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On δss-perfect modules
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Abstract. After the definitions of perfect and semiperfect rings, the transportation of them to perfect and
semiperfect modules is a significant creation for new characterizations of supplemented modules and the
other modified versions of them. Inspired by this idea, we aim to create a route from δss-perfect rings to
δss-perfect modules. A module W is said to be δss-perfect if each factor module is of a projective δss-cover.
Owing to this goal, we obtain new relations for projective (amply) δss-supplemented and δss-lifting modules.
Also, we present various characterization theorems for a (projective) module to be δss-perfect.

1. Introduction

First of all let us point that, R and W will be representing an associative ring with identity and a unitary
left R-module. We will also use the notations ≤, ≤⊕ for a submodule of W and a direct summand of W,
respectively.

A submodule S of W is identified essential in W, signed with S⊴W, if the intersection of S with the other
submodules of W except for {0} is nonzero. The intersection of all essential submodule of W is called socle
of W and denoted as Soc(W) which is equivalent to the sum of all simple submodules of W. A module W is
called singular if W � S

T where T ⊴ S for a module S. As the dual form of an essential submodule; S ≤ W
is defined as small submodule provided that W , S + T for every proper submodule T of W. The radical of
a module W, signed by Rad(W), is the intersection of all maximal submodules of W, which is equivalent to
the sum of all small submodules of W. A projective module E with a surjective homomorphism f : E −→
W providing Ker( f ) ≪ E is called a projective cover of W. A module is called semiperfect whose each factor
module has a projective cover [6]. All concepts given up to now can be found in [1], [16] and [4] for getting
detailed informations.

For a module W and for the submodules S,T ≤ W if T is the minimal with regard to W = S + T, then
T is identified a supplement submodule of S in W which is equivalent to S + T = W and S ∩ T ≪ T. A
supplemented module is a module such that each submodule has a supplement. The submodule S of W has
ample supplements in W if every submodule T of W with S + T = W, contains a supplement of S in W. An
amply supplemented module is a module such that each submodule has ample supplements. A module W
is named lifting if for each S ≤ W, there occures a decomposition such that W = A ⊕ B where A ≤ S and
S ∩ B≪ B. For more detailed information on these concepts we refer to [1], [9], [16] and [18].

In [17], Zhou generalized small submodules of a module to δ-small submodules as follows. A submodule
S ≤ W is defined δ-small, signed by S ≪δ W, if W , S + T for every T ≨ W with W

T is singular. This is
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equivalent to the existence of a projective semisimple submodule S′ of S with W = S⊕T,whenever W = N+T.
The notation δ(W) represents the sum of all δ-small submodules of W. A projective module E with an
epimorphism f : E −→ W is called a projective δ-cover of W where Ker( f ) ≪δ E. A module for which each
factor module has a projective δ-cover is named δ-semiperfect [15]. In [7], Koşan generalized supplemented
modules to the δ-supplemented modules using singularity. T ≤ W is identified a δ-supplement of a
submodule S of W if S + T = W and S ∩ T ≪δ T. The module whose each submodule has a δ-supplement
is said to be δ-supplemented. A module W is named amply δ-supplemented if for any submodule S, T
of W with W = S + T, T involves a δ-supplement of S in W. A δ-lifting module W is a module that has a
decomposition W = A ⊕ B such that A ≤ S and S ∩ B ≪δ B for any submodule S of W. All concepts which
are related with δ-supplemented modules and the other modified forms of them can be seen in [7], [13] and
[2].

In [5], ss-supplemented modules are defined as a proper extension of semisimple ones. A module W is
called ss-supplemented if every S ≤ W has a supplement T in W such that S ∩ T is semisimple. Moreover, a
local module with a semisimple radical is called a strongly local module.

In [14], δss-supplemented modules and strongly δ-local modules are defined as a singular type of the
concepts given in [5]. A module W is named δss-supplemented if each S ≤ W has a δ-supplement T in
W such that S ∩ T is semisimple which is equivalent to S + T = W, S ∩ T ≤ Socδ(T) where Socδ(T) is
the sum of all simple and δ-small submodules of T. Note that Socδ(W) = Σ{S ≤ W | S is semisimple
and S ≪δ W} = δ(W) ∩ Soc(W). A projective module E with the epimorphism f : E −→ W such that
Ker( f ) ≤ Socδ(T) is called a projective δss-cover of W. δss-perfect rings are the rings whose modules have a
projective δss-cover. A module W is called strongly δ-local if the submodule δ(W) is maximal, semisimple
and δ-small in W. In [12], also ⊕-δss-supplemented modules were defined.

Motivated by δss-perfect rings given in [14], in this paper we define δss-perfect modules. And owing
to this, we obtain a restriction of δ-semiperfect modules. We say a module whose each factor module
has a δss-cover is δss-perfect. Inspired by the terminology, some characterizations of (projective) δss-perfect
modules are obtained. In particular, we list the results obtained in this study as follows:

1. Let E be a projective δss-cover of W. Then the case of being a δss-perfect module coincides on the
modules E and W.

2. A projective module E is δss-perfect if and only if E
Socδ(E) is semisimple and the direct compositions of

E
Socδ(E) can be lifted to E.

3. A module W is δss-perfect if and only if W is coatomic, W is of a projective δss-cover and so does every
simple factor module of W.

4. The module W = ⊕i∈IWi is δss-perfect if and only if every projective Wi is δss-perfect.
5. A projective module E is δss-perfect if and only if E is δ-semiperfect and δ(E) ≤ Soc(E).

2. δss-perfect modules

Recall from [14], a projective δss-cover of a module W is a projective module E with a surjective homo-
morphism f : E −→ W such that whose kernel is semisimple and δ-small in E. In this part of the study, we
define δss-perfect modules as following and investigate various structural properties of them.

Definition 2.1. A module whose each factor module is of a projective δss-cover is said to be δss-perfect.

Now we present some characterizations of δss-perfect modules via δss-supplemented modules and
several generalizations of them.

Lemma 2.2. If W is a δss-perfect module, then W is an amply δss-supplemented module.

Proof. Let W be a δss-perfect module and W = S + T for S,T ≤ W. By hypothesis, there exists a projective
δss-cover of W

S with p : E −→ W
S . Assume that π : T −→ T

S∩T �
W
S be the canonical epimorphism. So, there

exists a homomorphism h from E to T such that π ◦ h = p, as E is projective. Following that we have,
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W
S = p(E) = π(h(E)) = h(E)+S

S . Clearly we get W = h(E) + S and as h(E) ≤ T, T = h(E) + (S ∩ T) by the modular
law. Moreover, S∩ h(E) = h(Ker(p)) is semisimple and δ-small in h(E) since p is a projective δss-cover. Hence
h(E) is a δss-supplement of S in W contained in T. That means W is an amply δss-supplemented module.

Definition 2.3. ([11]) A module W is δss-lifting if for any submodule S of W there exists a decomposition W = A⊕B
such that A ≤ S and S ∩ B ≤ Socδ(B) where Socδ(B) = δ(B) ∩ Soc(B).

Motivated by the above theorem and Theorem 5.6 given in [14], we give the following useful lemma.

Lemma 2.4. Let W be a projective module. Then the listed statements given below are equivalent:

1. W is δss-perfect.
2. W is δss-lifting.
3. W is ⊕-δss-supplemented.
4. W is amply δss-supplemented.
5. W is δss-supplemented.

Proof. (1)⇐⇒ (2) and is evident by [14, Theorem 5.6].
(2)⇒ (3) is clear by definitions.
(1)⇒ (4) is clear by Lemma 2.2.
(3)⇒ (5) and (4)⇒ (5) are clear.
(5)⇒ (2) is clear by [11, Proposition 6].

Corollary 2.5. A ring R is δss-perfect if and only if R is δss-lifting.

In [8] Mares proved that a projective cover of a semiperfect module is also semiperfect. Inspired by this,
we prove the analogous for δss-perfect modules in the next theorem. Owing to this theorem, it is possible
to restrict the class of δss-perfect modules to the class of projective δss-perfect modules.

Theorem 2.6. Let E be a projective δss-cover of W. Then two statements given below are equivalent:

1. E is a δss-perfect module.
2. W is a δss-perfect module.

Proof. (1) ⇒ (2) : By hypothesis, there exists an epimorphism f : E −→ W with Ker( f ) is δ-small in E and
semisimple. Let π : W −→ W

S be the natural homomorphism for any submodule S of W. Since E
Ker(π◦ f ) �

W
S

and E is δss-perfect, then W
S has a projective δss-cover. Hence, W is a δss-perfect module.

(2) ⇒ (1) : Let W be a δss-perfect module. It is enough to verify that E is δss-supplemented by Lemma
2.4. Let T ≤ E and π : W −→

W
f (T) be the natural homomorphism. Then we have the composition map

h := π ◦ f : E −→ W
f (T) and W

f (T) has a projective δss-cover, since W is δss-perfect. Following E = E′ ⊕ E′′

with h1 = h |E′ : E′ −→ W
f (T) is a projective δss-cover and E′′ ≤ Ker(h), by [17, Lemma 2.3]. It follows

that E = E′ + Ker(h) by h(E) = h(E′ ). Following E = E′ + Ker(h) = E′ + Ker(π ◦ f ) = E′ + f−1(Ker(π)) =
E′ + f−1( f (T)) = (E′ +T)+Ker( f ) is obtained. As Ker( f )≪δ E, there exists a projective semisimple submodule
Y of Ker( f ) such that E = (E′ + T) ⊕ Y = T + (E′ ⊕ Y). Now we claim that T ∩ (E′ ⊕ Y) ≪δ E′ ⊕ Y and
T ∩ (E′ ⊕ Y) is semisimple. Here it is easy to see that T ∩ (E′ ⊕ Y) = T ∩ E′ as E = (E′ + T) ⊕ Y. Since
h1 is a projective δss-cover, E′ ∩ (T + Ker( f )) ≤ Ker(h1) is semisimple and also δ-small in E′ . Finally since
T∩ (E′ ⊕Y) = T∩E′ ≤ E′ ∩ (T +Ker( f )), then T∩ (E′ ⊕Y)≪δ E′ ⊕Y and semisimple by [17, Lemma 1.2] and
[4, Cor. 8.1.5].

For any prime integer p, although the Z-module Zp is δss-lifting, it does not have a projective δss-cover.
As a result, it is possible to say that a δss-lifting module need not be δss-perfect.

Lemma 2.7. Let E be a projective δss-perfect module. Then δ(E) = Socδ(E) = Soc(E).
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Proof. Case 1 : Let E = δ(E). Then E is a projective semisimple module by [10, Lemma 2.6] and [14, Prop.
3.1.(4)]. So δ(E) = E = Socδ(E) = Soc(E) is obtained.

Case 2 : Let E , δ(E). Since E is projective and δss-perfect, then E is also δss-lifting by Lemma 2.4. So
there occures a decomposition E = A ⊕ B such that A ≤ δ(E) and δ(E) ∩ B ≤ Socδ(Y). For the projection
π : E −→ A, we have π(δ(E)) = π(δ(A ⊕ B)) = π(δ(A) ⊕ δ(B)) = δ(A) = A ∩ δ(E) = A and so A is projective
semisimple by [10, Lemma 2.6]. Therefore δ(E) = δ(A) ⊕ δ(B) = A ⊕ (δ(E) ∩ B)≪δ A ⊕ B = E and δ(E) is also
semisimple since A and δ(E)∩B are semisimple. Hence δ(E) ≤ Socδ(E). Thus, Socδ(E) = δ(E)∩Soc(E) = δ(E),
we have δ(E) ≤ Soc(E). Otherwise, as E is projective, by [14, Prop. 5.2] Soc(E) ≪δ E and so Soc(E) ≤ δ(E) is
obtained.

Proposition 2.8. If W is a δss-perfect module, then δ(W) = Socδ(W) ≤ Soc(W). In particular W
Socδ(W) is semisimple.

Proof. Let us assume that W is δss-perfect. Thus, W has a projective δss-cover f : E −→ W and E is also
δss-perfect by Lemma 2.7. Moreover, δ(E) ≪δ E and δ(E) is semisimple. Since Ker( f ) ≪δ E by [10, Lemma
2.8], then f (δ(E)) = δ(W) is semisimple and it is also δ-small in W from [17, Lemma 1.2] and [4, Cor. 8.1.5].
Hence, δ(W) = Socδ(W) ≤ Soc(W) is obtained. In particular, as W is also δss-supplemented by Lemma 2.2,
then W

Socδ(W) is semisimple by [14, Prop. 4.7].

It is evident from given definitions that, δss-perfect modules are restricted versions of δ-semiperfect
modules. Now we give a relation between these concepts.

Proposition 2.9. The following statements are equivalent for a projective module W:

1. W is δss-perfect.
2. W is δ-semiperfect and δ(W) ⊆ Soc(W).

Proof. (1 =⇒ 2) : Assume that W is δss-perfect. Then it is clear that W is also δ-semiperfect by definitions
and δ(W) = Soc(W) by Lemma 2.7.

(2 =⇒ 1) : Let W be a projective δ-semiperfect module. Then W is amply δ-supplemented by [10, Lemma
2.4]. As δ(W) ⊆ Soc(M), W is also δss-supplemented by [14, Theorem 4.19]. Hence, W is a δss-perfect module
by Lemma 2.4.

Example 2.10. Let F be a field, I =
[
F F
0 F

]
and

R = {(x1, x2, ..., xn, x, x, ...) | n ∈N, xi ∈M2(F), x ∈ I}.
is a ring with the component-wise operations such that

δ(R) = {(x1, x2, ..., xn, x, x, ...) | n ∈N, xi ∈M2(F), x ∈ J} , and

Soc(R) = {(x1, x2, ..., xn, 0, 0, ...) | n ∈N, xi ∈M2(F)}where

J =
[
0 F
0 0

]
.

It can be seen in [17, Example 3.3] that, RR is a δ-perfect ring and so it is δ-semiperfect. But by Proposition 2.9,
RR is not a δss-perfect ring as δ(R) ≰ Soc(R).

In [10], the authors gave a characterization for projective δ-semiperfect modules as follows. A projective
module W is semiperfect if and only if δ(W) ≪δ W, W

δ(W) is semisimple and each direct decomposition of
W
δ(W) can be lifted to W. Motivated by this fact, we give a new characterization for projective δss-semiperfect
modules. But firstly, let us give a useful lemma that we need.
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Lemma 2.11. The implications given below are equivalent for a projective module W:

1. W is δss-lifting.
2. W

Socδ(W) is semisimple and for any X = X+Socδ(W)
Socδ(W) ≤⊕

W
Socδ(W) , there exists a direct summand A of W such that

X = A.

Proof. (1 =⇒ 2) : Let W be a δss-lifting module. Since W is also δss-supplemented, then W
Socδ(W) is semisimple

by [14, Proposition 4.7]. From assumption, there exists direct summands A, B of X with X = A ⊕ B, such
that A ≤⊕ W and B ≤ Socδ(W). Hence X+Socδ(W)

Socδ(W) =
A+Socδ(W)

Socδ(W) is obtained, i.e., X = A.

(2 =⇒ 1) : Let S be any submodule of W. Since W
Socδ(W) is semisimple, we have S+Socδ(W)

Socδ(W) ≤⊕
W

Socδ(W) and from

assumption, there exists a submodule D ≤⊕ W such that S+Socδ(W)
Socδ(W) =

D+Socδ(W)
Socδ(W) . It follows that W = D ⊕ Y for

a submodule Y of M and so W
Socδ(W) =

(D+Y+Socδ(W))
Socδ(M) =

(S+Y+Socδ(W))
Socδ(W) . Since Socδ(W)≪δ W from [14, Proposition

3.1(2)], then there exists a projective semisimple submodule of E of Socδ(W) such that W = (S+Y)⊕E. Then,
S + Y is projective as a direct summand of W. From [16, 41.14], we have S + P = S′ ⊕ Y with S′ ≤ S. Thus,
W = S′ ⊕ (Y ⊕ E) and even as W

Socδ(W) =
(S+Socδ(W))

W) , we have S ∩ (Y ⊕ Socδ(M)) ≤ Socδ(W). Hence, we have
S ∩ (Y ⊕ E) = S ∩ Y ≤ S ∩ (Y ⊕ Socδ(W)) ≤ Socδ(W)≪δ W.

Theorem 2.12. The listed implications given below are equivalent for a projective module W:

1. W is δss-perfect.
2. W

Socδ(W) is semisimple and each direct summand of W
Socδ(W) is an image of a direct summand of W.

3. W
Socδ(W) is semisimple and each direct composition of W

Socδ(W) is lifted to a direct composition of W.

Proof. (1) =⇒ (3) : It is clear by Lemma 2.11.
(3) =⇒ (2) : It is clear by statements.
(2) =⇒ (1) : Letπ : W −→ W

Socδ(W) be the natural homomorphism. It is known that Ker(π) = Socδ(W)≪δ W
by [14, Prop. 3.1]. It is enough to show that W is δss-supplemented by Lemma 2.7. Let A ≤ W. Then,
A+Socδ(W)

Socδ(W) ⊕
B

Socδ(B) =
W

Socδ(W) as W
Socδ(W) is semisimple. By hypothesis, there exists D ≤⊕ W with D+Socδ(W)

Socδ(W) =
B

Socδ(W)
which implies D + Socδ(W) = B. It follows that A + D + Socδ(W) = W is obtained. By hypothesis, there
exists a projective semisimple submodule E of Socδ(P) with A + (D ⊕ E) = W. Now, let us show that
A ∩ (D ⊕ E) is semisimple and it is δ-small in D ⊕ E to complete the proof. It can be easily verified that
A∩ (D ⊕ E) = A∩D ≤ A∩ (D + Socδ(W)) = A∩ B ≤ Socδ(W)≪δ W as A+Socδ(W)

Socδ(W) ⊕
B

Socδ(B) =
W

Socδ(W) . From here,
A ∩ (D ⊕ E) is semisimple as a submodule of the semisimple module (see in [14, Prop. 3.1]) Socδ(W) and it
is also δ-small in W. Moreover, since D ≤⊕ W and D ≤ X ⊕ E, then we get A ∩ (D ⊕ E) ≪δ D ⊕ E by [13,
Lemma 1.2] and [17, Lamma 2.1].

Since all rings with identity is projective, the above theorem verifies the structure of δss-perfect rings
also characterized in [14, Theorem 5.3]. So, we can repeat the following corollary owing to this theorem.

Corollary 2.13. R is a δss-perfect ring if and only if R
Soc(R) is semisimple and idempotents lift to module Soc(R).

Proof. As R is projective and Soc(R) ≤ S(R) by [14, Prop. 5.2], Socδ(R) = Soc(R) ∩ S(R) = Soc(R) is obtained.
Thus, the proof is completed by Theorem 2.12.

In the following theorem the necessary and sufficient conditions are determined for a projective module
W to be δss-perfect.

Theorem 2.14. A projective module W is δss-perfect if and only if each proper submodule of W is included by a
maximal submodule of W and there exists a projective δss-cover for each simple factor module of W.
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Proof. (=⇒) : The first statement is evident by [10, Theorem 2.15] as every δss-perfect module is δ-semiperfect.
Since W is projective δss-perfect, then δ(W) = Socδ(W) by Lemma 2.7. And as W is δss-supplemented by
Proposition 2.9, then W

δ(W) =
W

Socδ(W) is semisimple by [14, Prop. 4.7]. So the second implication is verified.
(⇐=) : For the necessity we show that W provides the conditions of Theorem 2.12. Let us assume that

W
Socδ(W) is semisimple.

Case 1 : If W is semisimple, then W
Socδ(W) is semisimple as a factor module of W.

Case 2 : Let W is not semisimple and let π : W −→
W

Socδ(W) be the natural homomorphism. Now,
we want to show that W

Socδ(W) is semisimple. Suppose that W
Socδ(W) is not semisimple. Then, there exists a

submodule of W
Socδ(W) which is not a direct summand. For this proper essential submodule K of W

Socδ(W) ,
π−1(K) is a proper essential submodule of W. From assumption, there exists a maximal submodule A of
W containing π−1(K) and W

A has a projective δss-cover as a simple factor module. Following we have a
decomposition W = X ⊕ Y such that π |X: X −→ W

A is a projective δss-cover and Y ≤ Ker(π |X) by [17,
Lemma 2.3]. Therefore, we have Y ≤ Ker(π |X) = X ∩ A ≤ Socδ(X) ≤ Socδ(W) and A ≤ W is maximal
A + X = W. So, W

Socδ(W) =
A+X

Socδ(W) =
A

Socδ(W) ⊕
X+Socδ(W)

Socδ(W) as X ∩ A ≤ Socδ(W). As π−1(K) ≤ A and K ⊴ W
Socδ(W) ,

then K ≤ A
Socδ(W) ⊴

W
Socδ(W) . Then, X+Socδ(W)

Socδ(W) =
Socδ(W)
Socδ(W) and so we get X ≤ Socδ(W). As Y ≤ Socδ(W), we have

that W = X + Y ≤ X + Socδ(W) = Socδ(W). Hence W = Socδ(W) and so W is projective semisimple by [14,
Prop. 3.1(4)]. This is a contradiction. Now in the remaining part of the proof it will be shown that each
direct decomposition of W

Socδ(W) can be lifted to a direct composition of W. Let W
Socδ(W) = ⊕i∈IDi. Since W

Socδ(W) is
semisimple, then each Di is semisimple as a submodule of W

Socδ(W) . So each Di can be written as Di = ⊕ j∈JB j

where each B j is simple. Then each B j has a projective δss-cover f j : W j −→ B j with Ker( fi) ≤ Socδ(W j) ≤ δ(W j)
as a simple factor module of W. Hence, we have a homomorphism ⊕ j∈J f j : ⊕ j∈JW j −→ ⊕ j∈JB j = Di where
⊕ j∈JW j is projective and Ker(⊕ j∈J f j) ≤ δ(⊕ j∈JW j). So the composition W

Socδ(W) = ⊕i∈IDi can be lifted to a direct
composition of W by [10, Lemma 2.10].

Now we generalize Theorem 2.14 for δss-perfect modules.

Theorem 2.15. Let W be a module. W is a δss-perfect module if and only if there exists a projective δss-cover for each
simple factor module of W and each proper submodule of W is included by a maximal submodule of W.

Proof. (=⇒) : Let W be a δss-perfect module. Then, the first statement is evident by the concept of a δss-perfect
module. The second one is clear by Proposition 2.8 and [14, Theorem 2.7].

(⇐=) : Let f : E −→ W be a projective δss-cover of W. It is enough to show that E is δss-perfect. So,
it remains to show that E satisfies the sufficiency conditions of Theorem 2.14. Let E

T be any simple factor
module of W. Then, T ≤ E is maximal.

Case 1 : Let Ker( f ) ≤ T. As E
T is simple, then it is cyclic and so it is free. That means E

T is also projective.
So, it has a projective δss-cover naturally.

Case 2 : Let Ker( f ) ≰ T. By the maximality of T, we have T + Ker( f ) = E. As Ker( f ) ≤ Socδ(E)≪δ E, there
exists a semisimple projective P ≤ Ker( f ) with P ⊕ K = E. So E

T has a projective δss-cover, as it is projective.
Let A ≨ P.
Case 1 : Let π(A) = W. Then A + Ker( f ) = E. So, there exists a projective semisimple submodule P of

Ker( f ) with A⊕P = E. Thus, each proper submodule of P � E
A is included by a maximal submodule. Hence,

A is included by a maximal submodule of E.
Case 2 : Let π(A) , W. Thus, π(A) is included by a maximal T ≤ W. Hence, f−1(T) ≤ P is maximal where

A ≤ f−1(T).

Theorem 2.16. Let {Wi}i∈I be a community of projective δss-perfect modules. Then W = ⊕i∈IWi is δss-perfect if and
only if each Wi is δss-perfect.

Proof. (=⇒) : The claim given in the necessity part is clear.
(⇐=) : For the claim given in the sufficiency part firstly, point that δ(Wi) = Soc(Wi) = Socδ(Wi) for each

i ∈ I as each Wi is δss-perfect, by Lemma 2.7. And it is a known that, as W = ⊕i∈IWi, ⊕(δ(Wi)) = ⊕(Soc(Wi))
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implies that δ(W) = Soc(W) ≪δ W by [14, Prop. 5.2]. Now since each Wi is projective δss-perfect, then each
Wi is also δ-semiperfect for every i ∈ I. Thus, W be a δ-semiperfect module by [10, Cor. 2.18]. Hence, W is a
δss-perfect module by Proposition 2.9.

It is known that a module W is local iff W is a cover of simple module. Moreover, each projective
semiperfect module E is of a direct composition of local modules and Rad(E)≪ E [3].

In [10], defining δ-local modules as δ-covers of simple modules, a characterization has been given for
projective δ-semiperfect modules as follows.

Lemma 2.17. (see in [10, Cor. 2.22]) A module W is projective δ-semiperfect if and only if W is a direct sum of
δ-local modules and δ(W)≪δ W.

Motivated by these, first we define δss-local modules and give a characterization for projective δss-perfect
modules via δss-local modules.

Definition 2.18. A module W is δss-local, if it is a δss-cover of a simple module.

Remark 2.19. If W is δss-local, then there exists a δss-cover from W to a simple module B. Note that B is a projective
module as it is cyclic. Since B is δss-supplemented, then it is also δss-perfect by Lemma 2.4. Hence, W is a δss-perfect
module by Theorem 2.6.

Since each projective δss-local module is δss-perfect then the following corollary is obtained.

Corollary 2.20. A projective module W is δss-perfect if and only if W is a direct sum of projective δss-local modules.

Proof. (=⇒) : Let W is δss-perfect and π : W −→ W
Socδ(W) be the natural homomorphism. So W is a δss-cover

of W
Socδ(W) . Then, by Theorem 2.12, W

Socδ(W) is semisimple and it is of a direct composition as a direct sum of
simple modules. As W is projective δss-perfect, this direct decomposition is lifted to a diret sum of W, that
is a direct sum of projective δss-local modules.

(⇐=) : Clear by Theorem 2.12 and Remark 2.19.

Corollary 2.21. A ring R is δss-perfect if and only if R is a direct sum of projective δ-local modules.

Now we want to characterize the rings whose cyclic modules are δss-lifting. But firstly, we give the
following useful proposition.

Proposition 2.22. A module W is δss-lifting if and only if W is amply δss-supplemented and each δss-supplement
submodule T ≤W has a decomposition T = A ⊕ B with A ≤⊕ W and B is projective semisimple.

Proof. (=⇒) : It is clear by the necessity part of Proposition 3.1 given in [10].
(⇐=) : Now, we will show that W is δss-lifting. Since W is (amply) δss-supplemented then each submodule

S ≤W is of a δss-supplement T with S+T =W and S∩T ≤ Socδ(T). Therefore, there occures a δss-supplement
T′ ≤ T contained in S, that is, T + T′ = W and T ∩ T′ ≤ Socδ(T

′

). By hypothesis, T′ is of a decomposition
T′ = A ⊕ B where A ≤⊕ W and B is semisimple projective. Thus, there occures a submodule A′

≤ W with
W = A ⊕ A′

. By modular law, as T′ ≤ T and U ≤ T′ ≤ T, we have S = S ∩W = S ∩ (T + T′ ) = T′ + (S ∩ T)
and S = S∩W = S∩ (A⊕A′

) = A⊕ (A′

∩ S). Thus, for the projection map π : A⊕A′

−→ A′

, A′

∩ S = π(S) =
π(T′)+π(S∩ T) = π(B)+π(S∩ T) and also, π(T′)+π(S∩ T) ≤ Socδ(A

′

) since B is projective semisimple and
S ∩ T ≤ Socδ(T) by [[17, Lemma 2.2]; [4, Cor. 8.1.5] and [13, Lemma 1.2]]. Hence, W is δss-lifting.

Theorem 2.23. The following implications are equivalent for a δss-perfect module W:

1. W is δss-lifting.
2. W has a projective δss-cover f : E −→ W such that f (D) = X ⊕ Y where X ≤⊕ W and Y is projective

semisimple for any direct summand D of E.
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3. W has a projective δss-cover f : E −→ W such that f (T) = X ⊕ Y where X ≤⊕ W and Y is projective
semisimple for each δss-supplement T ≤ E.

Proof. (1) =⇒ (3) : It is clear by [10, Theorem 3.5].
(3) =⇒ (2) : It is clear.
(2) =⇒ (1) : Since W is a δss-perfect module, W is (amply) δss-supplemented. For any δss-supplement

S of W, there exists a decomposition S = f (X) ⊕ L where X ≤⊕ E and L ≤ W is projective semisimple from
[10, Lemma 3.3]. By hypothesis, f (X) = A ⊕ B with A ≤⊕ E and B ≤ W is projective semisimple. Thus,
S = A ⊕ (B ⊕ L) such that B ⊕ L is semisimple and A ≤⊕ E. Hence, W is δss-lifting by Proposition 2.22.

Corollary 2.24. Each cyclic left R-module is δss-lifting for a ring R if and only if R is δss-perfect and each cyclic left
R-module W is of a projective δss-cover f : E −→ W such that f (T) = X ⊕ Y where X ≤⊕ W and Y is projective
semisimple for each δss-supplement T ≤ E.

Proof. (=⇒) : By hypothesis the module RR is δss-lifting as a cyclic module. So, the ring R is a δss-perfect by
Corollary 2.5. Also, every (cyclic) R-module W is of a projective δss-cover by [14, Corollary 5.7]. Thus, each
factor module of W is of a projective δss-cover that means W is a δss-perfect module. Hence, the proof can
be completed according to Theorem 2.23.

(⇐=) : Let the ring R be δss-perfect and W be a cyclic left R-module. Thus, W is a δss-perfect module. So
W is δss-lifting by Theorem 2.23.
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