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Abstract. The goal of this paper is to consider abstract impulsive evolution systems with delay in the
framework of ordered Banach spaces. Firstly, we discuss the existence and uniqueness of positive mild
solutions for the abstract impulsive evolution systems with delay under order conditions and growth con-
ditions. Secondly, based on monotone iterative technique coupled with fixed point theorem, the existence of
minimal positive mild solution is discussed without assuming the existence of upper and lower solutions.
At the end, applications to partial differential equations are given.

1. Introduction

In this paper, we are concernded with the existence of positive mild solutions for impulsive evolution
equation with delay in an ordered Banach space E

u′(t) + Au(t) = f (t,u(t),ut), t ∈ J = [0,+∞), t , tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,

u(t) = ϕ(t), t ∈ [−r, 0],

(1.1)

where A : D(A) ⊂ E→ E is a linear operator and −A generates a C0-semigroup T(t)(t ≥ 0) on E, the history
ut : [−r, 0] → E defined by ut(s) = u(t + s) for s ∈ [−r, 0], belongs to some abstract phase space B defined
axiomatically, ϕ ∈ B and ϕ(0) ∈ D(A), r > 0 is a constant, f : R+ × E × B → E, Ik : E → E are appropriated
functions, 0 < t1 < t2 < · · · , ∆u|t=tk denote the jump of u(t) at t = tk, i.e., ∆u|t=tk = u(t+k ) − u(t−k ), where u(t+k )
and u(t−k ) represent the right and left limits of u(t) at t = tk, respectively.

The dynamics of many evolving processes undergo mutations that involve short-term disturbances,
and their duration can be negligible compared to the entire evolution of continuous stationary dynamics.
The model involving this disturbance is called the ”impulses” phenomenon. The theory of impulses
evolution equations is a new and important branch of differential equation theory, which has a wide
range of application backgrounds in physics, ecology, chemistry, population dynamics, biological systems,
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and engineering. Therefore, the study of pulse evolution equations has aroused great enthusiasm among
scholars and has yielded many important theories, see [4, 14, 16, 17, 19, 21, 24, 29–32, 35].

Researchers focus on the field of evolutionary equations from different perspectives, as such equations
can reveal the future or past states of models. As is well known, considering that in addition to the current
state, the past state of the model can also make it more realistic. The simplest case of ordinary differential
equations (ODE) with constant delays was first proposed, but the author always considers state dependent
delays in potential real-world processes, see[10, 11, 25, 27].

More importantly, in many specific system applications, sometimes only positive solutions have signif-
icant significance. The research on positive solutions to evolution equation is indeed very active, as seen
in [19, 20, 22, 23]. Li (1996) [18] discussed the properties of positive operator semigroups and introduced
upper and lower solution methods into bilinear evolution equations in ordered spaces. Shu et al. (2015)
[26] studied the existence and uniqueness of positive S- asymptotic ω- periodic mild solutions for a class
of bilinear neutral fractional evolution equations with time delays on a positive cone. In [5], Chen et al.
(2015) studied the existence and uniqueness of positive temperature solutions for semi linear evolution
equations with non local initial conditions on infinite intervals using monotonic iterative methods, rather
than assuming upper and lower solutions. In [18, 19], Li et al. (2017, 2021) studied the positive S- asymptotic
ω-periodic mild solutions of abstract fractional evolution equations on infinite intervals.

The highlights and advantages of this paper are presented as follows:

(1) We discuss the existence of positive mild solutions of initial value problem (1.1) on infinite interval in
the framework of ordered Banach spaces.

(2) Without assuming the existence of upper and lower solutions, we directly obtain the existence of
positive mild solutions by using monotone iterative technique in the sense of compact and noncompact
semigroups, respectively.

(3) We deal with the existence of positive mild solutions of impulsive evolution equation with delay
on infinite intervals by introducing the generalized Arzela-Ascoli theorem and Kuratowski mea-
sure of noncompactness, which has better significance and application value than the usual spatial
continuation methods.

(4) The topological method that some authors have chosen to study existence of positive solutions
is the theory of fixed points, which has been a very powerful and important tool to the study
of nonlinear phenomena. Specifically, authors have used contraction mapping principle, Leray-
Schauder alternative theorem, Schauder theorem and Krasnoselkii’s theorem. However, monotone
iterative method in the presence of the lower and upper solutions is the first time that it has been
used to study our concerned problem in ordered Banach space. Therefore, our results are novel and
meaningful.

The paper is organized as follows. In Section 2 we briefly recall some basic results and some lemmas.
Section 3 discusses the existence theorems for the problem (1.1). And in the last section, an example is given
to illustrate our abstract results.

2. Preliminaries

Let (E, ∥ · ∥) be an ordered Banach space with partial order “≤” induced by the positive normal cone
P = {u ∈ E : u ≥ θ}with normal constant N.

We denote by PC([−r,+∞),E) the space of piecewise continuous functions u : [−r,+∞) → E such that
u(t) is continuous at t , tk, left continuous at t = tk, and u(t+k ) exists, k = 1, 2, · · · }.

Let h ∈ C
(
R+, [1,+∞)

)
is a nondecreasing function and lim

t→+∞
h(t) = +∞. In the sequel, PC0(E) and PCh(E)

are the spaces defined by
PC0(E) = {u ∈ PC(R+,E) : lim

t→+∞
∥u(t)∥ = 0},
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PCh(E) =
{
u ∈ PC(R+,E) : lim

t→+∞

∥u(t)∥
h(t)

= 0
}

(2.1)

endowed with the norms ∥u∥PC = supt≥0 ∥u(t)∥ and ∥u∥h = sup
t≥0

∥u(t)∥
h(t) .

In this space B is consided as a Banach space of piecewise continuous functions ϕ : [−r, 0]→ E with the
norm ∥ϕ∥B = sup

s∈[−r,0]
∥ϕ(s)∥.

Evidently, PC([−r,+∞),E) and B are also order Banach spaces with partial ”≤” reduced by the positive
function cones KPC = {u ∈ PC([−r,+∞),E) : u(t) ≥ θ, t ∈ [−r,+∞)} and KB = {ϕ ∈ B : ϕ(s) ≥ θ, s ∈ [−r, 0]}(θ
is the zero element of E) respectively.

Also, we have the following compactness criterion.

Lemma 2.1([15]). A set B ⊂ PCh(E) is relatively compact if and only if

(a) B is equicontinuous;

(b) B(t) = {u(t) : u ∈ B} is relatively compact in E for every t ∈ [0,+∞);

(c) lim
t→+∞

∥u(t)∥
h(t) = 0, uniformly for u ∈ B.

Let A : D(A) ⊂ E → E be a linear operator and −A generate a C0-semigroup T(t)(t ≥ 0) on E. By the
exponential boundedness of C0-semigroup T(t)(t ≥ 0), there exist constants M ≥ 1 and ν ∈ R, such that

∥T(t)∥ ≤Meνt, t ≥ 0. (2.2)

In particular, ∥T(t)∥ ≤M implies that C0-semigroup T(t)(t ≥ 0) is uniformly bounded.
Let T(t)(t ≥ 0) be a C0-semigroup on E, the infimum of ν satisfying (2.2) is the growth exponent of

T(t)(t ≥ 0) which means

ν0 = inf{ν ∈ R| there exists M ≥ 1 such that ∥T(t)∥ ≤Meνt, t ≥ 0}. (2.3)

Moreover, if ν0 < 0, then C0-semigroup T(t)(t ≥ 0) is said to be exponentially stable.

Definition 2.2([20]). If for each x ≥ θ, x ∈ E and t ≥ 0, T(t)x ≥ θ, then C0-semigroup T(t)(t ≥ 0) on E is positive.

Definition 2.3([20]). If for every t > 0, T(t) is a compact operator in E, then C0-semigroup T(t)(t ≥ 0) on E is
compact.

Now, if the cone P is a regeneration cone, then by the properties of positive senigroups [20] , it follows
that for sufficiently large λ0 > − inf{Reλ : λ ∈ σ(A)}, λ0I + A has posotive inverse opertor (λ0I + A)−1. Since
σ(A) , ∅, the spectral radius

r((λ0I + A)−1) =
1

dist(−λ0, σ(A))
> 0.

Then, by the famous Krein-Rutman theorem (see [9, 12] ), the operator A has the first eigenvalue λ1 > 0,
which corresponding positive eigenfunction ϕ1 and

λ1 = inf{Reλ : λ ∈ σ(A)}.

It’s easy to see that the exponentially stable C0-semigroup T(t)(t ≥ 0) is uniformly bounded. If T(t)(t ≥ 0)
is continuous under the uniform operator topology in E for each t > 0, then ν0 can also be expressed by the
spectral set σ(A) of A, i.e.,

ν0 = − inf{Reλ : λ ∈ σ(A)}. (2.4)

Thus, it is obvious from (2.4) that ν0 = −λ1.
In fact, we have known from [33] that if C0-semigroup T(t)(t ≥ 0) is compact, then it is continuous under

the uniform operator topology for t ≥ 0.
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Definition 2.4. A function u ∈ PC([−r,+∞),E) is the mild solution of problen (1.1) if u(t) = ϕ(t) for t ∈ [−r, 0] and

u(t) = T(t)ϕ(t) +
∫ t

0
T(t − s) f (s,u(s),us)ds +

∑
0<tk<t

T(t − tk)Ik(u(tk)), t ≥ 0. (2.5)

Moreover, if u(t) ≥ θ for all t ∈ [−r,+∞), then it is said to be a positive mild solution of problen (1.1).

Lemma 2.5 ([13]). Let E be a Banach space, B = {un}
∞

n=1 ⊂ C([0, a],E) be a bounded and countable set. Then α(B(t))
is Lebesgue integrable on [0, a], and

α
({ ∫ a

0
un(t)dt|n ∈N

})
≤ 2
∫ a

0
α(B(t))dt.

Lemma 2.6 ([26]). Let E be a Banach space, B ⊂ C([0, a],E) be bounded and equicontinuous. Then α(B(t)) is
continuous on [0, a], and α(B) = max

t∈[0,a]
α(B(t)).

Finally, denote by αh(·) the Kuratowski measure of noncompactness of the bounded sets on Ch(E)(more
details see [3, 6]). Then, we have the following key lemma on αh(·):

Lemma 2.7([34]). Let D ⊂ PCh(E) be a bounded set. If

(i) D is a family of locally equicontinuous function, i.e, for any constant a > 0, the functions in D are equicontinuous
in [0, a];

(ii) lim
t→∞

1
h(t)∥u(t)∥ = 0 uniformly for any u ∈ D,

then αh(D) = sup
t≥0

α( D(t)
h(t) ).

3. Main results

Now, let ϕ ∈ KB, ϕ(0) ∈ KB ∩D(A), for a given ϕ ∈ KB and u ∈ PCh(E), we define uϕ(t) : [−r,+∞)→ E by

uϕ(t) =

 x(t), t ∈ [0,+∞),

ϕ(t), t ∈ [−r, 0].
(3.1)

A closed subspace of PCh(E) is defined by

PCh,ϕ(E) = {u ∈ PC([−r,+∞)) : u(t) = ϕ(t), t ∈ [−r, 0],u|[0,+∞) ∈ PCh(E) ∩ PC0(E)}

with the norm ∥u∥h,ϕ = max{∥u∥h, ∥ϕ∥B}.

For v,w ∈ PC([−r,+∞),E) with v ≤ w, we use [v,w] to denote the order interval {u ∈ PC([−r,+∞),E)|v ≤
u ≤ w}, and [v(t),w(t)] to denote the order interval {u ∈ E : v(t) ≤ u(t) ≤ w(t), t ∈ [0,+∞)}.

Theorem 3.1. Let E be an ordered Banach space,whose positive cone P ⊂ E is normal, A : D(A) ⊂ E→ E be a closed
linear operator and −A generate a positive, compact and exponentially stable C0-semigroup T(t)(t ≥ 0) on E, whose
growth exponent v0 < 0. If f ∈ C(R+ × E×B,E), Ik ∈ C(E,E)(k = 1, 2, · · · ) and ϕ ∈ KB, ϕ(0) ∈ KB ∩D(A) and the
following conditions are established:

(H1) There exist constants 0 < a < −ν0
M , b, c > 0, and constants ak > 0, bk > 0, such that

∥ f (t, h(t)x, h(t)ϕ)∥ ≤ a∥x∥ + b∥ϕ∥B + c, t ∈ R+, x ∈ E, ϕ ∈ B,

∥Ik(h(t)v)∥ ≤ ak∥v∥ + bk, t ∈ R+, v ∈ PC(R+,E),
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with
a + b +

∑
0<tk<t

ak(−ν0) <
(−ν0)

M
; (3.2)

(H2) For any x1, x2 ∈ E and ϕ1, ϕ2 ∈ B with x2 ≥ x1, ϕ2 ≥ ϕ1,

f (t, x2, ϕ2) ≥ f (t, x1, ϕ1), t ∈ R+;

(H3) For any y1, y2 ∈ PC(R+,E) with y2 ≥ y1,

Ik(y2) ≥ Ik(y1).

Then the problem (1.1) has a minimal positive mild solution u ∈ PC([−r,+∞),P).

Proof. Define an operator Q on PCh,ϕ(E) by

Qu(t) = T(t)ϕ(0) +
∫ t

0
T(t − s) f (s,u(s),us)ds +

∑
0<tk<t

T(t − tk)Ik(u(tk)), t ∈ [0,+∞). (3.3)

Due to T(t)(t ≥ 0) is a compact and exponentially stable C0-semigroup, we known that Q : PCh,ϕ(E) →
PCh,ϕ(E) is well defined. We note that for any u ∈ PCh,ϕ(E) and t ≥ 0, we get that

∥u(t)∥PC ≤ h(t)∥u∥h ≤ h(t)∥u∥h,ϕ

and
∥ut∥B = sup

s∈[−r,0]
∥u(t + s)∥ = max{ sup

t∈[−r,0]
∥u(t)∥, ∥u(t)∥PC}

≤ max{∥ϕ∥B, h(t)∥u∥h} ≤ h(t)∥u∥h,ϕ.

Then, from (3.3), for any t ∈ R+, it follows that

∥Qu(t)∥ ≤ ∥T(t)ϕ(0)∥ +
∥∥∥∥∫ t

0
T(t − s) f (s,u(s),us)ds

∥∥∥∥ + ∥∥∥∥ ∑
0<tk<t

T(t − tk)Ik(u(tk))
∥∥∥∥

:= I1 + I2 + I3.

(3.4)

In view of the boundness of C0-semigroup T(t)(t ≥ 0), we have

I1 = ∥T(t)ϕ(0)∥ ≤M∥ϕ∥B. (3.5)

And by (H1) and (H2), we get

I2 =
∥∥∥∥∫ t

0
T(t − s) f (s,u(s),us)ds

∥∥∥∥
≤M

∫ t

0
eν0s
(
a
∥u(s)∥
h(s)

+ b
∥us∥B

h(s)
+ c
)
ds

≤
M
|ν0|

(
(a + b)∥u∥h,ϕ + c

)
,

(3.6)

I3 =
∥∥∥∥ ∑

0<tk<t

T(t − tk)Ik(u(tk))
∥∥∥∥

≤M
∑

0<tk<t

(
ak
∥u∥C
h(t)

+ bk

)
≤M

∑
0<tk<t

(ak∥u∥h,ϕ + bk).

(3.7)
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Thus, by (3.4)-(3.7), we have

∥Qu(t)∥ ≤M∥ϕ∥B +
M

(−ν0)

(
(a + b)∥u∥h,ϕ + c

)
+M

∑
0<tk<t

(ak∥u∥h,ϕ + bk)

:= γ + β∥u∥h,ϕ,

(3.8)

where
γ =M∥ϕ∥B +

Mc
(−ν0)

+M
∑

0<tk<t

bk,

β =M
( a + b
(−ν0)

+
∑

0<tk<t

ak

)
are positive with β < 1. So, we have lim

t→+∞
1

h(t)∥Qu(t)∥ = 0 as lim
t→+∞

h(t) = +∞, i.e. (Qu) ∈ PCh(E). In addition,

we know that (Qu)(0) = ϕ(0) from (3.3). Therefore, Q : PCh,ϕ(E)→ PCh,ϕ(E) is well defined.
Now, we prove that Q : PCh,ϕ(E)→ PCh,ϕ(E) is continuous. Let {u(n)

} ⊂ PCh,ϕ(E) be a sequence such that
u(n)
→ u in PCh,ϕ(E) as n→∞, then, u(n)(t)→ u(t) in E and u(n)

t → ut in B for every t ∈ R+ as n→∞.
For t ∈ R+, by the continuity of f and Ik, we get

f (t,u(n)(t),u(n)
t )→ f (t,u(t),ut), Ik(u(n))→ Ik(u), n→∞.

Hence, by Lebesgue dominated convergence theorem, we have

∥Qu(n)(t) −Qu(t)∥ ≤
∫ t

0
∥T(t − s)∥ · ∥ f (s,u(n)(s),u(n)

s ) − f (s,u(s),us)∥ds

+
∑

0<tk<t

∥T(t − tk)∥ · ∥Ik(un(tk)) − Ik(u(tk))∥

≤M
∫ t

0
eν0s
∥ f (s,u(n)(s),u(n)

s ) − f (s,u(s),us)∥ds

+M
∑

0<tk<t

∥Ik(un(tk)) − Ik(u(tk))∥

≤
M
|ν0|
∥ f (s,u(n)(s),u(n)

s ) − f (s,u(s),us)∥

+M
∑

0<tk<t

∥Ik(un(tk)) − Ik(u(tk))∥.

Thus, we get that

∥Qu(n)
−Qu∥h = sup

t∈[0,+∞)

1
h(t)
∥Qu(n)(t) −Qu(t)∥ → 0 (n→∞),

by (3.3), which indicates that ∥Qu(n)
− Qu∥h,ϕ → 0 (n → ∞), hence, Q : PCh,ϕ(E) → PCh,ϕ(E) is continuous.

By Definition 2.4 and (3.1), we can deduced that the fixed point of Q on PCh,ϕ(E) is equivalent to a mild
solution of the problem (1.1).

Next, we show that the operator Q has a positive fixed point on PCh,ϕ(E) by means of the monotone
iterative technique. Let u, v ∈ PCh,ϕ ∩ P with θ ≤ u ≤ v, we see that θ ≤ u(t) ≤ v(t) and θ ≤ ut ≤ vt for
t ∈ R+. Then, from (H0) − (H3) and the positivity of T(t)(t ≥ 0), for all t ∈ R+, we have

θ ≤ Qu(t) ≤ Qv(t),
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which implies that Q is a monotonically increasing operator in PCh,ϕ ∩ P.
Let v0 = θ ∈ PCh,ϕ ∩ P and establish a sequence {v(n)

} by

v(n) = Qv(n−1), n = 1, 2, · · · . (3.9)

By the monotonicity of Q and (3.8), one can see {v(n)
} ⊂ PCh,ϕ ∩ P and

θ = v(0)
≤ v(1)

≤ · · · ≤ v(n)
≤ · · · . (3.10)

∥v(n)
∥h,ϕ ≤ γ + β∥v(n−1)

∥h,ϕ. (3.11)

Since ∥v(0)
∥h,ϕ = 0, by (3.11), we have

∥v(n)
∥h,ϕ ≤ γ + γβ + γβ

2 + · · · + γβ(n−1) = γ
1 − βn

1 − β
≤

γ

1 − β
. (3.12)

Therefore, the sequence {v(n)
} is uniformly bounded.

Besides, we need to verify that {v(n)
} is uniformly convergent.

Step 1. {v(n)
} ⊂ PCh,ϕ ∩ P is equicontinuous in R+.

For any u ∈ {v(n)
} and 0 < t1 < t2, by (3.3), we have

∥(Qu)(t2) − (Qu)(t1)∥ =
∥∥∥∥T(t2)ϕ(0) +

∫ t2

0
T(t2 − s) f (s,u(s),us)ds

+
∑

0<tk<t2

T(t2 − tk)Ik(u(tk)) − T(t1)ϕ(0)

−

∫ t1

0
T(t1 − s) f (s,u(s),us)ds −

∑
0<tk<t1

T(t1 − tk)Ik(u(tk))
∥∥∥∥

≤ ∥T(t2)ϕ(0) − T(t1)ϕ(0)∥

+
∥∥∥∥∫ t1

0

(
T(t2 − s) − T(t1 − s)

)
f (s,u(s),us)ds

∥∥∥∥
+
∥∥∥∥∫ t2

t1

T(t2 − s) f (s,u(s),us)ds
∥∥∥∥

+
∥∥∥∥ ∑

0<tk<t1

(
T(t2 − tk) − T(t1 − tk)Ik(u(tk))

)∥∥∥∥
+
∥∥∥∥ ∑

t1<tk<t2

T(t2 − tk)Ik(u(tk))
∥∥∥∥

:= J1 + J2 + J3 + J4 + J5.

Then, we can get that

∥Qu(t2) −Qu(t1)∥ ≤ J1 + J2 + J3 + J4 + J5. (3.13)

Now, we verify that Ji → 0(i = 1, 2, 3, 4, 5) independently of u ∈ {v(n)
} as t2 − t1 → 0. Since the strong

continuity of T(t)(t ≥ 0), obviously,

J1 ≤ ∥T(t2) − T(t1)∥ · ∥ϕ∥B → 0, as t2 − t1 → 0.



H.-D. Gou / Filomat 38:15 (2024), 5285–5298 5292

For a sufficiently small constant ε→ 0+, we have

J2 ≤

∫ t1

0
∥T(t2 − s) − T(t1 − s)∥ · ∥ f (s,u(s),us)∥ds

≤

∫ t1−ε

0
∥T(t2 − s) − T(t1 − s)∥ · ∥ f (s,u(s),us)∥ds

+

∫ t1

t1−ε
∥T(t2 − s) − T(t1 − s)∥ · ∥ f (s,u(s),us)∥ds

≤∥T(t2 − t1 + ε) − T(ε)∥
∫ t1−ε

0
∥T(t1 − s − ε)∥ · ∥ f (s,u(s),us)∥ds

+

∫ t1

t1−ε

(
∥T(t2 − s)∥ + ∥T(t1 − s)∥

)
· ∥ f (s,u(s),us)∥ds

≤

(
a∥u∥h,ϕ + b∥ϕ∥ + c

)(
∥T(t2 − t1 + ε) − T(ε)∥

M
(−ν0)

+ 2Mε
)

→0, as t2 − t1 → 0.

J4 ≤

∑
0<tk<t1

∥∥∥(T(t2 − tk) − T(t1 − tk))Ik(u(tk))
∥∥∥

≤

∑
0<tk<t1

∥∥∥T(t2 − t1 + ε)T(t1 − tk − ε) − T(t1 − tk − ε)T(ε)
∥∥∥ · ∥Ik(u(tk))∥

≤

∑
0<tk<t1

∥T(t1 − tk − ε)∥ · ∥T(t2 − t1 + ε) − T(ε)∥ · ∥Ik(u(tk))∥

→ 0, as t2 − t1 → 0.

Hence, from the conditions (H1), we have

J3 ≤

∫ t2

t1

∥T(t2 − s)∥ · ∥ f (s,u(s),us)∥ds

≤ M(a∥u∥h,ϕ + b∥ϕ∥ + c∥)(t2 − t1)

→ 0, as t2 − t1 → 0,

J5 ≤

∑
t1<tk<t2

∥T(t2 − tk)Ik(u(tk))∥ ≤M
∑

t1<tk<t2

(
ak∥u∥h,ϕ + bk

)
→ 0, as t2 − t1 → 0,

Accordingly, ∥Qu(t2) − Qu(t1)∥ → 0 doesn’t depend on u ∈ {v(n)
} as t2 − t1 → 0, which easily implies that

{v(n)
} is equicontinuous in R+.

Step 2. {v(n)(t)} is precompact on E for t ∈ R+.
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Let t > 0 be given, for any ϵ ∈ (0, t), define an operator

Qϵv(n)(t) = T(t)ϕ(0) +
∫ t−ϵ

0
T(t − s)

(
f (s, v(n)(s), v(n)

s )
)
ds +

∑
0<tk<t−ϵ

T(t − tk)Ik(v(n)(tk))

= T(t)ϕ(0) + T(ϵ)
∫ t−ϵ

0
T(t − ϵ − s)

(
f (s, v(n)(s), v(n)

s )
)
ds + T(ϵ)

∑
0<tk<t−ϵ

T(t − ϵ − tk)Ik(v(n)(tk)).

By the compactness of T(t)(t ≥ 0), the set
{
Qϵv(n)(t)} is precompact on E. Moreover, for any t ∈ (0,+∞), by

(H1), we have

∥Qv(n)(t) −Qϵv(n)(t)∥

=
∥∥∥∥∫ t

t−ϵ
T(t − s)

(
f (s, v(n)(s), v(n)

s )
)
ds
∥∥∥∥ + ∑

t−ε<tk<t

∥T(t − tk)Ik(v(n)(tk))∥

≤ M
(
a∥v(n)

∥h,ϕ + b∥ϕ∥ + c
)
· ϵ +M

∑
t−ϵ<tk<t

(ak∥v(n)
∥h,ϕ + bk)

→ 0, as ϵ→ 0+.

It is obvious that
{
Qv(n)(t)} is precompact on E for t ∈ R+. Thus, {v(n)(t)} is precompact on E for every

t ∈ [0,+∞).

Step 3. lim
t→+∞

1
h(t)∥Qu(t)∥ = 0, uniformly for u ∈ {v(n)

}.

Combined (3.8) with (3.12), for any u ∈ {v(n)
}, we can obtain that

1
h(t)
∥Qu(t)∥ ≤

1
h(t)

(γ + β∥u∥h,ϕ) ≤
γ

1 − β
·

1
h(t)

. (3.14)

There is no doubt that lim
t→+∞

1
h(t)∥Qu(t)∥ = 0 uniformly for u ∈ {v(n)

}.

So, according to Lemma 2.1, one can conclude that {v(n)
} is relatively compact in PCh,ϕ ∩P. Combing the

normality of cone P with the monotonicity of {v(n)
}, it is clear that {v(n)

} itself is uniformly convergent, i.e.,
there exist u ∈ PCh,ϕ ∩ P, such that u = limn→∞ v(n). By (3.9), we have u = Qu. Therefore, u ∈ PCh,ϕ ∩ P is a
fixed point of Q, which means that u defined by (3.1) is a positive mild solution of the problme (1.1).

Finally, we show that u is the minimal positive mild solution of the problme (1.1). Let ûϕ be another
positive solution the problme (1.1), correspondingly, we have û(t) = Qû(t) for any t ∈ R+. Clearly, û(t) ≥
v(0) = 0. By the monotonicity of Q, we have

û(t) = (Qû)(t) ≥ (Qv(0))(t) = v(1)(t),

hence, û ≥ v(1). Analogously, we have û ≥ v(n), n = 1, 2, · · · . Taking limit as n→∞, we get that û ≥ u, which
means u ∈ PC(R+,P) is the minimal positive mild solution of the problme (1.1). □

Next, we replace the compactness of T(t)(t ≥ 0), by using the noncompact measure conditions and
establish a result of the existence of positive solutions.

Theorem 3.2. Let E be an ordered Banach space,whose positive cone P ⊂ E is normal, A : D(A) ⊂ E→ E be a closed
linear operator and −A generate a positive, equicontinuous and exponentially stable C0-semigroup T(t)(t ≥ 0) on E,
whose growth exponent v0 < 0. If f ∈ C(R+ × E × B,E), Ik ∈ C(E,E)(k = 1, 2, · · · ) and ϕ ∈ KB, ϕ(0) ∈ KB ∩D(A)
and the following conditions are established:
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(H4) For any t ∈ R+, x2 ≥ x1, ∥xi∥ ≤ R and ϕ2 ≥ ϕ1, ∥ϕi∥B ≤ R,

f (t, x2, ϕ2) ≥ f (t, x1, ϕ1);

(H5) For any v1, v2 ∈ C(R+,E) with v2 ≥ v1, ∥vi∥ ≤ R,

Ik(v2) ≥ Ik(v1);

(H6) There exist constants L f , Lk > 0, such that for any t ∈ R+ and the monotone increasing sequence {u(n)
} ⊂ B̄(θ,R),

α
(
{ f (t,u(n)(t),u(n)

t )}
)
≤ L f

(
α
(
{u(n)(t)}

)
+ sup

s∈[−r,0]
α
(
{u(n)

t (s)}
))
,

α
(
{Ik(u(n)(t))}

)
≤ Lkα

(
{u(n)(t)}

)
,

Then the problem (1.1) has a minimal positive mild solution u ∈ PC([−r,+∞),P).

Proof. For R > 0, and given ϕ ∈ KB, ∥ϕ∥B ≤ R, define

ΩR =
{
u ∈ PCh,ϕ(E) ∩ P : ∥u(t)∥ ≤ R, t ∈ R+},

and the operator Q onΩR by (3.3). From hypothesises (H4), (H5) and the positivity of T(t)(t ≥ 0), it follows
that Q : ΩR → E is well defined. Hence, if u is a fixed point of Q on ΩR, then uϕ is undoubtedly a mild
solution of the problem (1.1). Let

R f = max
∥u(t)∥PC,∥ut∥B≤R

∥ f (t,u(t),ut)∥; RI = max
∥u∥≤R

∥Ik(u)∥, t ∈ R+,

Step 1. There exists R0 > 0 such that Q : ΩR0 → ΩR0 , and for any u ∈ ΩR0 ,

lim
t→+∞

1
h(t)
∥Qu(t)∥ = 0.

In fact, if this property is false, then for any R > 0, there is always u ∈ ΩR such that ∥Qu∥h > R. Then, we
get sup

t≥0

1
h(t)∥Qu(t)∥ > R. For u ∈ ΩR, t ∈ [0,+∞), by (3.4), we can deduce that

∥Qu(t)∥ ≤M∥ϕ∥B +
M
−ν0

R1 +M
∑

0<tk<t

RI. (3.15)

Therefore, from h(t) ≥ 1, it follows that

R < sup
t≥0

1
h(t)
∥Qu(t)∥ ≤ ∥Qu(t)∥ ≤M∥ϕ∥B +

M
−ν0

R1 +M
∑

0<tk<t

RI.

Dividing both sides by R and taking the lower limit as R → ∞, we get the contradiction of 1 < 0. Thus,
combined with ∥Qu(0)∥ = ∥ϕ∥B ≤ R, we conclude that there is a constant R0 > 0, such that Q(ΩR0 ) ⊂ ΩR0 .
Further, we can see from (3.15) and lim

t→+∞
h(t) = +∞ that for any u ∈ ΩR0 ,

lim
t→+∞

1
h(t)
∥Qu(t)∥ = 0.

Step 2. Q(ΩR0 ) is locally equicontinuous.
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For any u ∈ ΩR0 , let a ∈ (0,+∞) and 0 < t1 < t2 ≤ a, by (3.13), we just prove that Ji → 0(i = 1, 2, 3, 4, 5)
independently of u ∈ ΩR0 as t2 − t1 → 0. Obviously,

J1 = ∥T(t2)ϕ(0) − T(t1)ϕ(0)∥ → 0, as t2 − t1 → 0.

Combining conditions (H4) with (H5), for a sufficiently small constant ε→ 0+, one has

J2 ≤

∫ t1

0
∥T(t2 − s) − T(t1 − s)∥ · ∥ f (s,u(s),us)∥ds

≤ R f · (∥T(t2 − t1 + ε) − T(ε)∥
M

(−ν0)
+ 2Mε

)
→ 0, as t2 − t1 → 0,

J4 ≤

∑
0<tk<t1

∥T(t2 − tk) − T(t1 − tk))∥ · ∥Ik(u(tk))∥

≤ RI

∑
0<tk<t1

∥T(t1 − tk − ε)∥ · ∥T(t2 − t1 + ε) − T(ε)∥

→ 0, as t2 − t1 → 0.

For J3 and J5, we have

J3 ≤

∫ t2

t1

∥T(t2 − s)∥ · ∥ f (s,u(s),us)∥ds

≤ MR f · |t2 − t1|

→ 0, as t2 − t1 → 0,

J5 ≤

∑
t1<tk<t2

∥T(t2 − tk)∥ · ∥Ik(u(tk))∥

≤ RI ·
∑

t1<tk<t2

∥T(t2 − tk)∥

→ 0, as t2 − t1 → 0.

As a result, ∥Qu(t2)−Qu(t1)∥ → 0 independently of u ∈ ΩR0 as t2 − t1 → 0, which easily implies that Q(ΩR0 )
is equicontinuous in [0, a]. Hence, Q : ΩR0 → ΩR0 is locally equicontinuous.

Step 3. We show that the operator Q has a positive fixed point on ΩR0 .
From (H4), (H5) and the proof of Theorem 3.1, we know that Q is a monotonically increasing operator

in ΩR0 .
Let v0 = θ ∈ ΩR0 and establish a sequence {v(n)

} by (3.9), Then by the monotonicity of Q, we can see
that {v(n)

} ⊂ ΩR0 and (3.10) is valid. Let B = {v(n)
|n ∈ N} and B0 = {v(n−1)

|n ∈ N}. Owing to the boundness
of B0 ⊂ ΩR0 , by (3.3), it is easily to find that B = QB0 is bounded and locally equicontinuous. In view of
Lemma 2.7 and B0 = B ∪ {v(0)

} that α(B0(t)) = α(B(t)) is continuous in [0,+∞).
Denoteαh,ϕ(·) the Kuratowski measure of noncompactness of the bounded sets in Ch,ϕ(E). For t ∈ [0,+∞),

we have
sup

s∈[−r,0]
α({v(n)

t (s)}) = sup
s∈[−r,0]

α({v(n)(t + s)}) ≤ α({v(n)(t)}). (3.16)



H.-D. Gou / Filomat 38:15 (2024), 5285–5298 5296

According to the step 1, 2 and by Lemma 2.6, 2.7, the condition (H6) and (3.16), for t ∈ [0, t1), we get that

αh,ϕ(B(t)) = αh(B(t)) = α
(B(t)

h(t)

)
= α
(QB0(t)

h(t)

)
= α

({ 1
h(t)

T(t)ϕ(0) +
1

h(t)

∫ t

0
T(t − s) f (s, vn−1(s), vn−1

s )ds
})

≤ α
({ 1

h(t)

∫ t

0
T(t − s) f (s, vn−1(s), vn−1

s ))ds
})

≤
2

h(t)

∫ t

0
∥T(t − s)∥ · α({( f (s, vn−1(s), vn−1

s )})ds

≤ 4ML f

∫ t

0
eν0(t−s)α

({B(s)
h(s)

})
ds

≤ 4ML f

∫ t

0
α
({B(s)

h(s)

})
ds

≤ 4ML f

∫ t

0
αh,ϕ(B(s))ds.

From the Gronwall lemma, for t ∈ [0, t1), we have αh,ϕ(B(t)) = 0. Also αh,ϕ(B(t1)) = 0 which implies that B(t1)
and B0(t1) are precompact, then αh,ϕ(I1(B(t1))) = 0. For t ∈ [t1, t2), we obtain

αh,ϕ(B(t)) = αh(B(t)) = α
(B(t)

h(t)

)
= α
(QB0(t)

h(t)

)
= α

({ 1
h(t)

∫ t

0
T(t − s) f (s, vn−1(s), vn−1

s )ds
})

≤
2

h(t)

∫ t

0
∥T(t − s)∥ · α({( f (s, vn−1(s), vn−1

s )})ds

≤ 4ML f

∫ t

0
α
({B(s)

h(s)

})
ds

≤ 4ML f

∫ t

0
αh,ϕ(B(s))ds.

And by Gronwall lemma, for t ∈ [t1, t2), αh,ϕ(B(t)) = 0, then αh,ϕ(B(t2)) = 0, which yields that αh,ϕ(I2(B(t2))) =
0. Continuing such a process interval by interval, we can prove thatαh,ϕ(B(t)) = 0 inR+. Hence, αh,ϕ(B(t)) ≡ 0
in R+, which shows that {v(n)(t)} is precompact on ΩR0 for any t ∈ R+. Combing the monotonicity and
continuity of Q with the normality of the cone P, obviously, {v(n)

} itself is convergent, i.e., there exists
u ∈ ΩR0 , such that

v(n)
→ u ∈ ΩR0 , n→∞.

Taking limit of both ends of (3.9), we can get u = Qu, which implies that u ∈ ΩR0 is a positive fixed point of
Q. Therefore, u defined by (3.1) is a positive mild solution of IVP(1.1). From the proof of Theorem 3.1, it’s
follows that u ∈ PC([−r,+∞),P) is the minimal positive mild solution of the problem (1.1). □
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4. Applications

Let Ω ⊂ RN(N ≥ 1) be a bounded domain with a sufficiently smooth boundary ∂Ω, J = [−r,+∞),
0 < t1 < t2 < · · · , 1 : Ω× J×R×R→ R and φk : R→ R(k = 1, 2, · · · ) be continuous. Consider the impulsive
evolution equation initial value problem

∂tu(x, t) − ∆u(x, t) = 1(x, t,u(x, t),u(x, t + s)), x ∈ Ω, t > 0, t , tk, s ∈ [−r, 0]
∆u|t=tk = φk(x,u(x, tk)), x ∈ Ω, k = 1, 2, · · · ,
u(·, t)|∂Ω = 0, t ≥ 0,
u(x, t) = ψ(x, t), x ∈ Ω, t ∈ [−r, 0].

(4.1)

Theorem 4.1. Let λ1 > 0 is the first eigenvalue of Laplace operator −∆ with boundary condition u|∂Ω = 0.
1 ∈ C(Ω × J × R × R,R) with 1 > θ, φk : R → R(k = 1, 2, · · · ,m) are continuous with φk ≥ 0. If the following
conditions are hold:

(i) There exist constants 0 < a < λ1
M , b, c > 0, and constants ak > 0, bk > 0, such that

∥1(x, t,u(x, t),u(x, t + s))∥ ≤ a∥u∥ + b∥ut∥B + c, t ∈ R+, x ∈ E, ut ∈ B, s ∈ [−r, 0],

∥φk(h(t)v)∥ ≤ ak∥v∥ + bk, t ∈ R+, v ∈ PC(R+,E),

(ii) There exist constant M ≥ 1, such that

a + b + λ1

∑
0<tk<t

ak ≤
λ1

M
.

Then the problem (4.1) has a minimal positive mild solution u.

Proof. Let E = L2(Ω), P = {u ∈ L2(Ω) : u(x) ≥ 0, a.e. x ∈ Ω} is a normal cone in L2(Ω), then P is a regular cone
of E. Note B := C(Ω × [−r, 0],E) with the normal cone PB = {u ∈ B : u(x, t) ∈ P, t ∈ [−r, 0], a.e. x ∈ Ω}. And
define the operator A in E as follows:

D(A) = {u ∈ H2(Ω) ∩H1
0(Ω) : u|∂Ω = 0}, Au = −∆u,

from [26] which implies that −A generates a positive, exponentially stable and analytic C0-semigroup
T(t)(t ≥ 0) with growth index ν0 = −λ1. According to analyticity of T(t) and compactness of resolvent of A,
we can obtain that T(t) is also a compact semigroup in E, thus the problem (4.1) can be transformed into
problem (1.1). Let ϕ(t) = ϕ(·, t), u(t) = u(·, t), ut(s) = u(·, t+s) and define nonlinear mapping f : J×E×B → E
and impulsive functions Ik : E→ E:

f (t,u(t),ut) = 1(·, t,u(·, t),u(·, t + s)), Ik(u) = φk(u(·)),

then f : J×E×B → E is continuous in v and partial derivatives f ′u(t,u, v), f ′v(t,u, v)is bounded, Ik : E→ E are
continuous and differentiable. It’s obvious that f and Ik satisfy the conditions (H1), (H2) and (H3). From
Theorem 3.1, we can obtain that the problem (1.1) has minimal positive mild solution u ∈ PC(J,E).
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