y_2)||}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$
\n
$$
\geq \frac{[A]_{Lip}^2 ||x_1 - y_1||^2 + ([B]_{Lip}^2 + [D]_{Lip}^2)^2 ||x_2 - y_2||^2 + ([C]_{Lip}^2 + [E]_{Lip}^2 + [B]_{Lip}^2) ||x_3 - y_3||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$

A. Ammar et al. / *Filomat 38:15 (2024), 5543–5557* 5556

$$
-2\frac{[A]_{Lip}[B]_{Lip}||x_1-y_1||||x_2-y_2||}{||x_1-y_1||^2+||x_2-y_2||^2+||x_3-y_3||^2}.
$$

Hence,

$$
\frac{||F(x) - F(y)||^2}{||x - y||^2} \geq \min([A]_{Lip}^2, [B]_{Lip}^2 + [D]_{Lip}^2, [C]_{Lip}^2 + [E]_{Lip}^2 + [G]_{Lip}^2 - [A]_{Lip}[B]_{Lip})
$$

$$
\geq ([B]_{Lip} + [C]_{Lip} + [G]_{Lip})^2.
$$

So,

$$
[F]_{Lip} \geq [B]_{Lip} + [C]_{Lip} + [G]_{Lip}.
$$

On the other hand,

$$
\frac{||S(x) - S(y)||^2}{||x - y||^2} = \frac{||B(x_2) - B(y_2)||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$

\n
$$
\leq \frac{[B]_{Lip}^2 ||x_2 - y_2||^2}{||x_1 - y_1||^2 + ||x_2 - y_2||^2 + ||x_3 - y_3||^2}
$$

\n
$$
\leq [B]_{Lip}^2.
$$

It follows that

Similarly, we can prove

and

 $[W]_{Lip} \leq [E]_{Lip}.$

 $[S]_{Lip} \leq [B]_{Lip}$.

[*K*]*Lip* ≤ [*C*]*Lip*

Thus,

 $[K + W + S]_{Lip} < [F]_{Lip}.$

By using Lemma 1.3, we have

is a lipeomorphism. Then, *A*, *D*, and *G* are lipeomorphism.

Example 3.12. Let $X = l^2$, for any $x = (x_1, x_2, \dots) \in X$ and $A(x_1, x_2, \dots) = ||x||_e$, $E(x_1, x_2, \dots) = (||x||, x_1, x_2, \dots)$, $K(x_1, x_2, \ldots,) = 0$ and $C = (0, x_1, x_2, \ldots,)$ *where e* = (1, 0, 0, ...)*. Consider the block operator matrix*

$$
L_0 = \left(\begin{array}{ccc} A & B & C \\ 0 & E & F \\ 0 & 0 & K \end{array} \right).
$$

Then, by Corollary 2.5, we have that. Hence,

$$
\sigma_{lip}(A) \bigcup \sigma_{lip}(E) \bigcup \sigma_{lip}(K) = \sigma_{lip}(L_0)
$$
\n(19)

On the other hand, by calculation, we have

$$
\sigma_{lip}(A) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.
$$

and

$$
\sigma_{lip}(E) = \{\lambda \in \mathbb{C} : 1 \le |\lambda| \le \sqrt{2}\}.
$$

In addition, we claim that

$$
\sigma_{lip}(\mathbf{L}_0) = \{\lambda \in \mathbb{C} : |\lambda| \leq \sqrt{2}\}.
$$

In fact, the equalities $[L_0]_{lip} = 0$ *and* $[L_0]_{lip} =$ 2 *follows from a straightforward calculation. Thus,*

$$
\sigma_{lip}(\mathcal{L}_0) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \leq \sqrt{2}\}.
$$

It is clear that $0 \in \sigma_{lip}(L_0)$ *when* $0 < |\lambda| \leq 1$ *, set* $z_1 =$ $\int x_1$ $\overline{\mathcal{C}}$ $\boldsymbol{0}$ $\boldsymbol{0}$ Í $\begin{array}{c} \end{array}$ *, and* z_2 = $\int x_2$ $\overline{\mathcal{C}}$ θ θ λ $\begin{array}{c} \hline \end{array}$ *, then* $[L_0 - \lambda]_{lip} = [A - \lambda]_{lip} = 0.$

When
$$
1 < |\lambda| \le \sqrt{2}
$$
, set $z_1 = \begin{pmatrix} 0 \\ y_1 \\ 0 \end{pmatrix}$, and $z_2 = \begin{pmatrix} 0 \\ y_2 \\ 0 \end{pmatrix}$, then $[L_0 - \lambda]_{lip} = [K - \lambda]_{lip} = 0$ set $z_1 = \begin{pmatrix} 0 \\ 0 \\ w_1 \end{pmatrix}$, and

$$
z_2 = \begin{pmatrix} 0 \\ 0 \\ w_2 \end{pmatrix}, \text{ then } [L_0 - \lambda]_{lip} = [E - \lambda]_{lip} = 0. \text{ Thus,}
$$

$$
\sigma_{lip}(\mathcal{L}_0) = \{\lambda \in \mathbb{C} : |\lambda| \leq \sqrt{2}\}.
$$

4. Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023009. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

References

- [1] Dong, X., Wu, D.: The Kachurovskij spectrum of Lipschitz continuous nonlinear block operator matrices. Adv. Oper. Theory 6, 1-18 (2021).
- [2] Toeplitz, O.: Das algebraische Analogon zu einem Satz von Fejer. Math. Z. 2, 187-197 (1918).
- [3] Appell, J., Pascale, E.D., Vignoli, A.: Nonlinear Spectral Theory. Walter de Gruyter, Berlin (2004).
- [4] Kachurovskij, R.I.: Regular points, spectrum and eigenfunctions of nonlinear operators. Soviet Math. Dokl. 10, 1101-1105 (1969).
- [5] Jeribi, A: Spectral theory and applications of linear operators and block operator matrices. Springer, Cham, 2015. xvi+599 pp. ISBN: 978-3-319-17565-2; 978-3-319-17566-9
- [6] Jeribi, A: Denseness, bases and frames in Banach spaces and applications. (English) Zbl 06849137 Berlin : De Gruyter (ISBN 978-3-11-048488-5/hbk; 978-3-11-049386-3/ebook). xv, 406 p. (2018).
- [7] Jeribi, A: Perturbation theory for linear operators: Denseness and bases with applications. Springer-Verlag (ISBN 978-981-16- 2527-5), Singapore (2021).