Filomat 38:15 (2024), 5261–5274 https://doi.org/10.2298/FIL2415261L

Published by Faculty of Sciences and Mathematics, University of Nis, Serbia ˇ Available at: http://www.pmf.ni.ac.rs/filomat

Weighted generalized invertibility in two semigroups of a ring with involution

Wende Li^a , Jianlong Chena,[∗] **, Yukun Zhou^a , Xiaofeng Chen^b**

^aSchool of Mathematics, Southeast University, Nanjing 210096, China ^bAliyun School of Big Data, Changzhou University, Changzhou 213164, China

Abstract. Let *R* be a ring with an involution and $p \in R$ be a weighted projection. We characterize the relation between the weighted Moore-Penrose invertibility (resp., weighted pseudo core invertibility) of the corresponding elements of the two semigroups *pRp* and *pRp* + 1 − *p*. As an application, we obtain the relation between the weighted Moore-Penrose invertibility (resp., weighted pseudo core invertibility) of the corresponding elements of the matrix semigroup $AA^{\dagger}_{MN}R^{m\times m}AA^{\dagger}_{MN} + I_m - AA^{\dagger}_{MN}$ and the matrix semigroup $A^{\dagger}_{M,N} A R^{n \times n} A^{\dagger}_{M,N} A + I_n - A^{\dagger}_{M,N} A$, where $A \in R^{m \times n}$ be weighted Moore-Penrose invertible with weights (M, N) .

1. Introduction

Let *R* be a ring with an involution $*$ and $R^{m \times n}$ denote the set of $m \times n$ matrices over *R*. An involution $*$ in *R* is an anti-isomorphism satisfying $(a^*)^* = a$, $(a + b)^* = a^* + b^*$ and $(ab)^* = b^*a^*$ for all $a, b \in R$. An element *a* ∈ *R* is called Hermitian if *a*^{*} = *a*.

Let *a* ∈ *R*. We recall that *a* is said to be Drazin invertible [10] if there exist *x* ∈ *R* and a positive integer *k* such that

$$
ax = xa
$$
, $ax^2 = x$, $xa^{k+1} = a^k$.

Such *x* (if it exists) is unique and called the Drazin inverse of *a*, denoted by a^D . When $k = 1$, the Drazin inverse of *a* is called the group inverse of *a*, denoted by *a* # . For more details of Drazin inverses, for example, see[4–9, 16, 29].

The weighted Moore-Penrose inverse is a generalization of the Moore-Penrose inverse which was characterized as the unique solution of four matrix equations by Penrose [22]. The concept of the weighted Moore-Penrose inverse was first introduced to investigate the question of least squares fitting of curves and surfaces by Greville [12]. Chipman [3] generalized Greville's weighted generalized inverse with weight being a Hermitian positive definite matrix to the weighted generalized inverse with weights being two

²⁰²⁰ *Mathematics Subject Classification*. 15A09; 16U90; 20M99; 16W10.

Keywords. Weighted Moore-Penrose inverse; weighted pseudo core inverse; weighted core inverse; semigroup; matrices over ring. Received: 19 June 2023; Accepted: 20 February 2024

Communicated by Dragana Cvetković-Ilić

Research supported by the National Natural Science Foundation of China (Nos. 12171083, 12071070) , Natural Science Foundation of Jiangsu Higher Education Institutions of China (No.23KJB110004) and the Qing Lan Project of Jiangsu Province.

^{*} Corresponding author: Jianlong Chen *Email addresses:* wendly155@163.com (Wende Li), jlchen@seu.edu.cn (Jianlong Chen), ykzhou187@163.com (Yukun Zhou),

xfc189130@163.com (Xiaofeng Chen)

Hermitian positive definite matrices. In 1992, Manjunatha Prasad and Bapat [17] defined the generalized Moore-Penrose inverse with weights being two invertible matrices and gave necessary and sufficient conditions for its existence over an integral domain. The weighted Moore-Penrose inverse of a complex matrix with weights being two invertible Hermitian matrices does not necessarily exist [24]. Sheng and Chen [24] presented the sufficient and necessary conditions for the existence of the weighted Moore-Penrose inverse with weights being two invertible Hermitian matrices. In the following, we give the weighted Moore-Penrose inverse of matrices over a ring with involution. More details of weighted Moore-Penrose inverses can refer to, for example, [2, 20, 25].

Definition 1.1. [17] Let $M \in R^{m \times m}$ and $N \in R^{n \times n}$ be two invertible Hermitian matrices, $A \in R^{m \times n}$. If there exists $X \in R^{n \times m}$ *satisfying the equations*

(1)
$$
AXA = A
$$
, (2) $XAX = X$, (3M) $(MAX)^* = MAX$, (4N) $(NXA)^* = NXA$,

then A is called weighted Moore-Penrose invertible with weights (*M*, *N*)*. Such X is unique if it exists and called the weighted Moore-Penrose inverse with weights* (*M*, *N*) *of A, denoted by A*† *M*,*N . More generally, if the equation* (1) *holds, then A is called regular, and X is called an inner inverse of A. We use A*[−] *to denote an inner inverse of A. If X satisfies the conditions* (1) *and (*3*M), then X is called a* {1, 3*M*}*-inverse of A and we use A*(1,3*M*) *to denote a* {1, 3*M*}*-inverse of A. Similarly, if X satisfies the conditions* (1) *and (*4*N), then X is called a* {1, 4*N*}*-inverse of A and we use A*(1,4*N*) *to denote a* {1, 4*N*}*-inverse of A. The symbols A*{1, 3*M*} *and A*{1, 4*N*} *denote all* {1, 3*M*}*-inverses of A and* $\{1, 4N\}$ -inverses of A, respectively. Clearly, when $M = I_m$ and $N = I_n$, $A_{M,N}^{\dagger}$ reduces to the Moore-Penrose *inverse A*† *of A.*

In 2007, Koliha [13] generalized the definition of the weighted Moore-Penrose inverse from matrices to rings with involution. Throughout this paper, we assume that $e, f \in R$ are invertible Hermitian elements.

Definition 1.2. [13] An element $a \in R$ is said to be weighted Moore-Penrose invertible with weights (e, f) if there *exists* $x \in R$ *such that*

(1)
$$
axa = a
$$
, (2) $xax = x$, (3e) $(eax)^* = eax$, (4f) $(fxa)^* = fxa$.

Such x is called the weighted Moore-Penrose inverse of a with weights (*e*, *f*) *and it is unique if it exists, denoted by a* † *e*, *f . Definitions of inner inverses,* {1, 3*e*}*-inverses and* {1, 4 *f*}*-inverses and their notations are similar to those defined for matrices.* If $e = f = 1$ *, then* $a_{e,f}^{\dagger} = a^{\dagger}$ *.*

Later, the weighted core inverse and weighted pseudo core inverse were introduced and investigated. Mosić et al. [19] introduced and investigated *e*-core inverses, Zhu and Wang [27] defined and characterized pseudo *e*-core inverses by three equations in a ring with involution. More results concerning core inverses and pseudo core inverses can be found in [1, 11, 18, 23, 26].

Definition 1.3. [27] *Let a* ∈ *R. Then a is said to be pseudo e-core invertible if there exist x* ∈ *R and a positive integer k* such that $xax = x$, $xR = a^kR$, $Rx = R(a^k)^*e$.

In [27], it was also proved that *a* is pseudo *e*-core invertible if and only if there exist *x* ∈ *R* and a positive integer *k* such that $xa^{k+1} = a^k$, $ax^2 = x$, $(eax)^* = eax$. Such *x* is called the pseudo *e*-core inverse of *a* and is unique if it exists, denoted by $a^{\epsilon, \mathbb{D}}$. The smallest positive integer *k* is called the pseudo *e*-core index of *a*, and denoted by ind(*a*). When ind(*a*) = 1, the pseudo *e*-core inverse of *a* is called the *e*-core inverse of *a* and denoted by $a^{e,\oplus}$. If $e = 1$, then the pseudo *e*-core index of *a* is called the pseudo core index of *a* and $a^{e,\oplus} = a^{\oplus}$ is called the pseudo core inverse of *a*. When $ind(a) = 1$ and $e = 1$, $a^{e, \oplus} = a^{\oplus}$ is called the core inverse of *a*. More details of pseudo *e*-core inverses and *e*-core inverses can refer to [15, 19, 27, 28].

Let *M* ∈ *R*^{m×*m*} be invertible Hermitian matrix. We note that *A* ∈ *R*^{m×*m*} is pseudo *M*-core invertible if and only if there exist *X* ∈ *R*^{*m*×*m*} and a positive integer *k* such that $XA^{k+1} = A^k$, $AX^2 = X$, $(MAX)^* = MAX$. Such *X* is unique if it exists and called the pseudo *M*-core inverse of *A*, which is denoted by $A^{M,\oplus}$. Similarly, the *M*-core inverse is defined.

A motivation for this research appeared in [21]. Let $p \in R$ be a projection. Then $pRp+1-p = \{pxp+1-p:$ $x \in R$ is a (multiplicative) semigroup. Patrício and Puystiens investigated the relation between the Moore-Penrose invertibility of the corresponding elements of *pRp* and *pRp* + 1 − *p*. As an application, they related the Moore-Penrose invertibility of the corresponding elements of the semigroup $A\overline{A}^{\dagger}R^{m\times m}AA^{\dagger} + I_m - AA^{\dagger}$ and the semigroup $A^{\dagger}AR^{n\times n}A^{\dagger}A + I_n - A^{\dagger}A$, when A^{\dagger} exists. The relevant results for the Drazin invertibility were also investigated.

The article is organized as follows. In Section 2, we first investigate the relation between the weighted Moore-Penrose invertibility of the corresponding elements of *pRp* and *pRp* + 1 − *p* when *p* is a weighted projection. Also, we obtain analogous results for the pseudo *e*-core invertibility (resp., *e*-core inverse). In Section 3, by applying Corollary 2.7 and Theorem 2.14 of Section 2, we relate the weighted Moore-Penrose invertibility with weights (*M*, *N*) (resp., pseudo *M*-core invertibility and *M*-core invertibility) of the corresponding elements between the semigroup $AA^{\dagger}_{M,N}R^{m\times m}AA^{\dagger}_{M,N} + I_m - AA_{M,N}^{\dagger}$ and the semigroup $A_{M,N}^{\dagger} A_{R}^{n \times n} A_{M,N}^{\dagger} A + I_n - A_{M,N}^{\dagger} A$ when A_{M}^{\dagger} ^t_{M,N} exists. The results on the weighted Moore-Penrose invertibility generalize the relevant results of Patrício and Puystjens on the Moore-Penrose invertibility in [21].

2. Weighted generalized invertibility in pRp and $pRp + 1 - p$ of R

Recall that $a \in R$ is said to be {1, 3}-invertible (resp., {1, 4}-invertible) if there exists $x \in R$ such that $axa = a$, $(ax)^* = ax$ (resp., $(xa)^* = xa$). In this section, we mainly investigate the relation between the weighted Moore-Penrose invertibility of the corresponding elements of *pRp* and *pRp* + 1 − *p* when *p* is a weighted projection, which will play an important role in the forthcoming section. The relation between the $\{1, 3\}$ -invertibility (resp., $\{1, 4\}$ -invertibility) of the corresponding elements of *pRp* and $pRp + 1 - p$ is first given when *p* is a projection.

Lemma 2.1. *Let p* ∈ *R be a projection,* $x \in R$ *. Then pxp* + 1 − *p is* {1, 3}*-invertible in R if and only if pxp is* {1, 3}*-invertible in pRp. In this case,*

$$
p(pxp + 1 - p)^{(1,3)}p \in (pxp)\{1,3\},\
$$

and

$$
(pxp)^{(1,3)} + 1 - p \in (pxp + 1 - p)\{1,3\},\
$$

 $where (pxp)^{(1,3)} \in pRp$.

Proof. Assume $(pxp + 1 - p)^{(1,3)}$ is a {1, 3}-inverse of $pxp + 1 - p$ in *R*. Then we have

 $(pxp + 1 - p)(pxp + 1 - p)^{(1,3)}(pxp + 1 - p) = pxp + 1 - p.$

Multiplying on the left and right sides by *p*, we can get

$$
(pxp)p(pxp + 1 - p)^{(1,3)}p(pxp) = pxp.
$$

Also,

$$
((pxp + 1 - p)(pxp + 1 - p)^{(1,3)})^* = (pxp + 1 - p)(pxp + 1 - p)^{(1,3)},
$$

multiplying on the left and right sides by *p*, we have

$$
\left(p x p p (p x p + 1 - p)^{(1,3)} p \right)^* = p x p p (p x p + 1 - p)^{(1,3)} p,
$$

Hence, $p(pxp + 1 - p)^{(1,3)}p \in (pxp){1,3}.$

Conversely, assume $(pxp)^{(1,3)}$ is a {1, 3}-inverse of *pxp* in *pRp*. Then $pxp(pxp)^{(1,3)}pxp = pxp$ implies

$$
(pxp + 1 - p)((pxp)^{(1,3)} + 1 - p)(pxp + 1 - p) = pxp + 1 - p
$$

since $(pxp)^{(1,3)} \in pRp$. Also,

$$
\left(p x p (p x p)^{(1,3)} \right)^* = p x p (p x p)^{(1,3)}.
$$

As $(1-p)^* = (1-p)$, $(pxp+1-p) ((pxp)^{(1,3)} + 1-p)$ is Hermitian. Therefore, $(pxp)^{(1,3)} + 1-p$ ∈ $(pxp+1-p)(1, 3)$.

Proposition 2.2. Let $p \in R$ be a projection, $x \in R$. Then pxp is {1,3}*-invertible in pRp if and only if pxp is* {*1,3*}*-invertible in R.*

Proof. The necessity is clear since $pRp \subseteq R$. For the sufficiency, we assume that pxp is {1, 3}-invertible with a {1,3}-inverse *y* in *R*. Then $pxpypxp = pxp$ implies $pxp(pyp)pxp = pxp$. Since $(pxpy)^* = pxpy$, we have $pxppyp = (pxpy)^*p = (pxpy)^*p^* = (ppxpy)^* = pxpy$. Then $(pxppyp)^* = pxpyp$. Therefore, *pyp* is a {1, 3}-inverse of *pxp* in *pRp*. \square

Following [13], the mapping $*e: R \to R$ defined by $x \mapsto e^{-1}x^*e$ is an involution. Furthermore, $a \in R$ is {1, 3*e*}-invertible with respect to ∗ if and only if *a* ∈ *R* is {1, 3}-invertible with respect to ∗*e*. Next, we characterize the case of the {1, 3*e*}-invertibility.

Corollary 2.3. Let $p \in R$ be an idempotent with $(ep)^* = ep$, $x \in R$. Then $pxp + 1 - p$ is {1, 3e}*-invertible in* R if and *only if pxp is* {1, 3*e*}*-invertible in R. In this case,*

$$
p(pxp + 1 - p)^{(1,3e)}p \in (pxp)\{1,3e\},\
$$

and

$$
p(pxp)^{(1,3e)}p + 1 - p \in (pxp + 1 - p)\{1,3e\}.
$$

Proof. Since $(ep)^* = ep$, we have $p = e^{-1}p^*e = p^{*e}$. Hence, it is easy to obtain the result by Lemma 2.1 and Proposition 2.2. \Box

We characterize the {1, 4}-invertibility case without proof, as it can be obtained by a similar way of the {1, 3}-invertibility.

Lemma 2.4. Let $p \in R$ be a projection, $x \in R$. Then $pxp + 1 - p$ is {1,4}*-invertible in* R if and only if pxp is {1, 4}*-invertible in pRp. In this case,*

$$
p(pxp + 1 - p)^{(1,4)}p \in (pxp)\{1, 4\},\
$$

and

$$
(pxp)^{(1,4)} + 1 - p \in (pxp + 1 - p)\{1, 4\}
$$

 $where (pxp)^{(1,4)} \in pRp$.

Corollary 2.5. Let $p \in R$ be an idempotent with $(fp)^* = fp$, $x \in R$. Then $pxp + 1 - p$ is {1,4 f }-invertible in R if and *only if pxp is* {1, 4 *f*}*-invertible in R. In this case,*

$$
p(pxp + 1 - p)^{(1,4f)}p \in (pxp)\{1,4f\},\
$$

and

$$
p(pxp)^{(1,4f)}p + 1 - p \in (pxp + 1 - p)\{1, 4f\}.
$$

(1,4 *f*)

It is known in [28] that *a* ∈ *R* is weighted Moore-Penrose invertible with weights (*e*, *f*) if and only if *a* ∈ *R* is {1,3*e*}-invertible and {1,4*f*}-invertible. Moreover, a_{ℓ}^{\dagger} $e_{e,f}^{\dagger} = a^{(1,4f)}aa^{(1,3e)}$. Combining Corollaries 2.3 and 2.5, then we can present the analogous results for the weighted Moore-Penrose invertibility with weights (*e*, *f*).

Theorem 2.6. Let $p \in R$ be an idempotent with $(ep)^* = ep$ and $(fp)^* = fp$, $x \in R$. Then $pxp + 1 - p$ is weighted *Moore-Penrose invertible with weights* (*e*, *f*) *in R if and only if pxp is weighted Moore-Penrose invertible with weights* (*e*, *f*) *in R. In this case,*

$$
(pxp)_{e,f}^{\dagger} = p(pxp + 1 - p)_{e,f}^{\dagger}p,
$$

and

$$
(pxp + 1 - p)_{e,f}^{\dagger} = (pxp)_{e,f}^{\dagger} + 1 - p.
$$

Proof. Here we only need to prove the expressions of $(pxp + 1 - p)_e^+$ $_{e,f}^{\dagger}$ and $(pxp)_{e}^{\dagger}$ $\int_{e,f}^{t}$. Assume that $(pxp)_{e}^{t}$ $\boldsymbol{e}_{\boldsymbol{\cdot}}^{\scriptscriptstyle\mathsf{T}}$ is the weighted Moore-Penrose inverse with weights (*e*, *f*) of *pxp*. Then it is easy to check that *p*(*pxp*) † $\int_{e,f}^{\intercal} p \text{ is also }$ the weighted Moore-Penrose inverse with weights (*e*, *f*) of *pxp* according to the similar proof of Proposition 2.2. By the uniqueness of the weighted Moore-Penrose inverse, we get (*pxp*) † $\sum_{e,f}^{t} = p(pxp)_{e}^{t}$ $\int_{e,f}^\intercal p$. Then for the expression of $(pxp + 1 - p)^+$ $\boldsymbol{f}_{e,f^{\prime}}^{\intercal}$ we can obtain that

$$
(pxp + 1 - p)^{+}_{e,f} = (pxp + 1 - p)^{(1,4f)}(pxp + 1 - p)(pxp + 1 - p)^{(1,3e)}
$$

= $(p(pxp)^{(1,4f)}p + 1 - p)(pxp + 1 - p)(p(pxp)^{(1,3e)}p + 1 - p)$
= $p(pxp)^{(1,4f)}pxp(pxp)^{(1,3e)}p + 1 - p$
= $(pxp)^{+}_{e,f}p + 1 - p \in pRp + 1 - p.$

For the expression of (*pxp*) † $\sum_{e,f'}^{\dagger}$ we can check that $(pxp)_{e,f}^{\dagger}$ $P_{e,f}^{\dagger} = p(pxp + 1 - p)_{e,f}^{\dagger}$ $\int_{e,f}^{+} p x p (p x p + 1 - p) \Big|_{e}^{+}$ *e*, *f p*. Since (*pxp*) † $e^{+}_{e,f}$ + 1 − *p* ∈ *pRp* + 1 − *p*, it follows that $(pxp)e^{+}$ $P_{e,f}^{\dagger} = p(pxp + 1 - p)_{e}^{\dagger}$ *e*, *f p*.

In the following result, we illustrate the relation between the weighted Moore-Penrose invertibility of the corresponding elements of *R* and *pRp*.

Proposition 2.7. Let $p \in R$ be a projection with $(ep)^* = ep$ and $(fp)^* = fp$. Then $pxp + 1 - p$ is weighted Moore-*Penrose invertible with weights* (*e*, *f*) *in R if and only if pxp is weighted Moore-Penrose invertible with weights* (*pe*, *p f*) *in pRp. In this case,*

$$
(pxp)_{pe,pf}^{\dagger} = p(pxp + 1 - p)_{e,f}^{\dagger}p \in pRp,
$$

and

$$
(pxp + 1 - p)_{e,f}^{\dagger} = (pxp)_{pe,pf}^{\dagger} + 1 - p \in pRp + 1 - p.
$$

Take $e = f = 1$ in Proposition 2.7, we obtain the characterization of the Moore-Penrose invertibility case given in [21].

Corollary 2.8. [21, Theorem 1] *Let* $p \in R$ *be a projection,* $x \in R$ *. Then pxp* + 1 − *p is Moore-Penrose invertible in R if and only if pxp is Moore-Penrose invertible in pRp. In this case,*

$$
(pxp)^{\dagger} = p(pxp + 1 - p)^{\dagger}p \in pRp,
$$

and

$$
(pxp + 1 - p)^{+} = (pxp)^{+} + 1 - p \in pRp + 1 - p.
$$

In [27], Zhu and Wang presented the following two lemmas, which will be useful in proving our results.

Lemma 2.9. [27, Corollary 3.10] *Let a* ∈ *R. Then a is e-core invertible if and only if a is group invertible and* ${1, 3e}$ *-invertible. In this case,* $a^{e, \oplus} = a^{\#}aa^{(1,3e)}$.

Lemma 2.10. [27, Theorem 3.19] *Let* a ∈ *R. Then a is pseudo e-core invertible if and only if* $aⁿ$ *is e-core invertible for some positive integer n. In this case,* $a^{e, \mathbb{O}} = a^{n-1} (a^n)^{e, \overline{\oplus}}$ *<i>and* $(a^n)^{e, \overline{\oplus}} = (a^{e, \mathbb{O}})^n$.

Proposition 2.11. *Let p* \in *R be an idempotent,* $x \in$ *R. Then pxp is group invertible in R if and only if pxp is group invertible in pRp. In this case, the group inverse of pxp in R is consistent with that in pRp.*

Proof. The sufficiency is clear. For the necessity, assume that *y* is the group inverse of *pxp* in *R*. Then $y = p x p y^2 = y^2 p x p \in pRp$. That is, *y* is also the group inverse of *pxp* in *pRp*. Hence, the group inverse of *pxp* in *R* is consistent with that in *pRp* by the uniqueness of the group inverse. \Box

In [11], it was proved that if $a, b \in R$ are pseudo core invertible with $ab = ba = 0$ and $a^*b = 0$, then $a + b$ is pseudo core invertible with $(a + b)^{(\mathbb{D})} = a^{(\mathbb{D})} + b^{(\mathbb{D})}$. As a new involution **e* was shown before, it is easy to check that $a \in R$ is pseudo *e*-core invertible with respect to $*$ if and only if $a \in R$ is pseudo core invertible with respect to ∗*e*. Then we can easily obtain the following result involving with the additive property of the pseudo *e*-core inverse.

Corollary 2.12. Let $a, b \in R$ be pseudo e-core invertible. If $ab = ba = 0$ and $a^*eb = 0$, then $a + b$ is pseudo e-core *.*

When $a, b \in R$ are *e*-core invertible, we have the relevant result of *e*-core inverses.

Corollary 2.13. Let $a, b \in R$ be e-core invertible. If $ab = ba = 0$ and $a^*eb = 0$, then $a + b$ is e-core invertible with $(a + b)^{e, \circledast} = a^{e, \circledast} + b^{e, \circledast}.$

Finally, we illustrate the relation between the pseudo *e*-core invertibility (resp., *e*-core invertibility) of the corresponding elements of two semigroups pRp and $pRp + 1 - p$ of *R*.

Theorem 2.14. Let $p ∈ R$ be an idempotent with $(ep)^* = ep$. Then the following statements hold. (1) *pxp* + 1 − *p is e-core invertible in R if and only if pxp is e-core invertible in R. In this case,*

$$
(pxp)^{e,\oplus} = p(pxp + 1 - p)^{e,\oplus}p,
$$

and

$$
(pxp+1-p)^{e,\oplus}=(pxp)^{e,\oplus}+1-p.
$$

(2) *pxp*+1−*p is pseudo e-core invertible with* ind(*pxp*+1−*p*) = *k in R if and only if pxp is pseudo e-core invertible with* ind(*pxp*) = *k in R. In this case,*

$$
(pxp)^{e,\circledcirc} = p(pxp + 1 - p)^{e,\circledcirc}p,
$$

and

$$
(pxp + 1 - p)^{e, \circledcirc} = (pxp)^{e, \circledcirc} + 1 - p.
$$

Proof. (1). Assume that $pxp + 1 - p$ is *e*-core invertible in *R*. Then $pxp + 1 - p$ is group invertible and {1, 3*e*}-invertible in *R* by Lemma 2.9. Following Corollary 2.3, Proposition 2.11 and [21, Theorem 1], we have that *pxp* is group invertible and {1,3*e*}-invertible in *R*. Moreover, $(pxp)^{\#} = p(pxp + 1 - p)^{\#}p$ and *p*(*pxp* + 1 − *p*) (1,3*e*)*p* ∈ (*pxp*){1, 3*e*}. Hence, by Lemma 2.9 again, we have that *pxp* is *e*-core invertible in *R*. For the expression, since $(pxp + 1 - p)^{\#} \in pRp + 1 - p$, we obtain

$$
(pxp)^{e \oplus} = (pxp)^{\#}(pxp)(pxp)^{(1,3e)}
$$

= $p(pxp + 1 - p)^{\#}p(pxp)p(pxp + 1 - p)^{(1,3e)}p$
= $p(pxp + 1 - p)^{\#}(pxp + 1 - p)(pxp + 1 - p)^{(1,3e)}p$
- $p(pxp + 1 - p)^{e \oplus p}p$.

Conversely, if $(pxp)^{e/\theta}$ is the *e*-core inverse of *pxp* in *R*, then by Corollary 2.13, we have that $pxp + 1 - p$ is *e*-core invertible, and

$$
(pxp + 1 - p)^{e \oplus} = (pxp)^{e \oplus} + (1 - p)^{e \oplus}
$$

= $(pxp)^{e \oplus} + 1 - p$

since $(pxp)(1 - p) = 0 = (1 - p)(pxp)$ and $(pxp)^*e(1 - p) = (e(1 - p)pxp)^* = 0$.

(2). By Lemma 2.10, it can be derived that $a \in R$ is pseudo *e*-core invertible with $\text{ind}(a) = k$ if and only if *k* is the smallest positive integer such that a^k is *e*-core invertible. If $pxp + 1 - p$ is pseudo *e*-core invertible with $\text{ind}(pxp + 1 - p) = k$, then *k* is the smallest positive integer such that $(pxp + 1 - p)^k = (pxp)^k + 1 - p =$

 $p(x(px)^{k-1})p+1-p$ is *e*-core invertible, and therefore $p(x(px)^{k-1})p = (pxp)^k$ is *e*-core invertible according to (1). We remark that *k* is the smallest positive integer such that $(pxp)^k$ is *e*-core invertible. In fact, if there exists a positive integer $m < k$ such that $(pxp)^m$ is *e*-core invertible, then $p(x(px)^{m-1})p = (pxp)^m$ is *e*-core invertible. The by (1), we get that (*pxp*+1−*p*) *^m* is *e*-core invertible, a contradiction. Therefore, *pxp* is pseudo *e*-core invertible with $\text{ind}(pxp) = k$. For the expression of $(pxp)^{e, \mathbb{D}}$, by Lemma 2.10 we can obtain that

$$
(pxp)^{e, \circledcirc} = (pxp)^{k-1} ((pxp)^{k})^{e, \circledcirc}
$$

= $(pxp)^{k-1} p ((pxp)^{k})^{e, \circledcirc}$
= $((pxp)^{k-1} + 1 - p) p ((pxp)^{k} + 1 - p)^{e, \circledcirc} p$
= $p(pxp + 1 - p)^{k-1} ((pxp + 1 - p)^{k})^{e, \circledcirc} p$
= $p(pxp + 1 - p)^{e, \circledcirc} p$.

Conversely, since $(pxp)(1-p) = 0 = (1-p)(pxp)$ and $(pxp)^*e(1-p) = (e(1-p)pxp)^* = 0$, it follows that

$$
(pxp + 1 - p)^{e, \circledcirc} = (pxp)^{e, \circledcirc} + (1 - p)^{e, \circledcirc}
$$

$$
= (pxp)^{e, \circledcirc} + 1 - p
$$

by Corollary 2.12. \Box

In the following result, we also illustrate the relation between the pseudo *e*-core invertibility of the corresponding elements of *R* and *pRp*.

Corollary 2.15. Let $p ∈ R$ be a projection with $(ep)^* = ep$, $x ∈ R$. Then the following statements hold. (1) *pxp* + 1 − *p is e-core invertible in R if and only if pxp is pe-core invertible in pRp. In this case,*

$$
(pxp)^{pe,\oplus} = p(pxp + 1 - p)^{e,\oplus}p \in pRp,
$$

and

$$
(pxp + 1 - p)^{e, \oplus} = (pxp)^{pe, \oplus} + 1 - p \in pRp + 1 - p.
$$

(2) *pxp* + 1 − *p is pseudo e-core invertible with* ind(*pxp* + 1 − *p*) = *k in R if and only if pxp is pseudo pe-core invertible with* ind(*pxp*) = *k in pRp. In this case,*

$$
(pxp)^{pe, \circledcirc} = p(pxp + 1 - p)^{e, \circledcirc}p \in pRp,
$$

and

$$
(pxp + 1 - p)^{e, \circledcirc} = (pxp)^{pe, \circledcirc} + 1 - p \in pRp + 1 - p.
$$

Take $e = 1$. Then we can obtain analogous results of the core invertibility and the pseudo core invertibility, respectively, as follows.

Corollary 2.16. [14, Theorem 1] *Let* $p \in R$ *be a projection,* $x \in R$. Then the following statements hold. (1) *pxp* + 1 − *p is core invertible in R if and only if pxp is core invertible in pRp. In this case,*

$$
(pxp)^{(\text{B})} = p(pxp + 1 - p)^{(\text{B})}p \in pRp,
$$

and

$$
(pxp + 1 - p)^{(*)} = (pxp)^{(*)} + 1 - p \in pRp + 1 - p
$$

(2) *pxp* + 1 − *p is pseudo core invertible with* ind(*pxp* + 1 − *p*) = *k in R if and only if pxp is pseudo core invertible with* ind(*pxp*) = *k in pRp. In this case,*

$$
(pxp)^{③} = p(pxp + 1 - p)^{③}p \in pRp,
$$

and

$$
(pxp + 1 - p)^{③} = (pxp)^{②} + 1 - p \in pRp + 1 - p.
$$

3. Weighted generalized invertibility in two matrix semigroups

Given a ring *R* with an involution *, there is a natural involution * : $R^{m \times n} \to R^{n \times m}$, that is for any $A = (a_{ij}) \in R^{m \times n}, A^* \in R^{n \times m}$ is defined as (a_{ji}^*) .

Let *R* be a ring with involution *ι* and *S* a ring with involution *τ*. Then φ : $R \to S$ is a *ι*, *τ*-invariant homomorphism if φ is a ring homomorphism and $\varphi(x^i) = (\varphi(x))^{\tau}$ for all $x \in R$. If ι and τ coincide, then it is written *ι*-invariant for short, which is equivalent to say that *ι* and φ commute [21].

Let $A \in R^{m \times n}$ with A^{\dagger} existing and $\phi_A : AA^{\dagger}R^{m \times m}AA^{\dagger} \to A^{\dagger}AR^{n \times n}A^{\dagger}A$ with $\phi_A(AA^{\dagger}XAA^{\dagger}) = A^{\dagger}XA$. If ϕ_A is ∗-invariant, then *A* is called ∗-invariant. Furthermore, Patrício and Puystjens [21] also illustrate that ϕ ^{*A*} is ∗-invariant if and only if *A*[†]*YA* = *A*^{*}*Y*(*A*[†]*)*^{*} for all *Y* ∈ *R*^{*m*×*m*}.

Let $A \in R^{m \times n}$ with A^{\dagger} existing and $B \in R^{m \times m}$. Denote the conditions (i) $\Gamma = AA^{\dagger}BAA^{\dagger} + I_m - AA^{\dagger}$ is Moore-Penrose invertible and (ii) $\Omega = A^{\dagger}BA + I_n - A^{\dagger}A$ is Moore-Penrose invertible. In [21], Patrício and Puystjens gave an example to illustrate that (i)⇔(ii) does not hold in general. In order to give a sufficient condition for (i)⇔(ii), they introduced the notation and definition of ∗-invariance. Additionally, they also gave an example to explain the \ast -invariance of *A* is not necessary for (i) \Leftrightarrow (ii). Also, the authors [14] showed the analogous equivalence of pseudo core inverses and core inverses.

In this section, let $M \in R^{m \times m}$ and $N \in R^{n \times n}$ be two invertible Hermitian matrices. In order to give a sufficient condition for the analogous results on the weighted Moore-Penrose invertibility with weights (*M*, *N*) and pseudo *M*-core invertibility, respectively. We first illustrate some more notations and definitions.

Let *R* equip with an involution $*$ and $\overline{A} \in R^{m \times n}$ with A_{λ}^{\dagger} [†]_{*M,N*} existing. Suppose that $AA_{M,N}^{\dagger}R^{m\times m}AA_{M,N}^{\dagger}$ and *A* † *^M*,*NARn*×*n^A* † *^M*,*N^A* are equipped with the involutions [∗]*^M* and [∗]*N*, respectively. We define

$$
\phi_A: AA_{M,N}^{\dagger} R^{m \times m} AA_{M,N}^{\dagger} \to A_{M,N}^{\dagger} AR^{n \times n} A_{M,N}^{\dagger} A
$$

with

$$
\phi_A(AA_{M,N}^{\dagger}XAA_{M,N}^{\dagger})=A_{M,N}^{\dagger}XA\;\;\text{for}\;\;X\in R^{m\times m}.
$$

Then we call ϕ_A is *M, *N-invariant if $\phi_A(T^{*M}) = (\phi_A(T))^{N}$ for $T \in AA_{M,N}^{\dagger}R^{m \times m}AA_{M,N'}^{\dagger}$ that is, $\phi_A\left(M^{-1}T^*M\right) =$ $N^{-1} (\phi_A(T))^* N$ for $T \in AA_{M,N}^{\dagger} R^{m \times m} AA_{M,N}^{\dagger}$. If ϕ_A is $[M, N]$ -invariant, then we call that A is $[M, N]$ -invariant.

Let $X \in R^{m \times m}$. Then we have $T = AA_{M,N}^{\dagger} XAA_{M,N}^{\dagger} \in AA_{M,N}^{\dagger} R^{m \times m} AA_{M,N}^{\dagger}$. It follows that

$$
\phi_A (M^{-1}T^*M) = \phi_A (M^{-1}(AA_{M,N}^{\dagger}XAA_{M,N}^{\dagger})^*M)
$$

= $\phi_A ((MAA_{M,N}^{\dagger}XAA_{M,N}^{\dagger}M^{-1})^*)$
= $\phi_A (AA_{M,N}^{\dagger}M^{-1}X^*MAA_{M,N}^{\dagger})$
= $A_{M,N}^{\dagger}M^{-1}X^*MA$

and

$$
N^{-1} (\phi_A(T))^* N = N^{-1} (\phi_A(A A_{M,N}^{\dagger} X A A_{M,N}^{\dagger}))^* N
$$

= $N^{-1} (A_{M,N}^{\dagger} X A)^* N$
= $N^{-1} A^* X^* (A_{M,N}^{\dagger})^* N.$

Hence, we obtain that ϕ_A is $*M$, $*N$ -invariant if and only if

 $A_{M,N}^{\dagger}M^{-1}X^*MA = N^{-1}A^*X^*(A_{M}^{\dagger})$ *M*,*N*) ∗*N*.

Then taking the involution ∗ on the both sides, it follows that

$$
A^*MXM^{-1}(A^{\dagger}_{M,N})^* = NA^{\dagger}_{M,N}XAN^{-1}.
$$

Let $\psi_A : A^{\dagger}_{M,N}AR^{n \times n}A^{\dagger}_{M,N}A \to AA^{\dagger}_{M,N}R^{m \times m}AA^{\dagger}_{M,N}$ be defined by

 $\psi_A(A_{M,N}^{\dagger} A Y A_{M,N}^{\dagger} A) = A Y A_{M,N}^{\dagger}$ for $Y \in R^{n \times n}$.

Then it is easy to check that $\phi_A\psi_A=I_{A_{M,N}^+A R^{n\times n}A_{M,N}^+A}$ and $\psi_A\phi_A=I_{A A_{M,N}^+R^{m\times m}A A_{M,N}^+}.$

Supposing that ϕ_A is **M*, **N*-invariant. For $Y \in R^{n \times n}$, we have that $G = A_{M,N}^{\dagger} A Y A_{M,N}^{\dagger} A \in A_{M,N}^{\dagger} A R^{n \times n} A_{M,N}^{\dagger} A$, then it follows that

$$
M^{-1} (\psi_A(G))^* M = \psi_A \phi_A \left(M^{-1} (\psi_A(G))^* M \right)
$$

= $\psi_A \left(N^{-1} (\phi_A \psi_A(G))^* N \right)$
= $\psi_A (N^{-1} G^* N).$

Thus, ψ_A is **N*, **M*-invariant. Furthermore, we can obtain that

$$
M^{-1} (\psi_A(G))^* M = M^{-1} (\psi_A(A_{M,N}^{\dagger} A Y A_{M,N}^{\dagger} A))^* M
$$

= $M^{-1} (A Y A_{M,N}^{\dagger})^* M$
= $M^{-1} (A_{M,N}^{\dagger})^* Y^* A^* M$,

and

$$
\psi_A(N^{-1}G^*N) = \psi_A \left(N^{-1} (A_{M,N}^{\dagger} A Y A_{M,N}^{\dagger} A)^* N \right)
$$

= $\psi_A \left((NA_{M,N}^{\dagger} A Y A_{M,N}^{\dagger} A N^{-1})^* \right)$
= $\psi_A (A_{M,N}^{\dagger} A N^{-1} Y^* N A_{M,N}^{\dagger} A)$
= $AN^{-1} Y^* N A_{M,N}^{\dagger}$.

Hence, it follows that $M^{-1}(A^{\dagger}_{\Lambda})$ ${}_{M,N}^{\dagger}$ ^{*} $Y^*A^*M = AN^{-1}Y^*NA_{M,N}^{\dagger}$. Then taking the involution $*$ on the both sides, we have that

$$
MAYA_{M,N}^{\dagger}M^{-1} = (A_{M,N}^{\dagger})^*NYN^{-1}A^*.
$$
\n(3.2)

Next, we relate the weighted Moore-Penrose invertibility of the corresponding elements between the semigroup $AA^{\dagger}_{M,N}R^{m\times m}AA^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N}$ and the semigroup $A^{\dagger}_{M,N}AR^{n\times n}A^{\dagger}_{M,N}A + I_n - A^{\dagger}_{M,N}A$. For this purpose, we first investigate the weighted {1, 3}-invertibility case and the weighted {1, 4}-invertibility case as follows.

Lemma 3.1. Let $A \in R^{m \times n}$ be weighted Moore-Penrose invertible with weights (M, N) and $B \in R^{m \times m}$. Consider the *following conditions:*

(1) $\Gamma = AA^{\dagger}_{M,N} BAA^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N}$ is {1,3M}*-invertible.* (2) $\Omega = A_{\lambda}^{+}$ $\frac{1}{M}$ *BA* + $I_n - A_{M,N}^{\dagger}$ *A* is {*1,3N*}*-invertible. If A is* ∗*M*,∗*N-invariant then (1)*⇔*(2), in which case*

 $AΩ$ ^(1,3*N*) A [†]_{*M,N}* + *I_m* − AA [†]_{*M,N*} ∈ Γ{1,3*M*}</sub>

and

$$
A_{M,N}^{\dagger}\Gamma^{(1,3M)}A+I_n-A_{M,N}^{\dagger}A\in \Omega\{1,3N\}.
$$

Proof. (1)⇒(2). If Γ is {1,3*M*}-invertible, then by Corollary 2.3, $AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger} = AA_{M,N}^{\dagger}\Gamma AA_{M,N}^{\dagger}$ is {1,3*M*}- $\frac{1}{2}$ invertible with a $\{1, 3M\}$ -inverse Γ_0 in $R^{m \times m}$. As

$$
AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}=AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger},
$$

then multiplying on the left side by *A* † $_{M,N}^{\dagger}$ and on the right side by A , we can get

$$
(A_{M,N}^{\dagger}BA)A_{M,N}^{\dagger}\Gamma_0 A(A_{M,N}^{\dagger}BA)=A_{M,N}^{\dagger}BA.
$$

Also,

$$
(MAA^{\dagger}_{M,N}BAA^{\dagger}_{M,N}\Gamma_0)^*=MAA^{\dagger}_{M,N}BAA^{\dagger}_{M,N}\Gamma_0,
$$

then by (3.1), we have

$$
(NA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ AN^{-1})^* = (NA_{M,N}^{\dagger}AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ AA_{M,N}^{\dagger}AN^{-1})^* = (A^*MAA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ AA_{M,N}^{\dagger}M^{-1}(A_{M,N}^{\dagger})^*)^* = A_{M,N}^{\dagger}AA_{M,N}^{\dagger}M^{-1}MAA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ A = A_{M,N}^{\dagger}BAA_{M,N}^{\dagger}\Gamma_0\ A,
$$

that is,

$$
(NA_{M,N}^{\dagger} B AA_{M,N}^{\dagger} \Gamma_0 A)^* = NA_{M,N}^{\dagger} B AA_{M,N}^{\dagger} \Gamma_0 A.
$$

Hence, *A* † $_{M,N}^{\dagger}$ Γ_0 *A* is a {1,3*N*}-inverse of A_{Λ}^{\dagger} $M_{M,N}^{\dagger}BA = A_{M,N}^{\dagger}A\Omega A_{M,N}^{\dagger}A$ in $A_{M,N}^{\dagger}AR^{n\times n}A_{M,N}^{\dagger}A$. Therefore, by Corollary 2.3 again, we have

$$
A_{M,N}^{\dagger}\Gamma_0\,A+I_n-A_{M,N}^{\dagger}A\in\Omega\{1,3N\}.
$$

As $AA^{\dagger}_{M,N} \Gamma^{(1,3M)}AA^{\dagger}_{M,N} \in (AA^{\dagger}_{M,N}BAA^{\dagger}_{M,N})\{1,3M\}$, it follows that

$$
A_{M,N}^{\dagger}\Gamma^{(1,3M)}A + I_n - A_{M,N}^{\dagger}A \in \Omega\{1,3N\}.
$$

(2)⇒(1). If Ω is {1,3*N*}-invertible, then by Corollary 2.3, A^{\dagger}_{Λ} $M_{M,N}^{\dagger}BA = A_{M,N}^{\dagger}A\Omega A_{M,N}^{\dagger}A$ is {1,3*N*}-invertible with a $\{1, 3N\}$ -inverse Ω_0 in $R^{n \times n}$. As

$$
A_{M,N}^{\dagger} B A \Omega_0 A_{M,N}^{\dagger} B A = A_{M,N}^{\dagger} B A,
$$

then multiplying on the left side by *A* and on the right side *A* † $_{M,N}^\text{\texttt{t}}$, we have

$$
(AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger})(A\Omega_0 A_{M,N}^{\dagger})(AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger})=AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger}.
$$

Also,

$$
(NA_{M,N}^\dagger B A \Omega_0)^* = NA_{M,N}^\dagger B A \Omega_0,
$$

then by (3.2), we obtain

$$
(MAA_{M,N}^{\dagger} BAA_{M,N}^{\dagger} A\Omega_0 A_{M,N}^{\dagger} M^{-1})^* = ((A_{M,N}^{\dagger})^* NA_{M,N}^{\dagger} BAA_{M,N}^{\dagger} A\Omega_0 N^{-1} A^*)^*
$$

= $AN^{-1} NA_{M,N}^{\dagger} BAA_{M,N}^{\dagger} A\Omega_0 A_{M,N}^{\dagger}$
= $AA_{M,N}^{\dagger} BAA_{M,N}^{\dagger} A\Omega_0 A_{M,N}^{\dagger}$,

that is,

$$
(MAA^\dagger_{M,N}BAA^\dagger_{M,N}A\Omega_0\,A^\dagger_{M,N})^* = MAA^\dagger_{M,N}BAA^\dagger_{M,N}A\Omega_0\,A^\dagger_{M,N}.
$$

Hence, $A\Omega_0 A^{\dagger}_{\lambda}$ $_{M,N}^{\dagger}$ is a {1,3M}-inverse of $AA_{M,N}^{\dagger}BAA_{M,N}^{\dagger} = AA_{M,N}^{\dagger}TAA_{M,N}^{\dagger}$ in $AA_{M,N}^{\dagger}R^{m\times m}AA_{M,N}^{\dagger}$. Therefore, by Corollary 2.3 again, we have

$$
A\Omega_0\,A_{M,N}^\dagger+I_m-A A_{M,N}^\dagger\in\Gamma\{1,3M\}.
$$

 A s $A_{M,N}^{\dagger}A\Omega^{(1,3N)}A_{M,N}^{\dagger}A \in (A_{M}^{\dagger}A)$ $_{M,N}^{\dagger}$ *BA*){1, 3*N*}, it follows that $A\Omega^{(1,3N)}A_{N}^{\dagger}$ $^{\dagger}_{M,N}$ + *I*_{*m*} − *AA*[†]_{*M,N*}</sub> ∈ Γ{1, 3*M*}.

Lemma 3.2. Let $A \in R^{m \times n}$ be weighted Moore-Penrose invertible with weights (M, N) and $B \in R^{m \times m}$. Consider the *following conditions:*

(1) $\Gamma = AA^{\dagger}_{M,N} BAA^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N}$ is {1,4M}*-invertible.*

If A is ∗*M*,∗*N-invariant then (1)*⇔*(2), in which case*

$$
A\Omega^{(1,4N)}A_{M,N}^\dagger+I_m-AA_{M,N}^\dagger\in\Gamma\{1,4M\}
$$

and

$$
A_{M,N}^{\dagger}\Gamma^{(1,4M)}A + I_n - A_{M,N}^{\dagger}A \in \Omega\{1, 4N\}.
$$

Then combining Lemmas 3.1 and 3.2, it is easy to obtain analogous results on the weighted Moore-Penrose invertibility with weights (*M*, *N*).

Theorem 3.3. Let $A \in R^{m \times n}$ be weighted Moore-Penrose invertible with weights (M, N) and $B \in R^{m \times m}$. Consider *the following conditions:*

(1) $\Gamma = A A_{M,N}^{\dagger} B A A_{M,N}^{\dagger} + I_m - A A_{M,N}^{\dagger}$ is weighted Moore-Penrose invertible with weights (M, M). (2) $\Omega = A_{\lambda}^{+}$ $M_{M,N}^{\dagger}BA+I_n-A_{M,N}^{\dagger}A$ is weighted Moore-Penrose invertible with weights (N, N). *If A is* ∗*M*,∗*N-invariant then (1)*⇔*(2), in which case*

$$
\Gamma_{M,M}^\dagger = A \Omega^\dagger_{N,N} A^\dagger_{M,N} + I_m - A A^\dagger_{M,N}
$$

and

$$
\Omega^{\dagger}_{N,N} = A^{\dagger}_{M,N} \Gamma^{\dagger}_{M,M} A + I_n - A^{\dagger}_{M,N} A.
$$

Proof. It suffices to give the expressions of Γ_h^+ $M_{M,M}^{\dagger}$ and $\Omega_{N,N}^{\dagger}$. By Lemmas 3.1 and 3.2, it follows that $\Omega\Omega^{(1,3)} \in A_{M,N}^{\dagger} A R^{n \times n} A_{M,N}^{\dagger} A + I_n - A_{M,N}^{\dagger} A$ and $\Gamma\Gamma^{(1,3)} \in A A_{M,N}^{\dagger} R^{m \times m} A A_{M,N}^{\dagger} + I_m - A A_{M,N}^{\dagger}$. Then $A_{M,N}^{\dagger} A \Omega \Omega^{(1,3)} =$ Ω Ω^(1,3) $A_{MN}^{\dagger}A$ and $A A_{MN}^{\dagger} \Gamma \Gamma^{(1,3)} = \Gamma \Gamma^{(1,3)} A A_{MN}^{\dagger}$. Hence,

$$
\begin{split} \Gamma^{\dagger}_{M,M}=&\Gamma^{(1,4M)}\Gamma\Gamma^{(1,3M)}\\ =&(A\Omega^{(1,4N)}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N})(AA^{\dagger}_{M,N}BAA^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N})\\ &\quad (A\Omega^{(1,3N)}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N})\\ =&A\Omega^{(1,4N)}A^{\dagger}_{M,N}AA^{\dagger}_{M,N}BAA^{\dagger}_{M,N}A\Omega^{(1,3N)}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N}\\ =&A\Omega^{(1,4N)}A^{\dagger}_{M,N}A\Omega\Omega^{(1,3)}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N}\\ =&A\Omega^{(1,4N)}\Omega\Omega^{(1,3)}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N}\\ =&A\Omega^{\dagger}_{N,N}A^{\dagger}_{M,N}+I_m-AA^{\dagger}_{M,N}. \end{split}
$$

Similarly,

$$
\begin{aligned} \Omega^{\dagger}_{N,N}=&\Omega^{(1,4N)}\Omega\Omega^{(1,3N)}\\=&(A^{\dagger}_{M,N}\Gamma^{(1,4M)}A+I_n-A^{\dagger}_{M,N}A)(A^{\dagger}_{M,N}BA+I_n-A^{\dagger}_{M,N}A)\\& (A^{\dagger}_{M,N}\Gamma^{(1,3M)}A+I_n-A^{\dagger}_{M,N}A)\\=&A^{\dagger}_{M,N}\Gamma^{(1,4M)}AA^{\dagger}_{M,N}BAA^{\dagger}_{M,N}\Gamma^{(1,3M)}A+I_n-A^{\dagger}_{M,N}A\\=&A^{\dagger}_{M,N}\Gamma^{(1,4M)}AA^{\dagger}_{M,N}\Gamma^{(1,3M)}A+I_n-A^{\dagger}_{M,N}A\\=&A^{\dagger}_{M,N}\Gamma^{(1,4M)}\Gamma^{(1,3M)}A+I_n-A^{\dagger}_{M,N}A\\=&A^{\dagger}_{M,N}\Gamma^{\dagger}_{M,M}A+I_n-A^{\dagger}_{M,N}A. \end{aligned}
$$

 \Box

Take $M = I_m$ and $N = I_n$ in Theorem 3.3. Then we have the following result given in [21].

Corollary 3.4. [21, Proposition 6] *Let* A ∈ $R^{m×n}$ *be Moore-Penrose invertible and* B ∈ $R^{m×m}$ *. Consider the following conditions:*

(1) $\Gamma = AA^{\dagger}BAA^{\dagger} + I_m - AA^{\dagger}$ *is Moore-Penrose invertible.*

(2) $\Omega = A^{\dagger}BA + I_n - A^{\dagger}A$ *is Moore-Penrose invertible. If A is* ∗*-invariant then (1)*⇔*(2), in which case*

$$
\Gamma^{\dagger} = A\Omega^{\dagger}A^{\dagger} + I_m - AA^{\dagger}
$$

and

$$
\Omega^{\dagger} = A^{\dagger} \Gamma^{\dagger} A + I_n - A^{\dagger} A.
$$

Note that [14, Example 1] showed that the equivalence that Γ = *AA*†*BAA*† + *I^m* − *AA*† is core invertible if and only if $\Omega = A^tBA + I_n - A^tA$ is core invertible does not hold in general when $A \in R^{m \times n}$ be Moore-Penrose invertible and *B* ∈ *R*^{*m*×*m*}. Also, the ∗-invariance of *A* is not necessary for this equivalence is shown in [14, Example 2]. In order to relate the equivalence for the pseudo *M*-core invertibility of the corresponding elements between the semigroup $AA_{M,N}^{\dagger}R^{m\times m}AA_{M,N}^{\dagger} + I_m^{\dagger} - AA_{M,N}^{\dagger}$ and the semigroup $A_{M,N}^{\dagger}AR^{n\times n}A_{M,N}^{\dagger}A +$ $I_n - A_{M,N}^{\dagger}A$ when A_{Λ}^{\dagger} *M*,*N* exists, we give a sufficient condition that *A* is ∗*M*,∗*N*-invariant.

Theorem 3.5. Let $A \in R^{m \times n}$ be weighted Moore-Penrose invertible with weights (M, N) and $B \in R^{m \times m}$. Consider *the following conditions:*

(1) $\Gamma = A A_{M,N}^{\dagger} B A A_{M,N}^{\dagger} + I_m - A A_{M,N}^{\dagger}$ is pseudo M-core invertible with $\text{ind}(\Gamma) = k$ (M-core invertible if $k = 1$). (2) $\Omega = A_{\lambda}^{+}$ $M_{M,N}^{\dagger}BA + I_n - A_{M,N}^{\dagger}A$ is pseudo N-core invertible with $\text{ind}(\Omega) = k$ (N-core invertible if $k = 1$). *If A is* ∗*M*,∗*N-invariant then (1)*⇔*(2), in which case*

$$
\Gamma^{M,\textcircled{D}}=A\Omega^{N,\textcircled{D}}A_{M,N}^\dagger+I_m-AA_{M,N}^\dagger
$$

and

$$
\Omega^{N,\oplus} = A_{M,N}^{\dagger} \Gamma^{M,\oplus} A + I_n - A_{M,N}^{\dagger} A.
$$

Proof. Let us first consider the case $k = 1$, i.e., Γ is *M*-core invertible if and only if Ω is *N*-core invertible.

If Γ is *M*-core invertible, then by Lemma 2.9, it is known that Γ is group invertible and {1, 3*M*}-invertible. Following the Lemma 3.1 and [21, Proposition 5], we can obtain that Ω is group invertible and {1,3*N*}invertible. Moreover, $\Omega^{\#} = A_{\Lambda}^{\dagger}$ $\int_{M,N}^{t} \Gamma^* A + I_n^{\dagger} - A_{M,N}^{\dagger} A$ and A_N^{\dagger} $M_{M,N}^{\dagger} \Gamma^{(1,3M)} A + I_n - A_{M,N}^{\dagger} A \in \Omega$ {1,3*N*}. By the Lemma 2.9 again, it is easy to get that Ω is *N*-core invertible. Since Γ[#] ∈ AA [†]_{*M,N}R^{<i>m*×*m*} AA [†]_{*M,N}* + *I_m* − AA [†]_{*M,N}*, it follows</sub></sub></sub> that $AA^{\dagger}_{M,N} \Gamma^{\#} = \Gamma^{\#} AA^{\dagger}_{M,N}$. For the expression of $\Omega^{N,\oplus}$, we have

$$
\begin{split} \Omega^{N,\circledast} &= \Omega^{\#} \Omega \Omega^{(1,3N)} \\ &= (A_{M,N}^{\dagger} \Gamma^{\#} A + I_n - A_{M,N}^{\dagger} A)(A_{M,N}^{\dagger} B A + I_n - A_{M,N}^{\dagger} A)(A_{M,N}^{\dagger} \Gamma^{(1,3M)} A + I_n - A_{M,N}^{\dagger} A) \\ &= A_{M,N}^{\dagger} \Gamma^{\#} A A_{M,N}^{\dagger} B A A_{M,N}^{\dagger} \Gamma^{(1,3M)} A + I_n - A_{M,N}^{\dagger} A \\ &= A_{M,N}^{\dagger} \Gamma^{\#} A A_{M,N}^{\dagger} \Gamma \Gamma^{(1,3M)} A + I_n - A_{M,N}^{\dagger} A \\ &= A_{M,N}^{\dagger} A A_{M,N}^{\dagger} \Gamma^{\#} \Gamma \Gamma^{(1,3M)} A + I_n - A_{M,N}^{\dagger} A \\ &= A_{M,N}^{\dagger} \Gamma^{M,\circledast} A + I_n - A_{M,N}^{\dagger} A. \end{split}
$$

The converse is analogous. Since $\Omega^{\#} \in A_{M,N}^{\dagger} A R^{n \times n} A_{M,N}^{\dagger} A + I_n - A_{M,N}^{\dagger} A$, it follows that $A_{M,N}^{\dagger} A \Omega^{\#} =$ $\Omega^{\sharp}A_{M,N}^{\dagger}A$. For the expression of $\Gamma^{M,\oplus}$, we have

$$
\Gamma^{M,\circledast} = \Gamma^{\#}\Gamma\Gamma^{(1,3M)} \n= (A\Omega^{\#}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N})(AA^{\dagger}_{M,N}BAA^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N})(A\Omega^{(1,3N)}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N}) \n= A\Omega^{\#}A^{\dagger}_{M,N}AA^{\dagger}_{M,N}BA\Omega^{(1,3N)}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N} \n= A\Omega^{\#}A^{\dagger}_{M,N}A\Omega\Omega^{(1,3N)}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N} \n= AA^{\dagger}_{M,N}A\Omega^{\#}\Omega\Omega^{(1,3N)}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N} \n= A\Omega^{N,\circledast}A^{\dagger}_{M,N} + I_m - AA^{\dagger}_{M,N}
$$

For the general case, suppose that Γ is pseudo *M*-core invertible with $ind(\Gamma) = k$, i.e., $\Gamma^{M, \mathbb{O}}$ exists with $\text{ind}(\Gamma)=k$. Then $(\Gamma^k)^{M \textcircled{\tiny \#}}=\left(AA_{M,N}^\dagger(BAA_{M,N}^\dagger)^kAA_{M,N}^\dagger+I_m-AA_{M,N}^\dagger\right)^{M \textcircled{\tiny \#}}$ exists by Lemma 2.10. Using the first part of the proof and keeping in mind that *B* is arbitrary, we can obtain that $\Omega^k = A^{\dagger}_h$ $\sum_{M,N}^{t} (BAA_{M,N}^{\dagger})^{k} A + I_{n} - A_{M,N}^{\dagger} A$ is *N*-core invertible. Thus Ω^{*N*,}[◎] exists with ind(Ω) ≤ *k* by Lemma 2.10 again. Moreover,

$$
\begin{split} \Omega^{N,\oplus} &= \Omega^{k-1} (\Omega^k)^{N,\oplus} \\ &= \Omega^{k-1} \left(A_{M,N}^\dagger (B A A_{M,N}^\dagger)^k A + I_n - A_{M,N}^\dagger A \right)^{N,\oplus} \\ &= \Omega^{k-1} \left(A_{M,N}^\dagger (\Gamma^k)^{M,\oplus} A + I_n - A_{M,N}^\dagger A \right) \\ &= \left(A_{M,N}^\dagger (B A A_{M,N}^\dagger)^{k-1} A + I_n - A_{M,N}^\dagger A \right) \left(A_{M,N}^\dagger (\Gamma^k)^{M,\oplus} A + I_n - A_{M,N}^\dagger A \right) \\ &= A_{M,N}^\dagger (B A A_{M,N}^\dagger)^{k-1} A A_{M,N}^\dagger (\Gamma^k)^{M,\oplus} A + I_n - A_{M,N}^\dagger A \\ &= A_{M,N}^\dagger \Gamma^{k-1} (\Gamma^k)^{M,\oplus} A + I_n - A_{M,N}^\dagger A \\ &= A_{M,N}^\dagger \Gamma^{M,\oplus} A + I_n - A_{M,N}^\dagger A. \end{split}
$$

The converse is analogous and $ind(\Gamma) \leq ind(\Omega)$. Hence, $ind(\Gamma) = ind(\Omega)$. For the expression of $\Gamma^{M,\oplus}$, we have $\Gamma^{M, \oplus} = \Gamma^{k-1} (\Gamma^k)^{M, \oplus}$

$$
= \Gamma^{k-1} (AA_{M,N}^{\dagger} (BAA_{M,N}^{\dagger})^{k} AA_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger})^{M,\circledast}
$$

\n
$$
= \Gamma^{k-1} (A(\Omega^{k})^{N,\circledast} A_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger})
$$

\n
$$
= (AA_{M,N}^{\dagger} (BAA_{M,N}^{\dagger})^{k-1} AA_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger}) (A(\Omega^{k})^{N,\circledast} A_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger})
$$

\n
$$
= AA_{M,N}^{\dagger} (BAA_{M,N}^{\dagger})^{k-1} A(\Omega^{k})^{N,\circledast} A_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger}
$$

\n
$$
= A\Omega^{k-1} (\Omega^{k})^{N,\circledast} A_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger}
$$

\n
$$
= A\Omega^{N,\circledast} A_{M,N}^{\dagger} + I_{m} - AA_{M,N}^{\dagger}.
$$

 \Box

Take $M = I_m$ and $N = I_n$ in Theorem 3.5. Then we have the following corollary.

Corollary 3.6. [14, Theorem 3] Let $A \in R^{m \times n}$ be Moore-Penrose invertible and $B \in R^{m \times m}$. Consider the following *conditions:*

(1) $\Gamma = AA^{\dagger}BAA^{\dagger} + I_m - AA^{\dagger}$ *is pseudo core invertible with index k (core invertible if k = 1).* (2) $\Omega = A^{\dagger}BA + I_n - A^{\dagger}A$ is pseudo core invertible with index k (core invertible if $k = 1$).

If A is ∗*-invariant then (1)*⇔*(2), in which case*

$$
\Gamma^{\textcircled{D}} = A\Omega^{\textcircled{D}}A^{\dagger} + I_m - AA^{\dagger}
$$

and

$$
\Omega^{\textcircled{\tiny{\mathbb{D}}}}=A^{\dagger}\Gamma^{\textcircled{\tiny{\mathbb{D}}}}A+I_n-A^{\dagger}A.
$$

References

- [1] O. M. Baksalary, G. Trenkler, *Core inverse of matrices*, Linear Multilinear Algebra **58**(6) (2010), 681–697.
- [2] R. B. Bapat, S. K. Jain, S. Pati, *Weighted Moore-Penrose inverse of a Boolean matrix*, Linear Algebra Appl. **255** (1997), 267–279.
- [3] J. S. Chipman, *On least squares with insu*ffi*cient observations*, J. Amer. Statist. Assoc. **59**(308) (1964), 1078–1111.
- [4] D. S. Cvetković-Ilić, *Expression of the Drazin and MP-inverse of partitioned matrix and quotient identity of generalized Schur complement*, Appl. Math. Comput. **213**(1) (2009), 18–24.
- [5] D. S. Cvetkovic-Ili ´ c,´ *New additive results on Drazin inverse and its applications*, Appl. Math. Comput. **218** (2011), 3019–3024.
- [6] D. S. Cvetković-Ilić, C. Y. Deng, Some results on the Drazin invertibility and idempotents, J. Math. Anal. Appl. 359(2) (2009), 731-738.
- [7] D. S. Cvetković-Ilić, C. Y. Deng, The Drazin invertibility of the difference and the sum of two idempotent operators, J. Comput. Appl. Math. **233**(8) (2010), 1717–1722.
- [8] D. S. Cvetković-Ilić, V. Pavlović, *Drazin invertibility of upper triangular operator matrices*, Linear Multilinear Algebra 66(2) (2018), 260–267.
- [9] D. S. Cvetković-Ilić, Y. M. Wei, Algebraic properties of generalized inverses, Springer, Singapore, 2017.
- [10] M. P. Drazin, *Pseudo-inverse in associative rings and semigroups*, Amer. Math. Monthly **65** (1958), 506–514.
- [11] Y. F. Gao, J. L. Chen, *Pseudo core inverses in rings with involution*, Comm. Algebra **46**(1) (2018), 38–50.
- [12] T. N. E. Greville, *Note on fitting of functions of several independent variables*, J. Soc. Indust. Appl. Math. **9**(1) (1961), 109–115.
- [13] J.J. Koliha, D. Djordjević, D. Čvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007), 371–381.
- [14] W. D. Li, J. L. Chen, Y. K. Zhou, Y. Y. Ke, *Pseudo core invertibility and DMP invertibility in two semigroups of a ring with involution*, Miskolc Math. Notes **24**(3) (2023), 1427–1438.
- [15] T. T. Li, M. M. Zhou, *The absorption laws for the weighted core inverse in rings*, Linear Multilinear Algebra **71**(3) (2023), 480–495.
- [16] J. Ljubisavljević, D. S. Cvetković-Ilić, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math. **235** (2011), 3683–3690.
- [17] K. Manjunatha Prasad, R. B. Bapat, *The generalized Moore-Penrose inverse*, Linear Algebra Appl. **165** (1992), 59–69
- [18] K. Manjunatha Prasad, K. S. Mohana, *Core-EP inverse*, Linear Multilinear Algebra **62**(6) (2014), 792–802.
- [19] D. Mosić, C. Y. Deng, H. F. Ma, On a weighted core inverse in a ring with involution, Comm. Algebra 46(6) (2018), 2332-2345.
- [20] D. Mosić, D. S. Djordjević, Idempotents related to the weighted Moore-Penrose inverse, Funct. Anal. Approx. Comput. 3(1) (2011), 45–52.
- [21] P. Patrício, R. Puystjens, *Generalized invertibility in two semigroups of a ring*, Linear Algebra Appl. 377 (2004), 125-139.
- [22] R. Penrose, *A generalized inverse for matrices*, Proc. Cambridge Philos. Soc. **51** (1955), 406–413.
- [23] D. S. Rakić, N. Č. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. **463** (2014), 115–133.
- [24] X. P. Sheng, G. L. Chen, *The generalized weighted Moore-Penrose inverse*, J. Appl. Math. Comput. **25**(1-2) (2007), 407–413.
- [25] Y. M. Wei, H. B. Wu, *Expression for the perturbation of the weighted Moore-Penrose inverse*, Comput. Math. Appl. **39**(5-6) (2000),13–18. [26] S. Z. Xu, J. L. Chen, X. X. Zhang, *New characterizations for core inverses in rings with involution*, Front. Math. China **12**(1) (2017), 231–246.
- [27] H. H. Zhu, Q. W. Wang, *Weighted pseudo core inverses in rings*, Linear Multilinear Algebra **68** (12) (2020), 2434–2447.
- [28] H. H. Zhu, Q. W. Wang, *Weighted Moore-Penrose inverses and weighted core inverses in rings with involution*, Chin. Ann. Math. Ser. B **42**(4) (2021), 613–624.
- [29] H. L. Zou, J. L. Chen, D. Mosic,´ *The Drazin invertibility of an anti-triangular matrix over a ring*, Studia Sci. Math. Hungar. **54**(4) (2017), 489–508.