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Abstract. In this paper we extend the results obtained by X. Dong and D. Wu in [1] to 3 × 3 Lipschitz
continuous nonlinear operator matrices. In this work, the Kachurovskij spectrum of 3×3 Lipschitz continu-
ous nonlinear operator matrices are studied. Firstly, some connections between the Kachurovskij spectrum
of certain 3 × 3 Lipschitz continuous nonlinear operator matrices and that of their entries are established,
and the relationship between the Kachurovskij spectrum of 3 × 3 Lipschitz continuous nonlinear operator
matrices and that of their Schur complement is presented by means of Schur decomposition.

1. Introduction

The spectrum for Lipschitz continuous operators which was defined by Kachurovskij in 1969, as well as a
spectrum for linearly bounded operators introduced by Dörfner in 1997. In [1] X. Dong and D. Wu study
the Kachurovskij spectrum of 2 × 2 Lipschitz continuous nonlinear operator matrices. The authors give
some connections between the Kachurovskij spectrum of certain 2× 2 nonlinear operator matrices and that
of their entries.

In this paper, the Kachurovskij spectrum of 3 × 3 Lipschitz continuous nonlinear operator matrices are
studied. Firstly, some connections between the Kachurovskij spectrum of certain 3×3 Lipschitz continuous
nonlinear operator matrices and that of their entries are established, and the relationship between the
Kachurovskij spectrum of 3 × 3 Lipschitz continuous nonlinear operator matrices and that of their Schur
complement is presented by means of Schur decomposition.

Let X be an infinite dimensional complex Hilbert space. Let C(X) denote the set of all continuous (in
general, nonlinear) operators from X into X, and let L(X) denote the set of all bounded linear operators
from X into X. For F ∈ C(X),

[F]Lip := sup
x,y

∥F(x) − F(y)∥
∥x − y∥

(1)

[F]lip := inf
x,y

∥F(x) − F(y)∥
∥x − y∥

(2)
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If [F]Lip < ∞, we write F ∈ Lip(X), and call F Lipschitz continuous. Let Lip(X) denote the set of all Lipschitz
continuous operators from X into X, which map 0 into 0. Note that if F is a bounded linear operator, we
have [F]Lip = ∥F∥. In addition, we define subset of C by means of the lower characteristic (2):

σlip(F) := {λ ∈ C such that [F − λ]lip = 0}.

If [F − λ]lip > 0, then F is injective and closed.

Definition 1.1. Given F ∈ Lip(X), we call the set

ρK(F) := {λ ∈ C such that F − λ is bijective and (F − λ)−1
∈ Lip(X)}.

The Kachurovskij resolvent set and its complement

σK(F) = C\ρK(F)

the Kachurovskij spectrum of F. ♢

λ ∈ ρK(F) if, and only if, F − λ is a lipeomorphism, i.e., F − λ is bijective, and satisfies [F − λ]Lip < ∞ and
[F − λ]lip > 0.
In the case of a bounded linear operator F, σlip(F) is the approximate point spectrum of F and σK(F) is the
usual spectrum of F.

Definition 1.2. Let X be a Hilbert space, F : X −→ X be continuous, the numerical range WZ(F) of F is denoted by

WZ(F) :=
{
⟨F(x) − F(y), x − y⟩

∥x − y∥2
, x, y ∈ X, x , y

}
.

♢

Obviously, this definition coincides with the numerical range of Toeplitz [2] in the linear case.

Lemma 1.3. Let X be a Banach space and F : X −→ X a lipeomorphism. Suppose that G ∈ Lip(X) satisfies
[G]Lip < [F]lipF. Then, F + G is also a lipeomorphism and

[(F + G)−1]Lip ≤
[F−1]Lip

1 − [G]Lip[F−1]Lip
=

1
[F]lip − [G]Lip

.

♢

Lemma 1.4. Let X be a Hilbert space, F ∈ Lip(X) with F(0) = 0, and λ ∈ C with

dλ := dist(λ,WZ(F)) > 0.

Then F − λI is a lipeomorphism with

[(F − λ)−1]Lip ≤
1
dλ
.

♢

2. Main results

First, we study the Kachurovskij spectrum of 3 × 3 diagonal block operator matrices.
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Proposition 2.1. Let

L0 =

 A 0 0
0 E 0
0 0 K

 ∈ C(X × X × X)

with A, E, and K are in Lip(X).Then,

(i) σlip(L0) = σlip(A)
⋃
σlip(E)

⋃
σlip(K).

(ii) σK(L0) = σK(A)
⋃
σK(E)

⋃
σK(K). ♢

Proof. (i) Let λ ∈ σlip(A), then there exist sequences (x(1)
n ) and (y(1)

n ) of X with x(1)
n , y(1)

n , such that

∥(A − λ)x(1)
n − (A − λ)y(1)

n ∥

∥x(1)
n − y(1)

n ∥
→ 0 as n→∞.

Set xn =

 x(1)
n
0
0

, yn =

 y(1)
n
0
0

, then xn , yn, n = 1, 2, · · · , and

∥(L0 − λ)xn − (L0 − λ)yn∥

∥x−n y∥n
=
∥(A − λ)x(1)

n − (A − λ)y(1)
n ∥

∥x(1)
n − y(1)

n ∥
→ 0 as n→∞

i.e., λ ∈ σlip(L0). By a similar argument, we can show that

σlip(E)
⋃

σlip(K) ⊂ σlip(L0).

Conversely, let λ ∈ σlip(L0), assume that λ < σlip(A)
⋃
σlip(E)

⋃
σlip(K). Then, [A− λ]lip > 0, [E− λ]lip > 0, and

[K − λ]lip > 0. Thus, for any vectors x =

 x1
x2
x3

, y =

 y1
y2
y3

with x , y, we have

∥(L0 − λ)x − (L0 − λ)y∥
∥x − y∥

=

√
∥(A − λ)x1 − (A − λ)y1∥

2 + ∥(E − λ)x2 − (E − λ)y2∥
2 + ∥(K − λ)x3 − (K − λ)y3∥

2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≥

√
[A − λ]lip∥x1 − y1∥

2 + [E − λ]lip∥x2 − y2∥
2 + [K − λ]lip∥x3 − y3∥

2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≥ min([A − λ]lip, [A − λ]lip, [K − λ]lip) > 0,

and hence [L0 − λ]lip > 0, which lead a contradiction. Thus λ ∈ σlip(A)
⋃
σlip(E)

⋃
σlip(K). Therefore,

σlip(L0) = σlip(A)
⋃
σlip(E)

⋃
σlip(K).

(ii) From (i), we know that [L0 −λ]lip > 0 if and only if [A−λ]lip > 0, [A−λ]lip > 0, and [K−λ]lip > 0. Clearly,
L0 is bijective if and only if A − λ, K − λ, and K − λ are bijective. Thus, ρK(L0) = ρK(A)

⋃
ρK(E)

⋃
ρK(K),

therefore σK(L0) = σK(A)
⋃
σK(E)

⋃
σK(K).

Now, we consider upper triangular operator matrices.

Proposition 2.2. Let

L0 =

 A B C
0 E F
0 0 K

 ∈ C(X × X × X)
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with A, B, C, E, F, and K are in Lip(X). Then,

σlip(A) ⊂ σlip(L0) ⊂ σlip(A)
⋃
σlip(E)

⋃
σlip(K). ♢

Proof. It is easy to see thatσlip(A) ⊂ σlip(L0), and so we only need to prove thatσlip(L0) ⊂ σlip(A)
⋃
σlip(E)

⋃
σlip(K).

Let λ ∈ σlip(L0), then [L0 − λ]lip = 0. Evidently, the factorization formula

L0 − λ =

 I 0 0
0 I 0
0 0 K − λ


 I 0 C

0 I F
0 0 I


 I 0 0

0 E − λ 0
0 0 I


 I B 0

0 I 0
0 0 I


 A − λ 0 0

0 I 0
0 0 I

 (3)

holds. Write

U =

 I 0 0
0 I 0
0 0 K − λ


R =

 I 0 C
0 I F
0 0 I


V =

 I 0 0
0 E − λ 0
0 0 I


W =

 I B 0
0 I 0
0 0 I


Z =

 A − λ 0 0
0 I 0
0 0 I


Clearly, R and W are a lipeomorphism, and hence [R]lip > 0 and [W]lip > 0. Since

[L0 − λ]lip = [URVWZ]lip ≥ [U]lip[R]lip[V]lip[W]lip[Z]lip,

it follows that [U]lip = 0 or [V]lip = 0 or [Z]lip,= 0, which implies that λ ∈ σlip(A)
⋃
σlip(E)

⋃
σlip(K).

Consequently, σlip(L0) ⊂ σlip(A)
⋃
σlip(E)

⋃
σlip(K).

Corollary 2.3. Let

L0 =

 A B C
0 E F
0 0 K

 ∈ C(X × X × X)

with A, B, C, E, F, and K are in Lip(X). If σK(A)
⋂
σK(E)

⋂
σK(K) = ∅, then σK(L0) = σK(A)

⋃
σK(E)

⋃
σK(K). ♢

Theorem 2.4. Let

L0 =

 A B C
0 E F
0 0 K

 ∈ C(X × X × X)

with A, B, C, E, F, and K are in Lip(X). Then, σlip(A)
⋃
σlip(E)

⋃
σlip(K) = σlip(L0)

⋃
(σlip(E)

⋂
∆1)
⋃

(σlip(K)
⋂
∆2),

where ∆1 = {λ ∈ C : [A − λ]lip > 0, and A − λ is not surjective} and ∆2 = {λ ∈ C : [E − λ]lip > 0, and E −
λ is not surjective}. ♢
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Proof. It is easy to prove that

σlip(K)
⋃

σlip(A)
⋃

σlip(E) ⊃ σlip(L0)
⋃

[σlip(E)
⋂
∆1]
⋃

[σlip(K)
⋂
∆2].

Conversely, letλ ∈ [σlip(K)
⋃
σlip(A)

⋃
σlip(E)]\σlip(L0); then we have from Proposition 2.2 (i),λ ∈ [σlip(E)

⋃
σlip(K)]\σlip(A),

and hence λ ∈ ∆1
⋃
ρK(A). Assume that λ ∈ ρK(A), then A − λ is a lipeomorphism. Make the factorisation

as in (3), we have that

[U]lip = [(L0 − λ)Z−1W−1V−1R−1]lip ≥ [L0 − λ]lip[Z−1]lip[W−1]lip[V−1]lip[R−1]lip > 0.

Thus [K − λ]lip > 0. So, λ < σlip(K). Make the factorisation as in (3), we have that

[V]lip = [R−1U−1(L0 − λ)Z−1W−1]lip ≥ [R−1]lip[U−1]lip[L0 − λ]lip[Z−1]lip[W−1]lip > 0.

Thus [E−λ]lip > 0. So, λ < σlip(E). Which is a contradiction to λ ∈ σlip(K)
⋃
σlip(E). Hence, λ ∈ ∆1. Therefore

[σlip(A)
⋃

σlip(E)
⋃

σlip(K)]\σlip(L0) ⊂ σlip(E)
⋂
∆1.

The same, we can prove [σlip(A)
⋃
σlip(E)

⋃
σlip(K)]\σlip(L0) ⊂ σlip(K)

⋂
∆2.

Corollary 2.5. Let

L0 =

 A B C
0 E F
0 0 K

 ∈ C(X × X × X)

with A, B, C, E, F, and K are in Lip(X). Then,

σlip(A)
⋃

σlip(E)
⋃

σlip(K) = σlip(L0) (4)

if and only if σlip(E)
⋂
∆1 ⊂ σlip(L0) and σlip(K)

⋂
∆2 ⊂ σlip(L0). Moreover, if σlip(E)

⋂
∆1 = σlip(K)

⋂
∆2 = ∅, then

(19) is hold. ♢

3. Frobenius-Schur’s decomposition

In this section, we are concerned with a 3 × 3 block operator matrix

L0 :=

 A B C
D E F
G H L

 , (5)

where the entries of the matrix are in general unbounded operators. The operator (5) is defined on
(D(A)

⋂
D(D)

⋂
D(G))× (D(B)

⋂
D(E)

⋂
D(H))× (D(C)

⋂
D(F)

⋂
D(L)) . The essential work in this section

is to impose some conditions on the entries of the operator L0 in order to establish its closedness. In the
product of Banach spaces X × Y × Z, we consider the operator L0 defined by (5) where the operator A acts
on X and has a domainD(A), the operator E acts on Y and has a domainD(E), and the operator L acts on Z
and has a domainD(L). The intertwining operator B is defined on the domainD(B) ⊂ Y into X, the operator
H is defined on the domainD(H) ⊂ Y into Z, the operator C is defined on the domainD(C) ⊂ Z into X, the
operator F is defined on the domain D(F) ⊂ Z into Y, the operator D is defined on the domain D(D) ⊂ X
into Y, and the operator G is defined on the domainD(G) ⊂ X into Z. In what follows, we will consider the
following hypotheses(see [5]):

(M1) The operator A is a closed, densely defined linear operator on X, with a nonempty resolvent set ρ(A).

(M2) The operator D (resp. G) verifies thatD(A) ⊂ D(D) (resp. D(A) ⊂ D(G)) and, for some (hence for all)
µ ∈ ρ(A), the operator D(A − µ)−1 (resp. G(A − µ)−1) is bounded.
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Let F1(µ) := D(A − µ)−1, and F2(µ) := G(A − µ)−1.

• In particular, if D (resp. G) is closable then, from the closed graph theorem, it follows that F1(µ) (resp.
F2(µ)) is bounded.

(M3) The operator B (resp. C) is densely defined on Y (resp. Z) and, for some (hence for all) µ ∈ ρ(A), the
operator (A − µ)−1B (resp. (A − µ)−1C) is bounded on its domain.

Now, let G1(µ) := (A − µ)−1B, and G2(µ) := (A − µ)−1C.

(M4) The lineal D(B)
⋂
D(E) is dense in Y and, for some (hence for all) µ ∈ ρ(A), the operator S1(µ) :=

E −D(A − µ)−1B is closed.

(M5) D(C) ⊂ D(F), and the operator F − D(A − µ)−1C is bounded on its domain, for some µ ∈ ρ(A) and
therefore, for all µ ∈ ρ(A).We will also suppose that there exists µ such that µ ∈ ρ(A)

⋂
ρ(S1(µ)) and we will

denote G3(µ) by
G3(µ) := (S1(µ) − µ)−1(F −D(A − µ)−1C).

• To explain this, let µ ∈ ρ(A), such that F − D(A − µ)−1C is bounded on its domain. Then, for an arbitrary
λ ∈ ρ(A), we have

F −D(A − λ)−1C = F −D(A − µ)−1C + (µ − λ)F1(µ)(A − λ)−1C.

From the assumptions (M2) and (M3), it follows that the operator on the right-hand side is bounded on its
domain. Then, the boundedness of the operator F − D(A − µ)−1C does not depend on µ ∈ ρ(A). We will
denote G4(µ) by G4(µ) := F −D(A − µ)−1C.

Remark 3.1. If the operators A and E generate C0-semigroups, and if the operators D and B are bounded, then
there exists µ ∈ C, such that µ ∈ ρ(A)

⋂
ρ(S1(µ)). Indeed, it is well known that, if the operators A and E generate

C0-semigroups then, there exist two constants M > 0 and w > 0, such that ∥(µ − T)−1
∥ ≤

M
Reµ−w , where T ∈ {A,E}

for all µ such that Reµ > w. For a fixed µ ∈ C chosen in such a way that Reµ > w + α, where α > 0, we consider
the following resolvent equation of S1(µ)

(λ − E +D(A − µ)−1B)φ = ψ. (6)

Since λ ∈ ρ(E), we deduce that, for Reλ > w + α, Eq. (6) may be transformed into

[I + (λ − E)−1D(µ − A)−1B]φ = (λ − E)−1ψ.

The fact that

∥(λ − E)−1D(µ − A)−1B∥ ≤
M2
∥D∥∥B∥

α(Reλ − w)

allows us to conclude that lim
Reλ→+∞

∥(λ−E)−1D(µ−A)−1B∥ = 0.Hence, there exists β > w+α such that, for Reλ > β,

we have rσ((λ − E)−1D(µ − A)−1B) < 1, where rσ(.) represents the spectral radius. Hence for µ, such that Reµ > β,
we have µ ∈ ρ(A) and µ ∈ ρ(S1(µ)). Moreover, we can write

(µ − S1(µ))−1 =
∑
n≥0

[(µ − E)−1D(µ − A)−1B]n(µ − E)−1. ♢

(M6) The operator H satisfies the fact that D(B) ⊂ D(H) and, for some (hence for all) µ ∈ ρ(A)
⋂
ρ(S1(µ)),

the operator (H − G(A − µ)−1B)(S1(µ) − µ)−1 is bounded. Set

F3(µ) := (H − G(A − µ)−1B)(S1(µ) − µ)−1.

(M7) For the operator K,we will assume thatD(C) ⊂ D(K) and, for some (hence for all) µ ∈ ρ(A)
⋂
ρ(S1(µ)),

the operator
L − G(A − µ)−1C − [H − G(A − µ)−1B](S1(µ) − µ)−1[F −D(A − µ)−1C]

is closable. Let us denote by S2(µ) this operator, and by S2(µ) its closure.
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Remark 3.2. (i) From the Hilbert identity, we get for λ, µ ∈ ρ(A)

S1(λ) − S1(µ) = (µ − λ)F1(µ)(A − λ)−1B.

Since the operator F1(µ) is bounded and (A − λ)−1B is bounded on its domain, we deduce that neither the domain of
S1(µ) nor the property of being closable depends on the choice of µ. Then,

S1(λ) − S1(µ) = (µ − λ)F1(µ)G1(λ). (7)

(ii) Let λ ∈ ρ(A)
⋂
ρ(S1(λ)) and µ ∈ ρ(A)

⋂
ρ(S1(µ)). Then,

S2(λ) − S2(µ) = (µ − λ)F2(µ)(A − λ)−1C − F3(λ)[F −D(A − λ)−1C] +
F3(µ)[F −D(A − µ)−1C]

= (µ − λ)F2(µ)(A − λ)−1C − F3(λ)[F −D(A − λ)−1C] +
F3(µ)[F −D(A − λ)−1C − (µ − λ)D(A − µ)−1(A − λ)−1C]

= (µ − λ)F2(µ)(A − λ)−1C + [F3(µ) − F3(λ)][F −D(A − λ)−1C] +
(λ − µ)F3(µ)F1(µ)(A − λ)−1C.

Since the operators Fi(.), with i = 1, 2, 3 are bounded everywhere and since the operators (A−µ)−1C and F−D(A−λ)−1C
are bounded on their domains then, the closedness of the operator S2(µ) does not depend on the choice of µ. Hence,

S2(λ) − S2(µ) = (µ − λ)F2(µ)G2(λ) + [F3(µ) − F3(λ)]G4(λ) + (λ − µ)F3(µ)F1(µ)G2(λ). (8)

♢

First, we will search the Frobenius-Schur’s decomposition of the operator L0 defined in (5). For this

purpose, let

 x
y
z

 ∈ D(L0) and λ ∈ C. Then,

(L0 − λ)

 x
y
z

 =
 0

0
0

 if, and only if,

 A − λ B C
D E − λ F
G H K − λ


 x

y
z

 =
 0

0
0

 .
This leads to the following system 

(A − λ)x + By + Cz = 0
Dx + (E − λ)y + Fz = 0
Gx +Hy + (K − λ)z = 0.

(A − λ)x = −By − Cz
Dx + (E − λ)y + Fz = 0
Gx +Hy + (K − λ)z = 0.

(9)

Suppose that ρ(A) is nonempty and let λ ∈ ρ(A). Then, the first equation of the system (9) gives x =
−(A − λ)−1By − (A − λ)−1Cz. Consequently, the second equation of (9) becomes{

D[(A − λ)−1By + (A − λ)−1Cz] − Fz + (λ − E)y = 0
Gx +Hy + (K − λ)z = 0. (10)

From Eq. (10), we must assume thatD(A) ⊂ D(C). Then, Eq. (10) becomes{
[E − λ −D(A − λ)−1B]y = [(A − λ)−1C − F]z
Gx +Hy + (K − λ)z = 0.
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Let S1(λ) = E −D(A − λ)−1B. If λ ∈ ρ(S1(λ)), then

y = (S1(λ) − λ)−1[(A − λ)−1C − F]z.

Hence

{−G(A − λ)−1B(S1(λ) − λ)−1[(A − λ)−1C − F] − G(A − λ)−1C+
H(S1(λ) − λ)−1[(A − λ)−1C − F] + (K − λ)}z = 0

Let S2(λ) = K − G(A − λ)−1B(S1(λ) − λ)−1[(A − λ)−1C − F] − G(A − λ)−1C+
H(S1(λ) − λ)−1[(A − λ)−1C − F].

Now we can search Fi(µ), i = 1, 2, 3 and Gi(µ), i = 1, 2, 3 such that the operator I 0 0
F1(µ) I 0
F2(µ) F3(µ) I


 A − µ 0 0

0 S1(µ) − µ 0
0 0 S2(µ) − µ


 I G1(µ) G2(µ)

0 I G3(µ)
0 0 I


is equal to

 A − µ B C
D E − µ F
G H L − µ

 .
It follows that for

 x
y
z

 ∈ D(L0)

 A − µ 0 0
F1(µ)(A − µ) S1(µ) − µ 0
F2(µ)(A − µ) F3(µ)(S1(µ) − µ) S2(µ) − µ


 I G1(µ) G2(µ)

0 I G3(µ)
0 0 I


 x

y
z



=

 A − µ B C
D E − µ F
G H E − µ


 x

y
z

 . (11)

From the last matrix equality (11), we can choose Fi(µ), i = 1, 2, 3 and Gi(µ), i = 1, 2, 3, for a necessary
condition as follows:

(A − µ)x + (A − µ)G1(µ)y + (A − µ)G2(µ)z = (A − µ)x + By + Cz

then for µ ∈ ρ(A) we have

x + G1(µ)y + G2(µ)z = x + (A − µ)−1By + (A − µ)−1Cz.

Take

G1(µ) := (A − µ)−1B (12)

and

G2(µ) := (A − µ)−1C. (13)

The second equation of (11) gives:

F1(µ)(A − µ)x +
(
F1(µ)(A − µ)G1(µ) + S1(µ) − µ

)
y + (F1(µ)(A − µ)G2(µ) + (S1(µ) − µ)G3(µ))z

must be equal to
Dx + (E − µ)y + Fz.
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Take

F1(µ) := D(A − µ)−1. (14)

From the third equation of (11) we have

F2(µ)(A − µ)x + (F2(µ)(A − µ)G1(µ) + F3(µ)(S1(µ) − µ))y + (F2(µ)(A − µ)G2(µ) +
F3(µ)(S1(µ) − µ) + S2(µ) − µ)z = Gx +Hy + (L − µ)z

Take

F2(µ) := G(A − µ)−1. (15)

For the action on y, we choose
GG1(µ) + F3(µ)(S1(µ) − µ) −H = 0

therefore for µ ∈ ρ(A) ∩ ρ(S1(µ)), take

F3(µ) = [H − G(A − µ)−1B](S1(µ) − µ)−1

i.e.,

F3(µ) = Θ(µ)(S1(µ) − µ)−1. (16)

Now for the action on z take,

[F2(µ)(A − µ)G2(µ) + F3(µ)(S1(µ) − µ)G3(µ) + S2(µ) − µ − L + µ] = 0

then
G(A − µ)−1C + Θ(µ)G3(µ) = L − S2(µ).

From the expression of S2(µ) we can choose

G3(µ) = (S1(µ) − µ)−1(F −D(A − µ)−1C). (17)

We shall now verify the sufficient condition.

We denote by Tµ the operator defined for every µ ∈ ρ(A) ∩ ρ(S1(µ)) by

Tµ :=

 I 0 0
F1(µ) I 0
F2(µ) F3(µ) I


 A − µ 0 0

0 S1(µ) − µ 0
0 0 S2(µ) − µ


 I G1(µ) G2(µ)

0 I G3(µ)
0 0 I


where Fi(µ), i = 1, 2, 3 and Gi(µ), i = 1, 2, 3 are the operators defined in (12)-(17).

Let be

 x
y
z

 ∈ D(L0). The first row in the product of Tµ gives:

(A − µ)x + (A − µ)G1(µ)y + (A − µ)G2(µ)z = (A − µ)x + By + Cz

The second row of Tµ gives:

F1(µ)(A − µ)x + [F1(A − µ)G1(µ) + S1(µ) − µ]y + [F1(µ)(A − µ)G2(µ) + (S1(µ) − µ)G3(µ)]z

= Dx + (E − S1(µ) + (S1(µ) − µ))y + Fz
= Dx + (E − µ)y + Fz.
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We can show also that the left side of the third row of Tµ, i.e.,

F2(µ)(A − µ)x + [F2(µ)(A − µ)G1(µ) + F1(S1(µ) − µ)]y + [F2(µ)(A − µ)G2(µ)
+F3(µ)(S1(µ) − µ)G3(µ) + S1(µ) − µ]z

is equal to Gx +Hy + (L − µ)z. It follows that L0 − µ is an extension of the operator Tµ, i.e., L0 − µ ⊂ Tµ.
Now it remains to prove thatD(Tµ) ⊂ D(L0). Observe that

D(Tµ) =


 x′

y′

z′

 =
 I −G1 G1G3 − G2

0 I −G3
0 0 I


 x

y
z

 , x ∈ D(A)
y ∈ D(S1(µ))
z ∈ D(S2(µ))

 .
Let be

 x′

y′

z′

 ∈ D(Tµ) then
x′ = x − G1(µ)y +

[
G1(µ)G3(µ) − G2(µ)

]
z

y′ = y − G3(µ)z
z′ = z.

Observe that z ∈ Y2 ⊂ D(C) ∩ D(F) ∩ D(L), y′ = y − G3(µ)z ∈ N(S(µ) − µ) ⊂ Y1, Y1 ⊂ D(B) ∩ D(E) and
x′ = x − G1(µ)y + (G1(µ)G3(µ) − G2(µ))z ∈ D(A).

Now, we are able to establish the closedness of the operator L0.

Theorem 3.3. Let the hypotheses (M1)-(M6) be satisfied. Then, the operator L0 is closable if, and only if, S2(µ) is
closable on Z, for some µ ∈ ρ(A)

⋂
ρ(S1(µ)). Moreover, the closure L of L0 is given by

L = µ −

 I 0 0
F1(µ) I 0
F2(µ) F3(µ) I


 µ − A 0 0

0 µ − S1(µ) 0
0 0 µ − S2(µ)


 I G1(µ) G2(µ)

0 I G3(µ)
0 0 I

 (18)

or, spelled out, 

L : D(L) ⊂ X × Y × Z −→ X × Y × Z

L

 x
y
z

 =
 A[x + G1(µ)y + G2(µ)z] − µ[G1(µ)y + G2(µ)z]

D[x + G1(µ)y + G2(µ)z] + S1(µ)[y + G3(µ)z] − µG3(µ)z
G[x + G1(µ)y + G2(µ)z] + [H − G(A − µ)−1B][y + G3(µ)z] + S2(µ)z


D(L) =


 x

y
z

 ∈ X × Y × Z such that
x + G1(µ) y + G2(µ) z ∈ D(A),

y + G3(µ) z ∈ D(S1(µ))
and z ∈ D(S2(µ))

 .
♢

Theorem 3.4. Let the hypotheses (M1)-(M6) be satisfied. If C, E, L, H, F, and B are in Lip(X) and G and D are in
L(X), then for µ ∈ ρ(A)

⋂
ρ(S1(µ)), the following cases hold

(i) µ ∈ σlip(L) if and only if 0 ∈ σlip(S1(µ))
⋃
σlip(S2(µ)).

(ii) µ ∈ σK(L) if and only if 0 ∈ σK(S1(µ))
⋃
σK(S2(µ)). ♢

Proof. Since µ ∈ ρ(A), then L − µ has the factorization (18). Denote it by

L − µ = URV,

where

U =

 I 0 0
F1(µ) I 0
F2(µ) F3(µ) I
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R =


µ − A 0 0

0 µ − S1(µ) 0
0 0 µ − S2(µ)


and

V =

 I G1(µ) G2(µ)
0 I G3(µ)
0 0 I

 .
Obviously, U and V are lipeomorphisms on X × X × X.
(i) Let µ ∈ σlip(L), then [L − µ]lip = 0. Since [U]lip > 0, [V]lip > 0, and

[L − µ]lip = [URV]lip = [U]lip[R]lip[V]lip,

it follows that [R]lip = 0, and [S1(µ)]lip = 0 and [S2(µ)]lip = 0, i.e., 0 ∈ σlip(S1(µ))
⋃
σlip(S2(µ)). Conversely, let

0 ∈ σlip(S1(µ))
⋃
σlip(S2(µ)), then [R]lip = 0. Since [U]lip > 0, [V]lip > 0, and

[R]lip = [U−1(L − µ)V−1]lip ≥ [U−1]lip[L − µ]lip[V−1]lip,

it follows that [L − µ]lip = 0, i.e., µ ∈ σlip(L).
(ii) Since U and V are lipeomorphisms, then by the factorization (18), the desired result follows immedi-
ately.

Theorem 3.5. Let the hypotheses (M1)-(M6) be satisfied. If C, E, L, H, F, and B are in L(X) and G and D are in
Lip(X), then if ρ(K) , ∅, then for µ ∈ ρ(K), the following cases hold

(i) µ ∈ σlip(L) if and only if 0 ∈ σlip(S3(µ))
⋃
σlip(S4(µ)).

(ii) µ ∈ σK(L) if and only if 0 ∈ σK(S3(µ))
⋃
σK(S4(µ)), where

S3(µ) = A − B(K − µ)−1D

S4(µ) = L − G(A − µ)−1C − [H − G(A − µ)−1B](S1(µ) − µ)−1[F −D(A − µ)−1C]

♢

Proof. The proof is analogue of Theorem 3.5.

Theorem 3.6. Let

L0 =

 0 0 C
0 E 0
G 0 0

 ∈ C(X × X × X)

with C, E, and G are in Lip(X). If C, E ∈ L(X) and G ∈ Lip(X), then the following cases holds
(i) σlip(L0)\{0} = {λ ∈ C such that λ3

∈ σlip(GCE)\{0}}.
(ii) σK(L0)\{0} = {λ ∈ C such that λ3

∈ σK(GCE)\{0}}.

Theorem 3.7. Let

L0 =

 0 0 C
0 E 0
G 0 0

 ∈ C(X × X × X)

with C, E, and G are in Lip(X). If C, G ∈ L(X) and E ∈ Lip(X), then the following cases holds
(i) σlip(L0)\{0} = {λ ∈ C such that λ3

∈ σlip(CGE)\{0}}.
(ii) σK(L0)\{0} = {λ ∈ C such that λ3

∈ σK(CGE)\{0}}. ♢
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Theorem 3.8. Let

F :=

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 ∈ C(X × X × X),

where Ai j ∈ Lip(X) 1 ≤ i, j ≤ 3. Then, σK(F) ⊂ G1
⋃

G2
⋃

G3, where Gi = σK(Aii)
⋃
{λ ∈ ρK(Aii) such that [Aii −

λ]lip ≤ [A ji]lip}. ♢

Proof. Letλ < G1
⋃

G2
⋃

G3. Then,λ < ρK(A11)
⋃
ρK(A22)

⋂
ρK(A33) and [Aii−λ]lip > [A ji−λ]lip for i, j = 1, 2, 3.

Write

Tλ =

 A11 − λ 0 0
0 A22 − λ 0
0 0 A33 − λ

 .
Then,

F − λI = [(F − λI)T−1
λ ]Tλ.

Thus, we have the following factorization

(F − λI)T−1
λ

=

 A11 − λ A12 A13
A21 A22 − λ A23
A31 A32 A33 − λ


 (A11 − λ)−1 0 0

0 (A22 − λ)−1 0
0 0 (A33 − λ)−1


=

 I A12(A22 − λ)−1 A13(A33 − λ)−1

A21(A11 − λ)−1 I A23(A33 − λ)−1

A31(A11 − λ)−1 A32(A22 − λ)−1 I


= I +M(λ),

where

M(λ) =

 0 A12(A22 − λ)−1 A13(A33 − λ)−1

A21(A11 − λ)−1 0 A23(A33 − λ)−1

A31(A11 − λ)−1 A32(A22 − λ)−1 0

 .
Note that [M(λ)]lip < 1. Then, from Lemma 1.3, we have

I +M(λ) = (F − λI)T−1
λ

is a lipeomorphism. Therefore, λ ∈ ρK(F).

Theorem 3.9. Let

F :=

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 ,
where Aii ∈ L(X) and Ai j ∈ Lip(X) with i , j 1 ≤ i, j ≤ 3. Then, σK(F) ⊂ {λ ∈ C : dist(λ,WZ(A112)

⋃
WZ(A22)

⋃
WZ(A33) ≤

max([A12]lip, [A13]lip, [A21]lip, [A23]lip, [A32]lip)}. ♢

Proof. The proof follows from Theorem 3.8 and Lemma 1.4.

Corollary 3.10. We assume that the diagonal operator matrices A11 0 0
0 A22 0
0 0 A33

 ,
is a hyponormal operator. Then, we have

dist(0, σ(A112)
⋃

σ(A22)
⋃

σ(A33)) ≥ max([A12]lip, [A13]lip, [A21]lip, [A23]lip, [A32]lip).

♢
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Theorem 3.11. Let

F =

 A B C
0 D E
0 0 G

 ∈ C(X × X × X)

with A, B, C, D, E and G ∈ Lip(X).

(i) If A, D, G, and F are lipeomorphism, then B and C are lipeomorphism.
(ii) If F is lipeomorphismand satisfies

min([A]2
lip, [B]2

lip + [D]2
lip, [C]2

lip + [E]2
lip + [G]2

lip) − [A]lip[B]lip ≥ ([B]lip + [C]lip + [G]lip)2,

then A, D and G are lipeomorphism. ♢

Proof. (i) It follows immediately from Proposition 2.2 (ii).
(ii) Let

T =

 A 0 0
0 D 0
0 0 G

 ,
S =

 0 B 0
0 0 0
0 0 0

 ,
K =

 0 0 C
0 0 0
0 0 0

 ,
and

W =

 0 0 0
0 0 E
0 0 0

 .
We have F = T + S + K +W. Then, for any vectors x =

 x1
x2
x3

 and y =

 y1
y2
y3

 in X × X × X with x , y, we

have
∥F(x)−F(y)∥2

∥x−y∥2 =

∥A(x1) − A(y1) + B(x2) − B(y2) + C(x3) − C(y3)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2 +

∥D(x2) −D(y2) + E(x3) − E(y3)∥2 + ∥G(x3) − G(y3)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≥
∥A(x1) − A(y1)∥2 − ∥B(x2) − B(y2)∥2 + ∥C(x3) − C(y3)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2 +

∥D(x2) −D(y2)∥2 + ∥E(x3) − E(y3)∥2 + ∥G(x3) − G(y3)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≥
∥A(x1) − A(y1)∥2 + ∥B(x2) − B(y2)∥2 + ∥C(x3) − C(y3)∥2 + ∥D(x2) −D(y2)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2 +

−2
∥E(x3) − E(y3)∥2 + ∥G(x3) − G(y3)∥2 + ∥A(x1) − A(y1)∥∥B(x2) − B(y2)∥

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≥

[A]2
Lip∥x1 − y1∥

2 + ([B]2
Lip + [D]2

Lip)2
∥x2 − y2∥

2 + ([C]2
Lip + [E]2

Lip + [B]2
Lip)∥x3 − y3∥

2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2
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−2
[A]Lip[B]Lip∥x1 − y1∥∥x2 − y2∥

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2 .

Hence,

∥F(x) − F(y)∥2

∥x − y∥2
≥ min([A]2

Lip, [B]2
Lip + [D]2

Lip, [C]2
Lip + [E]2

Lip + [G]2
Lip − [A]Lip[B]Lip)

≥ ([B]Lip + [C]Lip + [G]Lip)2.

So,
[F]Lip ≥ [B]Lip + [C]Lip + [G]Lip.

On the other hand,

∥S(x) − S(y)∥2

∥x − y∥2
=

∥B(x2) − B(y2)∥2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≤

[B]2
Lip∥x2 − y2∥

2

∥x1 − y1∥
2 + ∥x2 − y2∥

2 + ∥x3 − y3∥
2

≤ [B]2
Lip.

It follows that
[S]Lip ≤ [B]Lip.

Similarly, we can prove
[K]Lip ≤ [C]Lip

and
[W]Lip ≤ [E]Lip.

Thus,
[K +W + S]Lip < [F]Lip.

By using Lemma 1.3, we have  A 0 0
0 D 0
0 0 G


is a lipeomorphism. Then, A, D, and G are lipeomorphism.

Example 3.12. Let X = l2, for any x = (x1, x2, . . . , ) ∈ X and A(x1, x2, . . . , ) = ∥x∥e, E(x1, x2, . . . , ) = (∥x∥, x1, x2, . . . , ),
K(x1, x2, . . . , ) = 0 and C = (0, x1, x2, . . . , ) where e = (1, 0, 0, ...). Consider the block operator matrix

L0 =

 A B C
0 E F
0 0 K

 .
Then, by Corollary 2.5, we have that. Hence,

σlip(A)
⋃

σlip(E)
⋃

σlip(K) = σlip(L0) (19)

On the other hand, by calculation, we have

σlip(A) = {λ ∈ C : |λ| ≤ 1}.

and
σlip(E) = {λ ∈ C : 1 ≤ |λ| ≤

√

2}.
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In addition, we claim that
σlip(L0) = {λ ∈ C : |λ| ≤

√

2}.

In fact, the equalities [L0]lip = 0 and [L0]lip =
√

2 follows from a straightforward calculation. Thus,

σlip(L0) ⊆ {λ ∈ C : |λ| ≤
√

2}.

It is clear that 0 ∈ σlip(L0) when 0 < |λ| ≤ 1 , set z1 =

 x1
0
0

, and z2 =

 x2
0
0

, then [L0 − λ]lip = [A − λ]lip = 0.

When 1 < |λ| ≤
√

2, set z1 =

 0
y1
0

, and z2 =

 0
y2
0

, then [L0 − λ]lip = [K − λ]lip = 0set z1 =

 0
0

w1

, and

z2 =

 0
0

w2

, then [L0 − λ]lip = [E − λ]lip = 0. Thus,

σlip(L0) = {λ ∈ C : |λ| ≤
√

2}.

♢
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