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Abstract. In this paper, we shall consider a new constant MSB(X) which is used to study the Massera-
Schäffer inequality related to Birkhoff orthogonality. We use this constant to characterize the Hilbert space
and also discuss its relations with some geometric properties of Banach spaces, including uniform non-
squareness, uniform convexity and uniform smoothness. Furthermore, we provide a study of MSB(X) in
Radon planes. The equivalent form of this constant in Radon planes is established and used to calculate
the value of MSB(lp − lq) (1 < p, q < ∞, 1

p +
1
q = 1).

1. Introduction

Throughout the paper, let X be a real Banach space with dimX ≥ 2. The unit ball and the unit sphere of
X are denoted by BX and SX, respectively.

In 1964, Dunkl and Williams [7] proved that, for any Banach space X, the following norm inequality∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 4∥x − y∥
∥x∥ + ∥y∥

(1)

holds for all nonzero elements x and y. Actually, the Dunkl-Williams inequality (1) gives the upper bound
for the angular distance

α[x, y] :=
∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
between two nonzero elements x and y. The concept of angular distance was first introduced by Clarkson
[6]. Further, in [7], Dunkl and Williams also found that if X is a Hilbert space, then the Dunkl-Williams
inequality can be improved to the following inequality∥∥∥∥∥ x

∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 2∥x − y∥
∥x∥ + ∥y∥

, (2)
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which holds for all nonzero elements x and y. Soon after, in the same year that the Dunkl-Williams inequality
came out, Kirk and Smiley [12] proved that the inequality (2) in fact characterizes the Hilbert space.

According to the above results, Jiménez-Melado et al. [10] pointed out that the smallest number which
can replace 4 in Dunkl-Williams inequality actually measures the closeness between this Banach space and
Hilbert space. Thus, Jiménez-Melado et al. [10] considered the Dunkl-Williams constant as following:

DW(X) = sup
{
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x , y
}
,

and also obtained some conclusions about DW(X):
(1) 2 ≤ DW(X) ≤ 4 holds for any Banach space X.
(2) DW(X) = 2 if and only if X is a Hilbert space.
(3) DW(X) < 4 if and only if X is uniformly non-square, that is, there exists δ > 0 such that for any

x, y ∈ SX we have min(∥x − y∥, ∥x + y∥) ≤ 2 − δ.
(4) If DW(X) < (3 + 2

√
2)

1
3 + (3 − 2

√
2)

1
3 , then X has normal structure, that is, for every bounded closed

convex subset K of X that contains more than one element, there exists a x0 ∈ K such that

sup{∥x0 − y∥ : y ∈ K} < diam(K) := sup{∥x − y∥ : x, y ∈ K}.

For more results about the Dunkl-Williams constant DW(X), we refer the reader to [16–20].
The above results on DW(X) make us think of using other estimates concerning the upper bound of

angular distance to define some constants, and then using them to determine what kind of geometric
properties a Banach space X has, just like DW(X). Based on this idea and the Massera-Schäffer inequality
which was proved by Massera and Schäffer [14], that is,∥∥∥∥∥ x

∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ 2∥x − y∥
max{∥x∥, ∥y∥}

(3)

holds for all nonzero elements x and y, Al-Rashed [3] introduced the following parameter

Ψ∞(X) = sup
{

max{∥x∥, ∥y∥}
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x , y
}
.

However, Baronti and Papini [5] proved that Ψ∞(X) = 2 holds for any Banach space X (see [5], Page 177),
in other words, the Massera-Schäffer inequality is always sharp in any Banach space X, which means that
we can’t judge what kind of geometric properties a Banach space X has by the value ofΨ∞(X). This is not
what we expected. After careful consideration of the definition of Ψ∞(X), it is not difficult to find that the
reason why Ψ∞(X) = 2 holds for any Banach space X is that there are too many x and y considered in the
definition of Ψ∞(X). Therefore, one way to achieve our goal is to place some restrictions on the x and y
considered in the definition ofΨ∞(X).

Let x, y be two elements in a Banach space X. Then x is said to be Birkhoff orthogonal to y and denoted
by x ⊥B y, if ∥x + λy∥ ≥ ∥x∥ holds for any λ ∈ R. The Birkhoff orthogonality coincides with the usual
orthogonality in Hilbert spaces. Obviously, according to the definition of Birkhoff orthogonality, one can
easily know that it is homogeneous, that is, x ⊥B y implies αx ⊥B βy for any α, β ∈ R. More studies about
the Birkhoff orthogonality can be found in [1, 2, 8, 9].

Now, it is time to introduce the following constant

MSB(X) = sup
{

max{∥x∥, ∥y∥}
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ : x, y ∈ X\{0}, x ⊥B y
}
,

which can be regard as discussing the Massera-Schäffer inequality related to Birkhoff orthogonality. Obvi-
ously, the constant MSB(X) is the constant Ψ∞(X) placed the restriction of Birkhoff orthogonality. In this
paper, we will show that the value of MSB(X) is no longer a fixed value for all Banach spaces, and also
connect it with some geometric properties of Banach spaces.
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The paper is arranged as follows:
In Section 2, the fact that MSB(X) is no longer a fixed value for all Banach spaces is shown by some

examples. In Section 3, we give a characterization of the Hilbert space in terms of MSB(X), and also discuss
the relations between MSB(X) and some geometric properties of Banach spaces, including uniform non-
squareness, uniform convexity and uniform smoothness. In Section 4, we study MSB(X) in Radon planes.
An equivalent form of MSB(X) in Radon planes is given and used to calculate the value of MSB(lp − lq)
(1 < p, q < ∞, 1

p +
1
q = 1). Finally, in Section 5, we summarize the results obtained in this paper.

2. The Massera-Schäffer inequality related to Birkhoff orthogonality

Proposition 2.1. Let X be a Banach space. Then
√

2 ≤MSB(X) ≤ 2.

Proof. First, notice that there exist x, y ∈ SX such that x ⊥B y and ∥x + y∥ ≥
√

2 (see [2], Page 141). Let
yn = −

1
n y. Then, we get x ⊥B yn and

MSB(X) ≥
max{∥x∥, ∥yn∥}

∥x − yn∥

∥∥∥∥∥ x
∥x∥
−

yn

∥yn∥

∥∥∥∥∥ = 1∥∥∥x + 1
n y

∥∥∥ ∥∥∥x + y
∥∥∥ ≥ 1∥∥∥x + 1

n y
∥∥∥ √2.

Let n→∞, it follows that MSB(X) ≥
√

2.
On the other hand, due to the Massera-Schäffer inequality (3), it is clear that MSB(X) ≤ 2 holds. This

completes the proof.

The following examples show that the bounds given in the above proposition are sharp.

Example 2.2. Let X be a Hilbert space. Then MSB(X) =
√

2.

Proof. According to Proposition 2.1, it is sufficient to show that MSB(X) ≤
√

2. Notice that the Birkhoff
orthogonality is now the usual orthogonality in Hilbert space X, thus, for any x, y ∈ X\{0} with x ⊥B y, we
have

max{∥x∥, ∥y∥}
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ = max{∥x∥, ∥y∥}
∥x − y∥

√

2 =
max{∥x∥, ∥y∥}√
∥x∥2 + ∥y∥2

√

2 ≤
√

2,

which implies MSB(X) ≤
√

2.

Example 2.3. Let X be the space l∞ − lp (1 ≤ p ≤ ∞), that is, the space R2 with the norm defined by

∥(x1, x2)∥ =
{
∥(x1, x2)∥∞ (x1x2 ≥ 0) ,
∥(x1, x2)∥p (x1x2 ≤ 0) .

Then MSB(X) = 2.

Proof. According to Proposition 2.1, it is enough to prove that MSB(X) ≥ 2. Take x = (1, 1), y = (0,−1), it is
clearly that x, y ∈ SX and x ⊥B y. Now, let xn =

1
n x. Then we have xn ⊥B y and

MSB(X) ≥
max{∥xn∥, ∥y∥}
∥xn − y∥

∥∥∥∥∥ xn

∥xn∥
−

y
∥y∥

∥∥∥∥∥ = 1∥∥∥ 1
n x − y

∥∥∥ ∥∥∥x − y
∥∥∥ = 2∥∥∥ 1

n x − y
∥∥∥ .

Let n→∞, we obtain MSB(X) ≥ 2.

Example 2.4. Let X be the space lp − l1 (1 ≤ p ≤ ∞), that is, the space R2 with the norm defined by

∥(x1, x2)∥ =
{
∥(x1, x2)∥p (x1x2 ≥ 0) ,
∥(x1, x2)∥1 (x1x2 ≤ 0) .

Then MSB(X) = 2.
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Proof. Put x = (−1, 0), y = (0,−1), obviously, x, y ∈ SX and x ⊥B y. Now, let xn =
1
n x. Then we get xn ⊥B y

and

MSB(X) ≥
max{∥xn∥, ∥y∥}
∥xn − y∥

∥∥∥∥∥ xn

∥xn∥
−

y
∥y∥

∥∥∥∥∥ = 1∥∥∥ 1
n x − y

∥∥∥ ∥∥∥x − y
∥∥∥ = 2∥∥∥ 1

n x − y
∥∥∥ .

Let n→∞, it follows that MSB(X) ≥ 2. Further, by Proposition 2.1, we obtain MSB(X) = 2.

From above examples, we can find that MSB(X) is no longer a fixed value for all Banach spaces. This
confirms what we said in the previous section. As long as we put some restrictions on the x and y considered
in the definition ofΨ∞(X), it will no longer be a fixed value for all Banach spaces. In addition, Example 2.3
and Example 2.4 also indicate that the restriction we put onΨ∞(X) is not too strong, since the upper bound
of MSB(X) is still the same as that ofΨ∞(X), both of which are 2.

3. Some geometric properties related to MSB(X)

This section focuses on the relations between MSB(X) and some geometric properties of Banach spaces.
First, we will show that the property MSB(X) =

√
2 actually characterizes the Hilbert space. The proof

requires the following result.

Lemma 3.1 ([1], Page 166). Let X be a Banach space. Then the following statements are equivalent.
(1) X is a Hilbert space.
(2) u, v ∈ SX, u ⊥B v⇒ ∥u + v∥ ≤

√
2.

Theorem 3.2. Let X be a Banach space. Then X is a Hilbert space if and only if MSB(X) =
√

2.

Proof. According to Example 2.2, we only need to prove that if MSB(X) =
√

2, then X is a Hilbert space.
Now, for any x, y ∈ SX with x ⊥B y, let xn =

1
n x. Then, we have xn ⊥B −y and

√

2 =MSB(X) ≥
max{∥xn∥, ∥ − y∥}
∥xn − (−y)∥

∥∥∥∥∥ xn

∥xn∥
−
−y
∥ − y∥

∥∥∥∥∥ = 1∥∥∥ 1
n x + y

∥∥∥ ∥∥∥x + y
∥∥∥ .

Let n→∞, we obtain
∥∥∥x + y

∥∥∥ ≤ √2. This implies that X is a Hilbert space by Lemma 3.1.

In the preceding result, we find that, similar to DW(X), the lower bound of MSB(X) can be used to
characterize the Hilbert space. Therefore, we will naturally ask whether the upper bound of MSB(X) can
also be used to characterize the uniform non-squareness as the upper bound of DW(X). Unfortunately, the
answer is no, we assert that MSB(X) < 2 is a sufficient but not necessary condition for X to be uniformly
non-square. To obtain this result, we need to establish the connection between MSB(X) and the rectangular
constant µ(X) first.

Recall that the rectangular constant µ(X) was introduced by Joly [11] and defined as

µ(X) = sup
{
∥x∥ + ∥y∥
∥x + y∥

: x, y ∈ X\{0}, x ⊥B y
}
.

For more results about µ(X) can be found [21].
The following proposition relates MSB(X) and the rectangular constant µ(X).

Proposition 3.3. Let X be a Banach space. Then

µ(X) ≤ 1 +MSB(X).
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Proof. First, since the Birkhoff orthogonality is homogeneous, one can easily deduce that

µ(X) = sup
{
∥x∥ + ∥y∥
∥x − y∥

: x, y ∈ X\{0}, x ⊥B y
}
. (4)

Now, for any x, y ∈ X\{0}with x ⊥B y, we shall consider the following two cases:
Case 1: max{∥x∥, ∥y∥} = ∥x∥.
Notice that

∥∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥∥ ≥ 1, since x ⊥B y. Thus, we obtain

∥x∥ + ∥y∥
∥x − y∥

≤
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
=
∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ + ∥x∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
≤
∥y∥
∥x∥

∥∥∥∥∥x −
∥x∥
∥y∥

y
∥∥∥∥∥ ∥x − y∥−1 +MSB(X)

=
∥y∥
∥x∥

∥∥∥∥∥∥x − y +
(
1 −
∥x∥
∥y∥

)
y

∥∥∥∥∥∥ ∥x − y∥−1 +MSB(X)

≤
∥y∥
∥x∥

(
∥x − y∥ +

(
∥x∥
∥y∥
− 1

)
∥y∥

)
∥x − y∥−1 +MSB(X)

≤
∥y∥
∥x∥

(
∥x − y∥ +

(
∥x∥
∥y∥
− 1

)
∥x∥

)
∥x − y∥−1 +MSB(X)

≤
∥y∥
∥x∥

(
∥x − y∥ +

(
∥x∥
∥y∥
− 1

)
∥x − y∥

)
∥x − y∥−1 +MSB(X)

= 1 +MSB(X).

Case 2: max{∥x∥, ∥y∥} = ∥y∥.
Similarly, we also have

∥x∥ + ∥y∥
∥x − y∥

≤
∥x∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
=
∥x∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ + ∥y∥
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥
≤

∥∥∥∥∥x −
∥x∥
∥y∥

y
∥∥∥∥∥ ∥x − y∥−1 +MSB(X)

=

∥∥∥∥∥∥ ∥x∥∥y∥ (x − y) +
(
1 −
∥x∥
∥y∥

)
x

∥∥∥∥∥∥ ∥x − y∥−1 +MSB(X)

≤

(
∥x∥
∥y∥

∥∥∥x − y
∥∥∥ + (

1 −
∥x∥
∥y∥

)
∥x∥

)
∥x − y∥−1 +MSB(X)

≤

(
∥x∥
∥y∥

∥∥∥x − y
∥∥∥ + (

1 −
∥x∥
∥y∥

) ∥∥∥x − y
∥∥∥) ∥x − y∥−1 +MSB(X)

= 1 +MSB(X).

Consequently, by (4), we conclude that µ(X) ≤ 1 +MSB(X) as desired.

Corollary 3.4. Let X be a Banach space. If MSB(X) < 2, then X is uniformly non-square. The converse is not true.

Proof. This result immediately follows from Proposition 3.3 and the fact that µ(X) < 3 if and only if X is
uniformly non-square (see [4], Theorem 3.1).
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The converse is not true. Example 2.3 and Example 2.4 are both counterexamples, since l∞−lp (1 ≤ p < ∞)
and lp − l1 (1 < p ≤ ∞) are both uniformly non-square. In fact, if not, it means that their unit spheres must
be parallelograms, which is obviously impossible.

Now, a natural and interesting question arises. What conditions must the space X have to ensure
MSB(X) < 2. Actually, if X is uniformly convex, then MSB(X) < 2 holds. Recall that the space X is uniformly
convex if δX(ϵ) > 0 whenever 0 < ϵ ≤ 2, where δX : [0, 2]→ [0, 1] is given by

δX(ϵ) = inf
{
1 −

1
2
∥x + y∥ : x, y ∈ SX, ∥x − y∥ ≥ ϵ

}
.

Next, we will prove the above assertion whose proof is based on the following lemma.

Lemma 3.5. ([15], Proposition 5.2.8) Let X be a Banach space. Then the following statements are equivalent.
(1) X is uniformly convex.
(2) If xn, yn ∈ SX and ∥xn + yn∥ → 2, then ∥xn − yn∥ → 0.

Theorem 3.6. Let X be a Banach space. If X is uniformly convex, then MSB(X) < 2.

Proof. Suppose conversely that MSB(X) = 2. Then, there exist xn, yn ∈ X\{0}with xn ⊥B yn such that

max{∥xn∥, ∥yn∥}

∥xn − yn∥

∥∥∥∥∥ xn

∥xn∥
−

yn

∥yn∥

∥∥∥∥∥→ 2.

Let A = {n ∈N : max{∥xn∥, ∥yn∥} = ∥xn∥}. Now, we discuss the following two cases respectively.
Case 1: A is an infinite set.
Since A is an infinite set, without loss generality, we can assume that max{∥xn∥, ∥yn∥} = ∥xn∥ holds for

any n ∈N, otherwise, we can take suitable subsequences of {xn} and {yn} respectively. Hence, we have

∥xn∥

∥xn − yn∥

∥∥∥∥∥ xn

∥xn∥
−

yn

∥yn∥

∥∥∥∥∥→ 2. (5)

Let un =
xn
∥xn∥

and vn =
yn

∥xn∥
. It is clear that un ∈ SX, vn ∈ BX and un ⊥B vn. Further, from (5), we obtain∥∥∥un −

vn
∥vn∥

∥∥∥
∥un − vn∥

→ 2.

Since un ∈ SX, vn ∈ BX and un ⊥B vn, we have ∥vn∥ ∈ [0, 1] and ∥un − vn∥ ∈ [1, 2]. Hence, it may be assumed
that

∥vn∥ → a ∈ [0, 1], ∥un − vn∥ → b ∈ [1, 2].

Then ∥∥∥un −
vn
∥vn∥

∥∥∥
∥un − vn∥

≤
∥un − vn∥

∥un − vn∥
+

∥∥∥vn −
vn
∥vn∥

∥∥∥
∥un − vn∥

= 1 +
1 − ∥vn∥

∥un − vn∥
≤ 2.

Let n→∞, it follows that

1 − a = b,
∥∥∥∥∥un −

vn

∥vn∥

∥∥∥∥∥→ 2b.

The equality 1 − a = b implies that b = 1, since a ∈ [0, 1], b ∈ [1, 2]. Thus,
∥∥∥un −

vn
∥vn∥

∥∥∥ → 2. However, due to
un ⊥B vn, we obtain

∥∥∥un +
vn
∥vn∥

∥∥∥ ≥ ∥un∥ = 1,which implies that
∥∥∥un +

vn
∥vn∥

∥∥∥↛ 0. This leads to a contradiction
with Lemma 3.5.

Case 2: A is a finite set.
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Since A is a finite set, we can assume that max{∥xn∥, ∥yn∥} = ∥yn∥ holds for any n ∈N, otherwise, we can
take suitable subsequences of {xn} and {yn} respectively. Hence, we have

∥yn∥

∥xn − yn∥

∥∥∥∥∥ xn

∥xn∥
−

yn

∥yn∥

∥∥∥∥∥→ 2. (6)

Let zn =
xn
∥yn∥

and wn =
yn

∥yn∥
. Obviously, we have zn ∈ BX, wn ∈ SX and zn ⊥B wn. Moreover, it follows from

(6) that ∥∥∥ zn
∥zn∥
− wn

∥∥∥
∥zn − wn∥

→ 2.

Since zn ∈ BX, wn ∈ SX and zn ⊥B wn, we have ∥zn∥ ∈ [0, 1] and ∥zn − wn∥ ∈ [0, 2]. Thus, it may be assumed
that

∥zn∥ → c ∈ [0, 1], ∥zn − wn∥ → d ∈ [0, 2].

Actually, d ∈ (0, 2]. If not, by zn ⊥B wn, then we have∥∥∥ zn
∥zn∥
− wn

∥∥∥
∥zn − wn∥

≥

∥∥∥ zn
∥zn∥

∥∥∥
∥zn − wn∥

=
1

∥zn − wn∥
,

which means
∥∥∥ zn
∥zn∥
−wn

∥∥∥
∥zn−wn∥

→∞ , 2.Moreover, similar to Case 1, we also have∥∥∥ zn
∥zn∥
− wn

∥∥∥
∥zn − wn∥

≤

∥∥∥ zn
∥zn∥
− zn

∥∥∥
∥zn − wn∥

+
∥zn − wn∥

∥zn − wn∥
=

1 − ∥zn∥

∥zn − wn∥
+ 1 ≤ 2.

Let n→∞, we obtain

1 − c = d,
∥∥∥∥∥ zn

∥zn∥
− wn

∥∥∥∥∥→ 2d. (7)

Now, there are two subcases we need to consider respectively.
Subcase 2.1: c = 0.
Then, by applying (7), we have d = 1 and

∥∥∥ zn
∥zn∥
− wn

∥∥∥→ 2. In addition, by zn ⊥B wn, therefore
∥∥∥ zn
∥zn∥
+ wn

∥∥∥ ≥∥∥∥ zn
∥zn∥

∥∥∥ = 1,which leads to
∥∥∥ zn
∥zn∥
+ wn

∥∥∥↛ 0. This contradicts Lemma 3.5.
Subcase 2.2: c , 0.
Now, we have∣∣∣∣∣∥∥∥∥∥c

zn

∥zn∥
+ d

wn − zn

∥wn − zn∥

∥∥∥∥∥ − 1
∣∣∣∣∣ = ∣∣∣∣∣∥∥∥∥∥c

zn

∥zn∥
+ d

wn − zn

∥wn − zn∥

∥∥∥∥∥ − ∥zn + wn − zn∥ + ∥wn∥ − 1
∣∣∣∣∣

≤

∣∣∣∣∣∥∥∥∥∥c
zn

∥zn∥
+ d

wn − zn

∥wn − zn∥

∥∥∥∥∥ − ∥zn + wn − zn∥

∣∣∣∣∣ + 0

≤

∥∥∥∥∥c
zn

∥zn∥
− zn

∥∥∥∥∥ + ∥∥∥∥∥d
wn − zn

∥wn − zn∥
− (wn − zn)

∥∥∥∥∥
= |c − ∥zn∥| + |d − ∥wn − zn∥|.

Let n→∞, it follows that ∥∥∥∥∥c
zn

∥zn∥
+ d

wn − zn

∥wn − zn∥

∥∥∥∥∥→ 1.

Further, by applying (7) and d , 0, it is straightforward to obtain that c, d ∈ (0, 1) and c + d = 1, thus we get∥∥∥∥∥ zn

∥zn∥
+

wn − zn

∥wn − zn∥

∥∥∥∥∥→ 2.
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Analogously, according to zn ⊥B wn, we have∥∥∥∥∥ zn

∥zn∥
−

wn − zn

∥wn − zn∥

∥∥∥∥∥ ≥ ∥∥∥∥∥ zn

∥zn∥
+

zn

∥wn − zn∥

∥∥∥∥∥ = ∥zn∥

∥zn∥
+

∥zn∥

∥wn − zn∥
≥ 1,

which also leads to a contradiction with Lemma 3.5. This completes the proof.

Actually, in addition to the uniform convexity, the uniform smoothness also can imply MSB(X) < 2; see
the following result. Recall that the space X is uniformly smooth if limt→0+

ρX(t)
t =0, where ρX : (0,+∞) →

[0,+∞) is defined by the formula

ρX(t) = sup
{1

2
(∥x + ty∥ + ∥x − ty∥) − 1 : x, y ∈ SX

}
.

Theorem 3.7. Let X be a Banach space. If X is uniformly smooth, then MSB(X) < 2.

Proof. Suppose conversely that MSB(X) = 2. Then, there exist xn, yn ∈ X\{0}with xn ⊥B yn such that

max{∥xn∥, ∥yn∥}

∥xn − yn∥

∥∥∥∥∥ xn

∥xn∥
−

yn

∥yn∥

∥∥∥∥∥→ 2.

Let A = {n ∈N : max{∥xn∥, ∥yn∥} = ∥xn∥}. Similar to Theorem 3.6, we also consider the following two cases:
Case 1: A is an infinite set.
Since A is an infinite set, without loss generality, we can assume that max{∥xn∥, ∥yn∥} = ∥xn∥ holds for

any n ∈ N, otherwise, we can take suitable subsequences of {xn} and {yn} respectively. Now, let un =
xn
∥xn∥

and vn =
yn

∥xn∥
. It is clear that un ∈ SX, vn ∈ BX and un ⊥B vn. Further, by the proof of Theorem 3.6, it follows

that ∥∥∥∥∥un −
vn

∥vn∥

∥∥∥∥∥→ 2. (8)

Thus, for any t > 0, it follows from un ⊥B vn that

ρX(t)
t
≥

∥∥∥un + t vn
∥vn∥

∥∥∥ + ∥∥∥un − t vn
∥vn∥

∥∥∥ − 2

2t

≥

∥un∥ +
∥∥∥un − t vn

∥vn∥

∥∥∥ − 2

2t

=

∥∥∥un − t vn
∥vn∥

∥∥∥ − 1

2t

=
(1 + t)

∥∥∥ 1
1+t un −

t
1+t

vn
∥vn∥

∥∥∥ − 1

2t
.

Let n→∞, by (8), we obtain
ρX(t)

t
≥

1 + t − 1
2t

=
1
2
,

holds for any t > 0. This leads to the contradiction

0 = lim
t→0+

ρX(t)
t
≥

1
2
.

Case 2: A is a finite set.
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Since A is a finite set, we can assume that max{∥xn∥, ∥yn∥} = ∥yn∥ holds for any n ∈N, otherwise, we can
take suitable subsequences of {xn} and {yn} respectively. Let zn =

xn
∥yn∥

and wn =
yn

∥yn∥
. Obviously, we have

zn ∈ BX, wn ∈ SX and zn ⊥B wn. Then, from the proof of Theorem 3.6, we have∥∥∥∥∥ zn

∥zn∥
− wn

∥∥∥∥∥→ 2 or
∥∥∥∥∥ zn

∥zn∥
+

wn − zn

∥wn − zn∥

∥∥∥∥∥→ 2. (9)

Thus, we consider the following two subcases:
Subase 2.1: If

∥∥∥ zn
∥zn∥
− wn

∥∥∥→ 2 holds.
Analogously, for any t > 0, it follows from zn ⊥B wn that

ρX(t)
t
≥

∥∥∥ zn
∥zn∥
+ twn

∥∥∥ + ∥∥∥ zn
∥zn∥
− twn

∥∥∥ − 2

2t

≥

∥∥∥ zn
∥zn∥

∥∥∥ + ∥∥∥ zn
∥zn∥
− twn

∥∥∥ − 2

2t

=

∥∥∥ zn
∥zn∥
− twn

∥∥∥ − 1

2t

=
(1 + t)

∥∥∥ 1
1+t

zn
∥zn∥
−

t
1+t wn

∥∥∥ − 1

2t
.

Let n→∞, from (9), we obtain
ρX(t)

t
≥

1 + t − 1
2t

=
1
2

holds for any t > 0. This also leads to the contradiction

0 = lim
t→0+

ρX(t)
t
≥

1
2
.

Subase 2.2: If
∥∥∥ zn
∥zn∥
+ wn−zn
∥wn−zn∥

∥∥∥→ 2 holds.
Now, for any t > 0, it follows from zn ⊥B wn that

ρX(t)
t
≥

∥∥∥ zn
∥zn∥
+ t wn−zn
∥wn−zn∥

∥∥∥ + ∥∥∥ zn
∥zn∥
− t wn−zn
∥wn−zn∥

∥∥∥ − 2

2t

≥

∥∥∥ zn
∥zn∥
+ t wn−zn
∥wn−zn∥

∥∥∥ + ∥∥∥ zn
∥zn∥
+ t zn
∥wn−zn∥

∥∥∥ − 2

2t

=

∥∥∥ zn
∥zn∥
+ t wn−zn
∥wn−zn∥

∥∥∥ + (
1
∥zn∥
+ t
∥wn−zn∥

)
∥zn∥ − 2

2t

≥

∥∥∥ zn
∥zn∥
+ t wn−zn
∥wn−zn∥

∥∥∥ + 1 − 2

2t

=
(1 + t)

∥∥∥ 1
1+t

zn
∥zn∥
+ t

1+t
wn−zn
∥wn−zn∥

∥∥∥ − 1

2t
.

Let n→∞, by (9), we obtain
ρX(t)

t
≥

1 + t − 1
2t

=
1
2

holds for any t > 0. Obviously, this leads to the same contradiction as in the preceding two cases. This
completes the proof.

We close this section with the following result, which shows that the number 2 in the two results above
cannot be replaced by a smaller number.
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Proposition 3.8. For any ε > 0, there exists a Banach space X which is uniformly convex and uniformly smooth,
such that MSB(X) > 2 − ε.

Proof. Let p, q ∈ (1,+∞) with 1
p +

1
q = 1. Now, we consider the space lp − lq, which is the space R2 with the

norm defined by

∥(x1, x2)∥ =
{
∥(x1, x2)∥p (x1x2 ≥ 0) ,
∥(x1, x2)∥q (x1x2 ≤ 0) ,

Then, put x = (−1, 0), y = (0,−1), obviously, x, y ∈ Slp−lq and x ⊥B y. Now, let xn =
1
n x. Then we get xn ⊥B y

and

MSB(lp − lq) ≥
max{∥xn∥, ∥y∥}
∥xn − y∥

∥∥∥∥∥ xn

∥xn∥
−

y
∥y∥

∥∥∥∥∥ = 1∥∥∥ 1
n x − y

∥∥∥ ∥∥∥x − y
∥∥∥ = 2

1
q∥∥∥ 1

n x − y
∥∥∥ .

Let n→∞, it follows that MSB(lp−lq) ≥ 2
1
q .Further, let q→ 1+, by Proposition 2.1, we obtain limq→1+ MSB(lp−

lq) = 2. Thus, for any ε > 0, there exists a q sufficiently close to 1, such that MSB(X) > 2 − ε. Moreover, it is
clear that lp − lq is uniformly convex and uniformly smooth, so we obtain the desired result.

4. MSB(X) in Radon planes

The usual orthogonality in Hilbert spaces is always symmetric, that is, x ⊥ y implies y ⊥ x. However,
the Birkhoff orthogonality in Banach spaces is not always symmetric in general, since, in [8], James gave
the following conclusion.

Theorem 4.1. [8] A Banach space X whose dimension is at least three is a Hilbert space if and only if Birkhoff
orthogonality is symmetric in X.

The assumption of the dimension of the space X in the above theorem cannot be omitted. James [8]
provided an example of two-dimensional space in which the Birkhoff orthogonality is symmetric, that is,
the space lp − lq is defined for 1 ≤ p, q ≤ ∞ as the space R2 with the norm defined by

∥(x1, x2)∥ =
{
∥(x1, x2)∥p (x1x2 ≥ 0) ,
∥(x1, x2)∥q (x1x2 ≤ 0) ,

where 1
p +

1
q = 1.

Definition 4.2. [13] A two-dimensional Banach space in which the Birkhoff orthogonality is symmetric is called
Radon plane.

Actually, besides the symmetry of Birkhoff orthogonality, Radon planes have many remarkable proper-
ties. For example, the radial projection on the Radon plane X is non-expansive, that is, the map R : X→ X,
defined by

R(x) =
{

x ∥x∥ ≤ 1,
x
∥x∥ ∥x∥ > 1,

such that
∥R(x) − R(y)∥ ≤ ∥x − y∥, x, y ∈ X.

However, in higher dimensions only Hilbert space has this property. For a survey on Radon planes,
including further results, can be found in [13].

In this section, we will focus on calculating the value of MSB(lp − lq) (1 < p, q < ∞, 1
p +

1
q = 1). Our

main idea is to first establish the equivalent form of MSB(X) in Radon planes, by the symmetry of Birkhoff
orthogonality, and then use this equivalent form to calculate the value of MSB(lp−lq) (1 < p, q < ∞, 1

p+
1
q = 1).

Next, we give the equivalent form of MSB(X) in Radon planes, one can see that it’s much simpler than the
original definition. The proof requires the following characterization of the Birkhoff orthogonality obtain
by James [9].
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Lemma 4.3. [9] Let X be a Banach space. For x, y ∈ X, x ⊥B y if and only if there exists f ∈ SX∗ such that f (x) = ∥x∥
and f (y) = 0.

Theorem 4.4. Let X be a Radon plane. Then the following statements hold.
(1) MSB(X) = sup{∥x − y∥ : x, y ∈ SX, x ⊥B y}.
(2) If X is polyhedral space, that is, a space with finitely many extreme points, then

MSB(X) = sup{∥x − y∥ : x, y ∈ ext(BX), x ⊥B y}.

Proof. (1) Notice that the Birkhoff orthogonality is symmetric in X, thus, for any x, y ∈ X\{0} with x ⊥B y,
we have y ⊥B x. Then

max{∥x∥, ∥y∥}
∥x − y∥

≤ 1.

Further,

max{∥x∥, ∥y∥}
∥x − y∥

∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ ∥∥∥∥∥ x
∥x∥
−

y
∥y∥

∥∥∥∥∥ ≤ sup{∥x − y∥ : x, y ∈ SX, x ⊥B y},

which follows that
MSB(X) ≤ sup{∥x − y∥ : x, y ∈ SX, x ⊥B y}.

One the other hand, for any x, y ∈ SX with x ⊥B y, let xn =
1
n x. Then we obtain xn ⊥B y and

MSB(X) ≥
max{∥xn∥, ∥y∥}
∥xn − y∥

∥∥∥∥∥ xn

∥xn∥
−

y
∥y∥

∥∥∥∥∥ = 1∥∥∥ 1
n x − y

∥∥∥ ∥∥∥x − y
∥∥∥ .

Let n→∞, we obtain MSB(X) ≥
∥∥∥x − y

∥∥∥, which leads to

MSB(X) ≥ sup{∥x − y∥ : x, y ∈ SX, x ⊥B y}.

(2) From (1) it is easy to see that

MSB(X) ≥ sup{∥x − y∥ : x, y ∈ ext(BX), x ⊥B y}.

So, we only need to show the converse inequality. Suppose that x, y ∈ SX with x ⊥B y. Clearly, we can write
x = tx1 + (1− t)x2 and y = λy1 + (1−λ)y2, for some x1, x2, y1, y2 ∈ ext(BX) and 0 ≤ t, λ ≤ 1. Since X is a Radon
plane and x ⊥B y, one can easily know that xi ⊥B y j, for all i, j ∈ {1, 2}, by using Lemma 4.3. Now,

∥x − y∥ = ∥x − λy1 − (1 − λ)y2∥

= ∥λx + (1 − λ)x − λy1 − (1 − λ)y2∥

≤ λ∥x − y1∥ + (1 − λ)∥x − y2∥

≤ max{∥x − y1∥, ∥x − y2∥}.

Using similar technique, we can deduce that

∥x − y1∥ ≤ max{∥x1 − y1∥, ∥x2 − y1∥}

and
∥x − y2∥ ≤ max{∥x1 − y2∥, ∥x2 − y2∥}.

This shows that
∥x − y∥ ≤ max{∥xi − y j∥ : xi ⊥B y j, i, j ∈ {1, 2}}.

This clearly implies that

MSB(X) = sup{∥x − y∥ : x, y ∈ SX, x ⊥B y} ≤ sup{∥x − y∥ : x, y ∈ ext(BX), x ⊥B y}.
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The above conclusion actually provides us with a new way to calculate the value of MSB(X) for Radon
planes. Next, we will use it to calculate the value of MSB(lp − lq) (1 < p, q < ∞, 1

p +
1
q = 1). Firstly, according

to Theorem 4.4 (1), we need to find the elements x, y ∈ Slp−lq such that x ⊥B y. Now, assuming x ∈ Slp−lq , our
goal is to find the elements y ∈ Slp−lq such that x ⊥B y. Notice that the space lp − lq is a smooth Banach space,
from the geometric meaning of the supporting hyperplane, it can be seen that the supporting hyperplane
of Blp−lq at point x is actually the tangent of Blp−lq at point x. So based on the knowledge of calculus, we can
obtain the equation for the tangent at point x. Furthermore, since the kernel of the functional corresponding
to this supporting hyperplane is actually the straight line passing through the origin and parallel to the
tangent. So, from Lemma 4.3, we know that the elements y ∈ Slp−lq with x ⊥B y is actually the intersection
points of Slp−lq and the straight line passing through the origin and parallel to the tangent. Obviously,
finding the intersection points only requires some basic calculations, so we just give the following results
and omit the calculation details. It should be noted that the reason why the following lemma only gives
the results when the abscess of x is between 0 and 1 is that it is enough for us to calculate the value of
MSB(lp − lq) (see Theorem 4.6).

Lemma 4.5. Let 1 < p < q < ∞ such that 1
p +

1
q = 1 and

B(x) := {y : y ∈ Slp−lq , x ⊥B y}, x ∈ Slp−lq .

Then the following statements hold.
(1) If x = (a, b), 0 ≤ a ≤ 1, b = (1 − ap)

1
p , then B(x) =

{
±

(
−b

p
q , a

p
q
)}

.

(2) If x = (c, d), 0 ≤ c ≤ 1, d = −(1 − cq)
1
q , then B(x) =

{
±

(
(−d)

q
p , c

q
p
)}

.

Now, all the preparations are ready, it is time to calculate the value of MSB(lp − lq).

Theorem 4.6. Let 1 < p, q < ∞ such that 1
p +

1
q = 1. Then the following statements hold.

(1) If p < q, then

MSB(lp − lq) = sup
{∥∥∥∥(a + (1 − ap)

1
q , (1 − ap)

1
p − a

p
q
)∥∥∥∥

lp−lq
: 0 ≤ a ≤ 1

}
.

(2) If p > q, then

MSB(lp − lq) = sup
{∥∥∥∥(a + (1 − aq)

1
p , (1 − aq)

1
q − a

q
p
)∥∥∥∥

lq−lp
: 0 ≤ a ≤ 1

}
.

Proof. (1) For convenience, we still let

B(x) := {y : y ∈ Slp−lq , x ⊥B y}, x ∈ Slp−lq .

First, due to Theorem 4.4 (1) and the homogeneity of Birkhoff orthogonality, one can easily know that

MSB(lp − lq) = sup{∥x − y∥ : x, y ∈ Slp−lq , x ⊥B y}

= sup{∥x − y∥ : x = (a, b) ∈ Slp−lq , y ∈ B(x), −1 ≤ a ≤ 1}

= sup{∥x − y∥ : x = (a, b) ∈ Slp−lq , y ∈ B(x), 0 ≤ a ≤ 1}. (10)

Now, take an arbitrary x = (a, b) ∈ Slp−lq with 0 ≤ a ≤ 1. Then following Lemma 4.5, we can obtain the
coordinates of y ∈ B(x). Now, putting the value of x and y into (10), we can obtain the desired result by a
straightforward computation.

(2) It is evident that the mapping (a, b) → (−b, a) is an isometric isomorphism from lp − lq onto lq − lp,
thus, by (1), we have

MSB(lp − lq) =MSB(lq − lp) = sup
{∥∥∥∥(a + (1 − aq)

1
p , (1 − aq)

1
q − a

q
p
)∥∥∥∥

lq−lp
: 0 ≤ a ≤ 1

}
.
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Remark 4.7. For the case of p = ∞, q = 1, the value of MSB(l∞ − l1) is given by Example 2.3 and Example 2.4, that
is, MSB(l∞ − l1) = 2. Moreover, the value of MSB(l1 − l∞) is also equal to 2, since the mapping (a, b)→ (−b, a) is an
isometric isomorphism from l∞ − l1 onto l1 − l∞, then MSB(l1 − l∞) =MSB(l∞ − l1) = 2.

5. Conclusions

In this paper, we consider a new constants MSB(X) which is used to study the Massera-Schäffer inequality
related to Birkhofforthogonality. It is of interest to characterize the Hilbert space in terms of it and investigate
its relationships with some geometric properties, such as uniform non-squareness, uniform convexity and
uniform smoothness. Moreover, we provide a study of MSB(X) in Radon planes. The symmetry of Birkhoff
orthogonality in the Radon planes allows us to establish an equivalent form of MSB(X) for Radon planes.
This equivalent form is used to calculate the value of MSB(lp − lq) (1 < p, q < ∞, 1

p +
1
q = 1). However, there

are still many interesting issues to be discussed. Is this constant related to other geometric properties? How
to calculate the values of this constant for some other classical Banach spaces? Therefore, the research on
MSB(X) needs to be continued in the future so that we can further understand MSB(X).
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