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Abstract. In this paper, we determine some new bounds for the generalized Tsallis relative operator
entropy by providing some close and sharp bounds. In particular, we identify some bounds for the Tsallis
relative operator entropy. Our main results confirm some results obtained in [16, 23]. Moreover, we reach
some inequalities for the generalized relative operator entropy in some sense.

1. Introduction and Preliminaries

A relative operator entropy of positive invertible operators A and B was introduced in the noncommu-
tative information theory by Fujii and Kamei [13] by

S(A|B) = A
1
2 ln(A−

1
2 BA−

1
2 )A

1
2 .

Furuta [10] defined the generalized relative operator entropy (operator Shannon entropy) by

Sq(A|B) = A
1
2 (A−

1
2 BA−

1
2 )q ln(A−

1
2 BA−

1
2 )A

1
2

for q ∈ [0, 1] where A, B are positive invertible operators on a Hilbert space H and proved parametric
extensions of the Shannon inequality and its reverse one in Hilbert space operators, see also [18]. The Tsallis
relative operator entropy was introduced by Yanagi et al. [26] and defined by

Tλ(A|B) :=
A

1
2 (A−

1
2 BA−

1
2 )λA

1
2 − A

λ
,

which is a generalization of the relative operator entropy S(A|B) in the sense that

lim
λ→0

Tλ(A|B) = S(A|B).
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Moreover, the generalized Tsallis relative operator entropy was introduced and then several operator
inequalities were derived by Yanaghi et. al [26]. For two positive invertible operators A,B and p ∈ [0, 1],
the p-power operator mean A♯pB was defined by

A♯pB := A
1
2

(
A
−1
2 BA

−1
2

)p

A
1
2 .

The notation A♮µB denotes the extended µ-power operator mean for µ ∈ R, see [10] for instance. The
extended µ-power operator mean was defined by

A♮µB = A
1
2 (A−

1
2 BA−

1
2 )µA

1
2 .

The generalized Tsallis relative operator entropy was defined by

T̃µ,k,λ(A|B) :=
A♮µ+kλB − A♮µ+(k−1)λB

λ
,

where A,B are two positive invertible operators, λ, µ ∈ R, λ , 0, and k ∈ Z. In particular, for λ ∈ (0, 1] we
have

T̃0,1,λ(A|B) =
A♯λB − A♯0B

λ
=

A♯λB − A
λ

= Tλ(A|B),

where Tλ(A|B) is the Tsallis relative operator entropy, cf. [15, 27]. For simplicity we shall use the notation
♯λ for λ ∈ [0, 1] and λ < [0, 1].

Some operator inequalities related to the Tsallis relative operator entropy were proved in [27] and then
some existing operator inequalities were generalized. Some operator inequalities were presented in [28]
for the relative operator entropy and generalized some results obtained in [27]. Moreover, some new lower
and upper bounds for the Tsallis relative operator entropy and relative operator entropy were presented.
The relation between the relative operator entropy S(A|B) and the Tsallis relative operator entropy Tλ(A|B)
was verified in [14, 15, 25] as follows:

A − AB−1A ≤ T−λ(A|B)
≤ S(A|B)
≤ Tλ(A|B) ≤ T1(A|B) = B − A (1)

for all positive invertible operators A, B and λ ∈ (0, 1]. Moradi et al. [16] gave tight bounds of the Tsallis
relative operator entropy by using the Hermite-Hadamard’s inequality. In fact they proved that if A and B
are positive invertible operators such that A ≤ B and λ ∈ (0, 1], then

A
1
2

(A
−1
2 BA

−1
2 + I

2

)λ−1(
A
−1
2 BA

−1
2 − I

)
A

1
2

≤ Tλ(A|B) ≤
1
2

(A♯λB − A♯λ−1B + B − A),

(2)

which is a considerable refinement of (1), where I is the identity operator. We gave sharp and refined bounds
for the Tsallis relative operator entropy by using the improved Hermite-Hadamard inequality in [23].
The relation between the generalized relative operator entropy Sq(A|B) and the generalized Tsallis relative
operator entropy T̃µ,k,λ(A,B) has not considered yet. We considered in [22] some operator inequalities for the
generalized relative operator entropy according to the generalized Tsallis relative operator entropy. These
operator inequalities generalized the existing operator inequalities in [27, 28]. Moreover, we distinguished
the lower and upper bounds for the generalized Tsallis relative operator entropy in [24] and verified the
information monotonicity for the generalized Tsallis relative operator entropy and its reverses.

We now describe our motivation for the treated problems. In information theory, it is important
to estimate the bounds of average error. In its exponent, the capacity is the maximum of the mutual
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information and this is a special case of the relative entropy. So, information theorists seek for tight bound
of divergences. Entropy also has a special form of relative entropy. So it is important to estimate the entropy.
The other motivation comes from finding some properties of entropy, even if some properties refer to its
various estimates. We are interested in when entropy is maximal and when it is minimal, so there is the
problem of studying the lower bound and the upper bound for entropy.

The study of some new estimations of entropy is very important because we are looking for mathematical
expressions that are easier to process, but which come quite close to the estimation of entropy. For example,
monotony is one of important characteristics of entropy, so it must be analyzed. This suggests the study of
some inequalities that can refine some already known inequalities in the characterization of entropy. This
question arises: can these bounds be refined, that is, can we find better ones?

So, several arguments can be made for the study of some improvements in some inequalities used in
the estimation of entropy.

Refinements of the lower or upper bounds of entropy can generate a mathematical expression that can
give birth to a new type of entropy. In operator theory, it is a mathematical interest to show the ordering of
several means.

The purpose of this paper is to find some lower and upper bounds for the generalized Tsallis relative
operator entropy. These bounds have several advantages. Among others, they give some bounds for the
generalized relative operator entropy. In particular, we confirm the bounds for the Tsallis relative operator
entropy presented in [16]. At the final section we find some close and sharp bounds for the generalized
Tsallis relative operator entropy. These will also confirm the sharp bounds for the Tsallis relative operator
entropy obtained in [23].

For more information on the Tsallis relative entropy and relative operator entropy and their generalized
versions the reader is referred to [1, 6, 11, 12, 19, 20] and the references therein.

2. Some new bounds

The first fundamental result for convex functions with a natural geometrical interpretation is the
Hermite-Hadamard inequality. It plays a crucial role in the theory of convex functions and has many
applications in elementary mathematics. Surveys on various generalizations and developments of the
classical Hermite–Hadamard inequality can be found in [3]. The classical Hermite-Hadamard inequality
states that

Theorem 2.1. Let f : [a, b]→ R be a convex function on [a, b]. Then,

f
(a + b

2

)
≤

1
b − a

∫ b

a
f (t)dt ≤

f (a) + f (b)
2

. (3)

Note that the reversed inequalities hold in (3), when f is concave.
Let f be a real valued continuous function defined on the interval I. The value f (A) is defined via

the functional calculus for a self–adjoint operator A with spectrum contained in I as usual. A fully
noncommutative perspective of two variables (associated to f ), by choosing an appropriate ordering, was
introduced in [7] by

P f (A,B) := A1/2 f (A−1/2BA−1/2)A1/2

for every positive invertible operator A and every self-adjoint operator B on a Hilbert spaceH , where the
spectrum of the operator A−1/2BA−1/2 is contained in I. Then, several significant matrix analogues of a
classical result for operator convex functions and the necessary and sufficient conditions for joint convexity
of a fully noncommutative perspective were proved where restricting to the positive commuting matrices
ensures Effros’ approach announced in [8].

Lemma 2.2. [17, 21] Let r, s, and k be real valued and continuous functions on the closed interval I. If r(t) ≤ s(t) ≤ k(t)
for t ∈ I, then

Pr(A,B) ≤ Ps(A,B) ≤ Pk(A,B),
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for every positive invertible operator A and every self-adjoint operator B such that the spectrum of the operator
A−

1
2 BA−

1
2 lies in I.

We now provide our main results.

Theorem 2.3. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0 and α(α − 1)(α − 2) > β(β − 1)(β − 2) ≥ 0,

(ii) λ < 0 and β(β − 1)(β − 2) > α(α − 1)(α − 2) ≥ 0,

then

1
λ

(
αA♯α−1

(A + B
2

)
− βA♯β−1

(A + B
2

))
(A−1B − I)

≤ T̃µ,k,λ(A|B)

≤
1

2λ

(
α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A)

)
,

(4)

where α = µ + kλ, β = µ + (k − 1)λ, µ ∈ R, and k ∈ Z.

Proof. (i) Since λ > 0, we have α = β + λ > β and by assumption

0 ≤
β(β − 1)(β − 2)
α(α − 1)(α − 2)

< 1.

Consider the function f (t) = αtα−1
−βtβ−1

λ , t ≥ 0. Then, f (t) is convex on the interval [( β(β−1)(β−2)
α(α−1)(α−2) )

1
α−β ,+∞).

Applying Theorem 2.1 for the function f on [1, x], x ≥ 1, one can deduce∫ x

1

αtα−1
− βtβ−1

λ
dt =

xα − xβ

λ

for every x ≥ 1. The left hand side of the inequality (3) indicates that

α( x+1
2 )α−1

− β( x+1
2 )β−1

λ
(x − 1) ≤

xα − xβ

λ
. (5)

On the other hand, the right hand side of the inequality (3) signifies that

xα − xβ

λ
≤

αxα−1
−βxβ−1

λ +
α−β
λ

2
(x − 1), (6)

where x ≥ 1. Consider

l(x) :=
α( x+1

2 )α−1
− β( x+1

2 )β−1

λ
(x − 1),

m(x) :=
xα − xβ

λ
,

r(x) :=
1

2λ
(α(xα − xα−1) − β(xβ − xβ−1) + (α − β)(x − 1)).

(7)

According to Lemma 2.2 we get

Pl(A,B) ≤ T̃µ,k,λ(A|B) ≤ Pr(A,B). (8)
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On the other hand,

Pl(A,B)

=
1
λ

A
1
2

(
α
(A

−1
2 BA

−1
2 + I

2

)α−1

− β
(A

−1
2 BA

−1
2 + I

2

)β−1)(
A
−1
2 BA

−1
2 − I

)
A

1
2

=
1
λ

(
αA♯α−1

(A + B
2

)
− βA♯β−1

(A + B
2

))
(A−1B − I)

and

Pr(A,B) =
1

2λ

(
α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A)

)
.

So, the desired results follow from (8).
(ii) Since λ < 0, we have α = β + λ < β and

0 ≤
α(α − 1)(α − 2)
β(β − 1)(β − 2)

< 1.

Hence, the function f is convex on [(α(α−1)(α−2)
β(β−1)(β−2) )

1
β−α ,∞). Applying a similar approach as in part (i) and using

Theorem 2.1 for the function f on [1, x], x ≥ 1, one can get the desired results.

Theorem 2.4. Let A and B be positive invertible operators such that A ≥ B. If one of the following holds

(i) λ > 0 and β(β − 1)(β − 2) < α(α − 1)(α − 2) < 0,

(ii) λ < 0 and α(α − 1)(α − 2) < β(β − 1)(β − 2) < 0,

then the reversed inequalities hold in (4).

Proof. (i) Since λ > 0, we have α = β + λ > β and

γ1 :=
β(β − 1)(β − 2)
α(α − 1)(α − 2)

> 1.

So, the function f defined in the proof of Theorem 2.3 is convex on [0, γ
1
α−β

1 ]. The result follows by a similar
approach as in the proof of Theorem 2.3 and using Theorem 2.1 for the function f on [x, 1], x ≤ 1.

(ii) Since λ < 0, we have α = β + λ < β and

γ2 :=
α(α − 1)(α − 2)
β(β − 1)(β − 2)

> 1.

In this situation, the function f defined in the proof of Theorem 2.3 is convex on the interval [0, γ
1
β−α

2 ]. By a
similar approach as in the proof of Theorem 2.3 and using Theorem 2.1 for the function f on [x, 1], 0 ≤ x ≤ 1,
one can obtain the reversed inequalities in (4).

We now consider some special cases.

Corollary 2.5. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0, α(α − 1)(α − 2) > 0 and β(β − 1)(β − 2) = 0,

(ii) λ < 0, α(α − 1)(α − 2) < 0 and β(β − 1)(β − 2) = 0,

(iii) λ > 0, β(β − 1)(β − 2) < 0 and α(α − 1)(α − 2) = 0,
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(iv) λ < 0, β(β − 1)(β − 2) > 0 and α(α − 1)(α − 2) = 0,

then the inequalities (4) hold.

Proof. In each case consider the function f as in the proof of Theorem 2.3. Then, f is convex on the interval
[0,+∞). Applying Theorem 2.1 for the function f on [1, x], x ≥ 1 and using a similar approach as in the
proof of Theorem 2.3, one can deduce the result.

Corollary 2.6. Let A and B be positive invertible operators such that A ≥ B. If one of the conditions (i)-(iv) in
Corollary 2.5 holds, then the reversed inequalities hold in (4).

Proof. Like in Corollary 2.5, we know that the function f defined in the proof of Theorem 2.3 is convex on
the interval [0,+∞). In each case using a similar approach as in the proof of Theorem 2.3 and applying
Theorem 2.1 for the function f on [x, 1], 0 ≤ x ≤ 1, one gets the result.

Corollary 2.7. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0, α(α − 1)(α − 2) < 0 and β(β − 1)(β − 2) = 0,

(ii) λ < 0, α(α − 1)(α − 2) > 0 and β(β − 1)(β − 2) = 0,

(iii) λ > 0, β(β − 1)(β − 2) > 0 and α(α − 1)(α − 2) = 0,

(iv) λ < 0, β(β − 1)(β − 2) < 0 and α(α − 1)(α − 2) = 0,

then the reversed inequalities hold in (4).

Proof. In each case consider the function f as in the proof of Theorem 2.3. Then, f is concave on the interval
[0,+∞). Applying the reversed inequalities in Theorem 2.1 for the concave function f on [1, x], x ≥ 1 and
using a similar approach as in the proof of Theorem 2.3, we get the result.

Corollary 2.8. Let A and B be positive invertible operators such that A ≥ B. If one of the conditions (i)-(iv) in
Corollary 2.7 holds, then the inequalities (4) hold.

Proof. Like in Corollary 2.7, the function f defined in the proof of Theorem 2.3 is concave on the interval
[0,+∞). In each case using a similar approach as in the proof of Theorem 2.3, applying the reversed
inequalities in Theorem 2.1 for the function f on [x, 1], 0 ≤ x ≤ 1, and multiplying both sides of the
inequalities by −1, one can get the result.

Corollary 2.9. [16, Theorem 1] Let A and B be positive invertible operators such that A ≤ B and λ ∈ (0, 1]. Then,(
A♯λ−1(

A + B
2

)
)
(A−1B − I) ≤ Tλ(A|B)

≤
1
2

(A♯λB − A♯λ−1B + B − A).
(9)

Proof. Consider µ = 0, k = 1, and λ ∈ (0, 1]. Then part (i) of Theorem 2.3 is fulfilled and we get the result.

Corollary 2.10. [16, Corollary 1] Let A and B be positive invertible operators such that A ≥ B and λ ∈ (0, 1]. Then
the reversed inequalities hold in (9).

Proof. Consider µ = 0, k = 1, and λ ∈ (0, 1]. Then part (i) of Corollary 2.6 is fulfilled and one can deduce the
result.

We can extend Corollaries 2.9 and 2.10 for λ < (0, 1].

Corollary 2.11. Let A and B be positive invertible operators.
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(i) If A ≤ B and λ < 0, then the inequalities (9) hold.

(ii) If A ≥ B and λ < 0, then the reversed inequalities hold in (9).

Proof. (i) Consider µ = 0, k = 1, and λ < 0. Then part (ii) of Corollary 2.5 is fulfilled and one can derive the
result.

(ii) Consider µ = 0, k = 1, and λ < 0. Then part (ii) of Corollary 2.6 is fulfilled and one can get the
result.

Corollary 2.12. Let A and B be positive invertible operators.

(i) If A ≤ B and λ > 2, then the inequalities (9) hold.

(ii) If A ≥ B and λ > 2, then the reversed inequalities hold in (9).

Proof. (i) Consider µ = 0, k = 1, and λ > 2. So, part (i) of Corollary 2.5 implies the result.
(ii) Consider µ = 0, k = 1, and λ > 2. So, part (i) of Corollary 2.6 entails the result.

Corollary 2.13. Let A and B be positive invertible operators.

(i) If A ≤ B and 1 < λ < 2, then the reversed inequalities hold in (9).

(ii) If A ≥ B and 1 < λ < 2, then the inequalities (9) hold.

Proof. (i) Consider µ = 0, k = 1, and 1 < λ < 2. The result follows by using part (i) of Corollary 2.7.
(ii) Consider µ = 0, k = 1, and 1 < λ < 2. The result follows by applying part (i) of Corollary 2.8.

3. Some sharp bounds

In this section, we give some sharp bounds for the generalized Tsallis relative operator entropy. This
implies close and narrow bounds for the Tsallis relative entropy. This enables us to reach a decision on the
generalized relative operator entropy.

The Hermite-Hadamard inequality includes a basic property of convex functions, see, e.g., [2]. When f
is convex an estimation better than (3) is as follows and one can find it in [3, 9, 23].

Theorem 3.1. Assume that f : [a, b]→ R is a convex function on [a, b]. Then there exist real numbers p, q such that

f
(a + b

2

)
≤ p ≤

1
b − a

∫ b

a
f (t)dt ≤ q ≤

f (a) + f (b)
2

, (10)

where

p =
1
2

(
f
(3a + b

4

)
+ f

(a + 3b
4

))
,

q =
1
2

(
f
(a + b

2

)
+

f (a) + f (b)
2

)
.

Theorem 3.2. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0 and α(α − 1)(α − 2) > β(β − 1)(β − 2) ≥ 0,

(ii) λ < 0 and β(β − 1)(β − 2) > α(α − 1)(α − 2) ≥ 0,
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then

1
λ

(
αA♯α−1

(A + B
2

)
− βA♯β−1

(A + B
2

))
(A−1B − I)

≤
1

2λ

(
α
(
A♯α−1

(3A + B
4

)
+ A♯α−1

(A + 3B
4

))
− β

(
A♯β−1

(3A + B
4

)
+ A♯β−1

(A + 3B
4

)))
(A−1B − I)

≤ T̃µ,k,λ(A|B) (11)

≤
1

2λ

(
αA♯α−1

(A + B
2

)
− βA♯β−1

(A + B
2

))
(A−1B − I)

+
1

4λ
(α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A))

≤
1

2λ

(
α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A)

)
,

where α = µ + kλ, β = µ + (k − 1)λ, µ ∈ R, and k ∈ Z.

Proof. (i) As in the proof of Theorem 2.3, the function f (t) is convex on the interval [( β(β−1)(β−2)
α(α−1)(α−2) )

1
α−β ,+∞),

where

0 ≤
β(β − 1)(β − 2)
α(α − 1)(α − 2)

< 1.

In view of Theorem 2.1 for the function f on [1, x], x > 1, one can find that

1
x − 1

∫ x

1
f (t)dt =

1
x − 1

∫ x

1

αtα−1
− βtβ−1

λ
dt =

1
x − 1

xα − xβ

λ

for every x > 1. The left hand side of the inequality (10) indicates that

f
(x + 1

2

)
=
α( x+1

2 )α−1
− β( x+1

2 )β−1

λ
,

p =
1

2λ

(
α(

3 + x
4

)α−1
− β(

3 + x
4

)β−1 + α(
1 + 3x

4
)α−1
− β(

1 + 3x
4

)β−1
)
.

On the other hand, the right hand side of the inequality (10) signifies that

q =
1

2λ

(
α(

1 + x
2

)α−1
− β(

1 + x
2

)β−1 +
αxα−1

− βxβ−1

2
+
α − β

2

)
,

f (x) + f (1)
2

=

αxα−1
−βxβ−1

λ +
α−β
λ

2
,
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where x ≥ 1. Consider

l1(x) :=
α( x+1

2 )α−1
− β( x+1

2 )β−1

λ
(x − 1),

l2(x) := p(x − 1),

m(x) :=
xα − xβ

λ
,

r1(x) := q(x − 1)

=
1

2λ

(
α(

1 + x
2

)α−1
− β(

1 + x
2

)β−1
)
(x − 1)

+
1

4λ
(α(xα − xα−1) − β(xβ − xβ−1) + (α − β)(x − 1)),

r2(x) :=
1

2λ
(αxα−1

− βxβ−1 + α − β)(x − 1).

(12)

By applying Lemma 2.2 we get

Pl1 (A,B) ≤ Pl2 (A,B) ≤ T̃µ,k,λ(A|B) ≤ Pr1 (A,B) ≤ Pr2 (A,B). (13)

Note that we have

Pl1 (A,B) =
1
λ

A
1
2

(
α
(A

−1
2 BA

−1
2 + I

2

)α−1

− β
(A

−1
2 BA

−1
2 + I

2

)β−1)(
A
−1
2 BA

−1
2 − I

)
A

1
2 ,

Pl2 (A,B) =
1

2λ
A

1
2

(
α(

3 + A
−1
2 BA

−1
2

4
)α−1
− β(

3 + A
−1
2 BA

−1
2

4
)β−1

+ α(
I + 3A

−1
2 BA

−1
2

4
)α−1
− β(

I + 3A
−1
2 BA

−1
2

4
)β−1

)(
A
−1
2 BA

−1
2 − I

)
A

1
2 ,

Pr1 (A,B) =
1

2λ
A

1
2

(
α
( I + A

−1
2 BA

−1
2

2

)α−1

− β
( I + A

−1
2 BA

−1
2

2

)β−1)
(A

−1
2 BA

−1
2 − I)A

−1
2

+
1

4λ
(α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A)),

Pr2 (A,B) =
1

2λ

(
α(A♯αB − A♯α−1B) − β(A♯βB − A♯β−1B) + (α − β)(B − A)

)
.

So, the results follow from (13).
(ii) Since λ < 0, the function f is convex on [(α(α−1)(α−2)

β(β−1)(β−2) )
1
β−α ,∞), where

0 ≤
α(α − 1)(α − 2)
β(β − 1)(β − 2)

< 1.

By a similar approach as in part (i) and applying Theorem 2.1 for the function f on [1, x], x ≥ 1, one can
deduce the desired results.

Theorem 3.3. Let A and B be positive invertible operators such that A ≥ B. If one of the following holds

(i) λ > 0 and β(β − 1)(β − 2) < α(α − 1)(α − 2) < 0,
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(ii) λ < 0 and α(α − 1)(α − 2) < β(β − 1)(β − 2) < 0,

then the reversed inequalities hold in (11).

Proof. For both parts (i) and (ii) the function f defined in the proof of Theorem 2.3 is convex on [0, ( β(β−1)(β−2)
α(α−1)(α−2) )

1
α−β ],

where
β(β − 1)(β − 2)
α(α − 1)(α − 2)

> 1.

Applying a similar approach as in the proof of Theorem 3.2 and using Theorem 2.1 for the function f on
[x, 1], x ≤ 1, one can get the reversed inequalities in (11).

We consider some refinement of the special cases like Corollaries 2.5, 2.6, 2.7, and 2.8. The approach is
completely similar to that of Theorem 3.2 and we provide two cases and their applications and leave the
others for interested readers.

Corollary 3.4. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0, α(α − 1)(α − 2) > 0 and β(β − 1)(β − 2) = 0,

(ii) λ < 0, α(α − 1)(α − 2) < 0 and β(β − 1)(β − 2) = 0,

(iii) λ > 0, β(β − 1)(β − 2) < 0 and α(α − 1)(α − 2) = 0,

(iv) λ < 0, β(β − 1)(β − 2) > 0 and α(α − 1)(α − 2) = 0,

then the inequalities (11) hold.

Proof. In each case consider the function f as in the proof of Theorem 2.3. Then, f is convex on the interval
[0,+∞). Using a similar approach as in the proof of Theorem 3.2, one can deduce the result.

Corollary 3.5. Let A and B be positive invertible operators such that A ≥ B. If one of the conditions (i)-(iv) in
Corollary 3.4 holds, then the reversed inequalities hold in (11).

Proof. As in Corollary 3.4, the function f defined in the proof of Theorem 2.3 is convex on the interval
[0,+∞). In each case using a similar approach as in the proof of Theorem 3.2 for the function f on [x, 1],
0 ≤ x ≤ 1, one gets the result.

Corollary 3.6. [23, Theorem 2.4] Let A and B be positive invertible operators such that A ≤ B and λ ∈ (0, 1]. Then,

A♯λ−1

(A + B
2

)
(A−1B − I)

≤
1
2

(
A♯λ−1

(3A + B
4

)
+ A♯λ−1

(A + 3B
4

))
(A−1B − I)

≤ Tλ(A|B)

≤
1
2

(
A♯λ−1

(A + B
2

))
(A−1B − I) +

1
4

(A♯λB − A♯λ−1B + B − A)

≤
1
2

(A♯λB − A♯λ−1B + B − A).

(14)

Proof. Consider µ = 0, k = 1, and λ ∈ (0, 1]. Then part (i) of Corollary 3.4 entails the result.

Corollary 3.7. [23, Corollary 2.7] Let A and B be positive invertible operators such that A ≥ B and λ ∈ (0, 1]. Then
the reversed inequalities hold in (14).

Proof. Consider µ = 0, k = 1, and λ ∈ (0, 1]. Then part (i) of Corollary 3.5 is fulfilled and the result
follows.
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Note that we can extend Corollaries 3.6 and 3.7 for λ < (0, 1]. See Corollaries 2.11, 2.12, and 2.13.
As another result, we reach some inequalities for the generalized relative operator entropy.

Corollary 3.8. Let A and B be positive invertible operators such that A ≤ B. If one of the following holds

(i) λ > 0 and α(α − 1)(α − 2) > β(β − 1)(β − 2) ≥ 0,

(ii) λ < 0 and β(β − 1)(β − 2) > α(α − 1)(α − 2) ≥ 0,

then

Sµ
(
A
∣∣∣∣∣A + B

2

)
(A−1B − I)

≤
1
2

(
S2µ−1

(
A
∣∣∣∣∣3A + B

4

)
+ S2µ−1

(
A
∣∣∣∣∣A + 3B

4

))
(A−1B − I)

≤
1
µ

Sµ(A|B)

≤
1
2

(
S2µ−1

(
A
∣∣∣∣∣A + B

2

)
(A−1B − I)

+
1
2

(
Sµ(A|B) + Sµ−1(A|B) + B − A

))
≤

1
2

(
Sµ(A|B) + Sµ−1(A|B) + B − A

)
for every µ , 0.

Proof. Consider µ , 0, k ∈ Z in the inequalities (11) and put λ → 0+ in part (i) and λ → 0− in part (ii),
respectively to reach the desired inequalities.

4. Some Reversed Inequalities

In this section, we use the following reverse of the first Hermite-Hadamard inequality obtained in [4]

0 ≤
1

b − a

∫ b

a
f (t) dt − f

(
a + b

2

)
≤

1
8
[

f ′− (b) − f ′+ (a)
]

(b − a) (15)

for a convex function f on [a, b]. The constant 1
8 is best possible in (15).

Now if we consider the convex function

f (t) =
αtα−1

− βtβ−1

λ

on [1, x] , x > 1 with λ = α − β and observe that

f ′ (x) =
α (α − 1) xα−2

− β
(
β − 1

)
xβ−2

λ

and

f ′ (1) =
α (α − 1) − β

(
β − 1

)
λ

then by the use of (15) we get

0 ≤ m (x) − l (x) ≤
1
8

w (x) ,
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where m (x), l (x) are given by (7) while

w (x) :=
1
λ

[
α (α − 1)

(
xα−2

− 1
)
− β

(
β − 1

) (
xβ−2
− 1

)]
for x > 1.

Applying Lemma 2.2 we get the operator inequalities

Pl(A,B) ≤ T̃µ,k,λ(A|B) ≤ Pl(A,B) +
1
8

Pw(A,B)

for every positive invertible operators A and B for which the upper bound is new in comparing with the
upper bound of (8).

Further, we use the following reverse of the second Hermite-Hadamard inequality obtained in [5]

0 ≤
f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t) dt ≤

1
8
[

f ′− (b) − f ′+ (a)
]

(b − a) . (16)

Here the constant 1
8 is also best possible.

Now if we consider the convex function

f (t) =
αtα−1

− βtβ−1

λ

on [1, x] , x > 1 with λ = α − β and make use of (16), then we get

0 ≤ r (x) −m (x) ≤
1
8

w (x)

where m (x), l (x) are given by (7).
Applying Lemma 2.2 we get the operator inequalities

Pr(A,B) −
1
8

Pw(A,B) ≤ T̃µ,k,λ(A|B) ≤ Pr(A,B)

for every positive invertible operators A and B for which the lower bound is new in comparing with the
lower bound of (8).
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