Filomat 38:16 (2024), 5559–5566 https://doi.org/10.2298/FIL2416559O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On δ_{ss} **-perfect modules**

Esra Öztürk Sözen^a

^aSinop University, Faculty of Sciences and Arts, Department of Mathematics, Sinop, Turkey

Abstract. After the definitions of perfect and semiperfect rings, the transportation of them to perfect and semiperfect modules is a significant creation for new characterizations of supplemented modules and the other modified versions of them. Inspired by this idea, we aim to create a route from δ_{ss} -perfect rings to δ_{ss} -perfect modules. A module *W* is said to be δ_{ss} -perfect if each factor module is of a projective δ_{ss} -cover. Owing to this goal, we obtain new relations for projective (amply) δ_{ss} -supplemented and δ_{ss} -lifting modules. Also, we present various characterization theorems for a (projective) module to be δ_{ss} -perfect.

1. Introduction

First of all let us point that, *R* and *W* will be representing an associative ring with identity and a unitary left *R*-module. We will also use the notations $\leq \leq_{\oplus}$ for a submodule of *W* and a direct summand of *W*, respectively.

A submodule *S* of *W* is identified *essential* in *W*, signed with $S \subseteq W$, if the intersection of *S* with the other submodules of *W* except for {0} is nonzero. The intersection of all essential submodule of *W* is called *socle* of *W* and denoted as *Soc*(*W*) which is equivalent to the sum of all simple submodules of *W*. A module *W* is called *singular* if $W \cong \frac{S}{T}$ where $T \subseteq S$ for a module *S*. As the dual form of an essential submodule; $S \leq W$ is defined as small submodule provided that $W \neq S + T$ for every proper submodule *T* of *W*. The *radical* of a module *W*, signed by *Rad*(*W*), is the intersection of all maximal submodules of *W*, which is equivalent to the sum of all small submodules of *W*. A projective module *E* with a surjective homomorphism $f : E \longrightarrow W$ providing *Ker*(*f*) $\ll E$ is called a *projective cover* of *W*. A module is called *semiperfect* whose each factor module has a projective cover [6]. All concepts given up to now can be found in [1], [16] and [4] for getting detailed informations.

For a module *W* and for the submodules $S, T \le W$ if *T* is the minimal with regard to W = S + T, then *T* is identified a *supplement* submodule of *S* in *W* which is equivalent to S + T = W and $S \cap T \ll T$. A *supplemented* module is a module such that each submodule has a supplement. The submodule *S* of *W* has *ample supplements* in *W* if every submodule *T* of *W* with S + T = W, contains a supplement of *S* in *W*. An amply *supplemented* module is a module such that each submodule has ample supplements. A module *W* is named *lifting* if for each $S \le W$, there occures a decomposition such that $W = A \oplus B$ where $A \le S$ and $S \cap B \ll B$. For more detailed information on these concepts we refer to [1], [9], [16] and [18].

In [17], Zhou generalized small submodules of a module to δ -small submodules as follows. A submodule $S \leq W$ is defined δ -small, signed by $S \ll_{\delta} W$, if $W \neq S + T$ for every $T \lneq W$ with $\frac{W}{T}$ is singular. This is

²⁰²⁰ Mathematics Subject Classification. Primary 16D10; Secondary 16D60, 16D99.

Keywords. semisimple module, (amply) δ_{ss} -supplemented module, δ_{ss} -lifting module, left δ_{ss} -perfect ring, δ_{ss} -perfect module. Received: 24 October 2023; Accepted: 09 November 2023

Communicated by Dragan S. Djordjević

Email address: esozen@sinop.edu.tr (Esra Öztürk Sözen)

equivalent to the existence of a projective semisimple submodule S' of S with $W = S \oplus T$, whenever W = N+T. The notation $\delta(W)$ represents the sum of all δ -small submodules of W. A projective module E with an epimorphism $f : E \longrightarrow W$ is called a *projective* δ -*cover* of W where $Ker(f) \ll_{\delta} E$. A module for which each factor module has a projective δ -cover is named δ -semiperfect [15]. In [7], Koşan generalized supplemented modules to the δ -supplemented modules using singularity. $T \leq W$ is identified a δ -supplement of a submodule S of W if S + T = W and $S \cap T \ll_{\delta} T$. The module whose each submodule has a δ -supplement is said to be δ -supplemented. A module W is named amply δ -supplemented if for any submodule S, T of W with W = S + T, T involves a δ -supplement of S in W. A δ -*lifting* module W is a module that has a decomposition $W = A \oplus B$ such that $A \leq S$ and $S \cap B \ll_{\delta} B$ for any submodule S of W. All concepts which are related with δ -supplemented modules and the other modified forms of them can be seen in [7], [13] and [2].

In [5], *ss*-supplemented modules are defined as a proper extension of semisimple ones. A module *W* is called *ss*-supplemented if every $S \le W$ has a supplement *T* in *W* such that $S \cap T$ is semisimple. Moreover, a local module with a semisimple radical is called a *strongly local module*.

In [14], δ_{ss} -supplemented modules and strongly δ -local modules are defined as a singular type of the concepts given in [5]. A module W is named δ_{ss} -supplemented if each $S \leq W$ has a δ -supplement T in W such that $S \cap T$ is semisimple which is equivalent to S + T = W, $S \cap T \leq Soc_{\delta}(T)$ where $Soc_{\delta}(T)$ is the sum of all simple and δ -small submodules of T. Note that $Soc_{\delta}(W) = \Sigma\{S \leq W \mid S \text{ is semisimple} and <math>S \ll_{\delta} W\} = \delta(W) \cap Soc(W)$. A projective module E with the epimorphism $f : E \longrightarrow W$ such that $Ker(f) \leq Soc_{\delta}(T)$ is called a *projective* δ_{ss} -cover of W. δ_{ss} -perfect rings are the rings whose modules have a projective δ_{ss} -cover. A module W is called strongly δ -local if the submodule $\delta(W)$ is maximal, semisimple and δ -small in W. In [12], also \oplus - δ_{ss} -supplemented modules were defined.

Motivated by δ_{ss} -perfect rings given in [14], in this paper we define δ_{ss} -perfect modules. And owing to this, we obtain a restriction of δ -semiperfect modules. We say a module whose each factor module has a δ_{ss} -cover is δ_{ss} -perfect. Inspired by the terminology, some characterizations of (projective) δ_{ss} -perfect modules are obtained. In particular, we list the results obtained in this study as follows:

- 1. Let *E* be a projective δ_{ss} -cover of *W*. Then the case of being a δ_{ss} -perfect module coincides on the modules *E* and *W*.
- 2. A projective module *E* is δ_{ss} -perfect if and only if $\frac{E}{Soc_{\delta}(E)}$ is semisimple and the direct compositions of $\frac{E}{Soc_{\delta}(E)}$ can be lifted to *E*.
- 3. A module *W* is δ_{ss} -perfect if and only if *W* is coatomic, *W* is of a projective δ_{ss} -cover and so does every simple factor module of *W*.
- 4. The module $W = \bigoplus_{i \in I} W_i$ is δ_{ss} -perfect if and only if every projective W_i is δ_{ss} -perfect.
- 5. A projective module *E* is δ_{ss} -perfect if and only if *E* is δ -semiperfect and $\delta(E) \leq Soc(E)$.

2. δ_{ss} -perfect modules

Recall from [14], a projective δ_{ss} -cover of a module W is a projective module E with a surjective homomorphism $f : E \longrightarrow W$ such that whose kernel is semisimple and δ -small in E. In this part of the study, we define δ_{ss} -perfect modules as following and investigate various structural properties of them.

Definition 2.1. A module whose each factor module is of a projective δ_{ss} -cover is said to be δ_{ss} -perfect.

Now we present some characterizations of δ_{ss} -perfect modules via δ_{ss} -supplemented modules and several generalizations of them.

Lemma 2.2. If W is a δ_{ss} -perfect module, then W is an amply δ_{ss} -supplemented module.

Proof. Let *W* be a δ_{ss} -perfect module and W = S + T for $S, T \leq W$. By hypothesis, there exists a projective δ_{ss} -cover of $\frac{W}{S}$ with $p : E \longrightarrow \frac{W}{S}$. Assume that $\pi : T \longrightarrow \frac{T}{S \cap T} \cong \frac{W}{S}$ be the canonical epimorphism. So, there exists a homomorphism *h* from *E* to *T* such that $\pi \circ h = p$, as *E* is projective. Following that we have,

 $\frac{W}{S} = p(E) = \pi(h(E)) = \frac{h(E)+S}{S}$. Clearly we get W = h(E) + S and as $h(E) \le T$, $T = h(E) + (S \cap T)$ by the modular law. Moreover, $S \cap h(E) = h(Ker(p))$ is semisimple and δ -small in h(E) since p is a projective δ_{ss} -cover. Hence h(E) is a δ_{ss} -supplement of S in W contained in T. That means W is an amply δ_{ss} -supplemented module. \Box

Definition 2.3. ([11]) A module W is δ_{ss} -lifting if for any submodule S of W there exists a decomposition $W = A \oplus B$ such that $A \leq S$ and $S \cap B \leq Soc_{\delta}(B)$ where $Soc_{\delta}(B) = \delta(B) \cap Soc(B)$.

Motivated by the above theorem and Theorem 5.6 given in [14], we give the following useful lemma.

Lemma 2.4. Let W be a projective module. Then the listed statements given below are equivalent:

- 1. *W* is δ_{ss} -perfect.
- 2. *W* is δ_{ss} -lifting.
- 3. *W* is \oplus - δ_{ss} -supplemented.
- 4. *W* is amply δ_{ss} -supplemented.
- 5. *W* is δ_{ss} -supplemented.

Proof. (1) \iff (2) and is evident by [14, Theorem 5.6].

- $(2) \Rightarrow (3)$ is clear by definitions.
- (1) \Rightarrow (4) is clear by Lemma 2.2.
- $(3) \Rightarrow (5) \text{ and } (4) \Rightarrow (5) \text{ are clear.}$
- $(5) \Rightarrow (2)$ is clear by [11, Proposition 6]. \Box

Corollary 2.5. A ring R is δ_{ss} -perfect if and only if R is δ_{ss} -lifting.

In [8] Mares proved that a projective cover of a semiperfect module is also semiperfect. Inspired by this, we prove the analogous for δ_{ss} -perfect modules in the next theorem. Owing to this theorem, it is possible to restrict the class of δ_{ss} -perfect modules to the class of projective δ_{ss} -perfect modules.

Theorem 2.6. Let E be a projective δ_{ss} -cover of W. Then two statements given below are equivalent:

- 1. *E* is a δ_{ss} -perfect module.
- 2. *W* is a δ_{ss} -perfect module.

Proof. (1) \Rightarrow (2) : By hypothesis, there exists an epimorphism $f : E \longrightarrow W$ with Ker(f) is δ -small in E and semisimple. Let $\pi : W \longrightarrow \frac{W}{S}$ be the natural homomorphism for any submodule S of W. Since $\frac{E}{Ker(\pi \circ f)} \cong \frac{W}{S}$ and E is δ_{ss} -perfect, then $\frac{W}{S}$ has a projective δ_{ss} -cover. Hence, W is a δ_{ss} -perfect module.

(2) \Rightarrow (1) : Let *W* be a δ_{ss} -perfect module. It is enough to verify that *E* is δ_{ss} -supplemented by Lemma 2.4. Let $T \leq E$ and $\pi : W \longrightarrow \frac{W}{f(T)}$ be the natural homomorphism. Then we have the composition map $h := \pi \circ f : E \longrightarrow \frac{W}{f(T)}$ and $\frac{W}{f(T)}$ has a projective δ_{ss} -cover, since *W* is δ_{ss} -perfect. Following $E = E' \oplus E''$ with $h_1 = h \mid_{E'} : E' \longrightarrow \frac{W}{f(T)}$ is a projective δ_{ss} -cover and $E'' \leq Ker(h)$, by [17, Lemma 2.3]. It follows that E = E' + Ker(h) by h(E) = h(E'). Following $E = E' + Ker(h) = E' + Ker(\pi \circ f) = E' + f^{-1}(Ker(\pi)) = E' + f^{-1}(f(T)) = (E' + T) + Ker(f)$ is obtained. As $Ker(f) \ll_{\delta} E$, there exists a projective semisimple submodule *Y* of *Ker*(*f*) such that $E = (E' + T) \oplus Y = T + (E' \oplus Y)$. Now we claim that $T \cap (E' \oplus Y) \ll_{\delta} E' \oplus Y$ and $T \cap (E' \oplus Y)$ is semisimple. Here it is easy to see that $T \cap (E' \oplus Y) = T \cap E'$ as $E = (E' + T) \oplus Y$. Since h_1 is a projective δ_{ss} -cover, $E' \cap (T + Ker(f)) \leq Ker(h_1)$ is semisimple and also δ -small in E'. Finally since $T \cap (E' \oplus Y) = T \cap E' \leq E' \cap (T + Ker(f))$, then $T \cap (E' \oplus Y) \ll_{\delta} E' \oplus Y$ and semisimple by [17, Lemma 1.2] and [4, Cor. 8.1.5]. \Box

For any prime integer p, although the \mathbb{Z} -module \mathbb{Z}_p is δ_{ss} -lifting, it does not have a projective δ_{ss} -cover. As a result, it is possible to say that a δ_{ss} -lifting module need not be δ_{ss} -perfect.

Lemma 2.7. Let *E* be a projective δ_{ss} -perfect module. Then $\delta(E) = Soc_{\delta}(E) = Soc(E)$.

Proof. Case 1 : Let $E = \delta(E)$. Then *E* is a projective semisimple module by [10, Lemma 2.6] and [14, Prop. 3.1.(4)]. So $\delta(E) = E = Soc_{\delta}(E) = Soc(E)$ is obtained.

Case 2 : Let $E \neq \delta(E)$. Since *E* is projective and δ_{ss} -perfect, then *E* is also δ_{ss} -lifting by Lemma 2.4. So there occures a decomposition $E = A \oplus B$ such that $A \leq \delta(E)$ and $\delta(E) \cap B \leq Soc_{\delta}(Y)$. For the projection $\pi : E \longrightarrow A$, we have $\pi(\delta(E)) = \pi(\delta(A \oplus B)) = \pi(\delta(A) \oplus \delta(B)) = \delta(A) = A \cap \delta(E) = A$ and so *A* is projective semisimple by [10, Lemma 2.6]. Therefore $\delta(E) = \delta(A) \oplus \delta(B) = A \oplus (\delta(E) \cap B) \ll_{\delta} A \oplus B = E$ and $\delta(E)$ is also semisimple since *A* and $\delta(E) \cap B$ are semisimple. Hence $\delta(E) \leq Soc_{\delta}(E)$. Thus, $Soc_{\delta}(E) = \delta(E) \cap Soc(E) = \delta(E)$, we have $\delta(E) \leq Soc(E)$. Otherwise, as *E* is projective, by [14, Prop. 5.2] $Soc(E) \ll_{\delta} E$ and so $Soc(E) \leq \delta(E)$ is obtained. \Box

Proposition 2.8. If W is a δ_{ss} -perfect module, then $\delta(W) = Soc_{\delta}(W) \leq Soc(W)$. In particular $\frac{W}{Soc_{\delta}(W)}$ is semisimple.

Proof. Let us assume that *W* is δ_{ss} -perfect. Thus, *W* has a projective δ_{ss} -cover $f : E \longrightarrow W$ and *E* is also δ_{ss} -perfect by Lemma 2.7. Moreover, $\delta(E) \ll_{\delta} E$ and $\delta(E)$ is semisimple. Since $Ker(f) \ll_{\delta} E$ by [10, Lemma 2.8], then $f(\delta(E)) = \delta(W)$ is semisimple and it is also δ -small in *W* from [17, Lemma 1.2] and [4, Cor. 8.1.5]. Hence, $\delta(W) = Soc_{\delta}(W) \leq Soc(W)$ is obtained. In particular, as *W* is also δ_{ss} -supplemented by Lemma 2.2, then $\frac{W}{Soc_{\delta}(W)}$ is semisimple by [14, Prop. 4.7]. \Box

It is evident from given definitions that, δ_{ss} -perfect modules are restricted versions of δ -semiperfect modules. Now we give a relation between these concepts.

Proposition 2.9. The following statements are equivalent for a projective module W:

1. W is δ_{ss} -perfect.

2. *W* is δ -semiperfect and $\delta(W) \subseteq Soc(W)$.

Proof. $(1 \implies 2)$: Assume that *W* is δ_{ss} -perfect. Then it is clear that *W* is also δ -semiperfect by definitions and $\delta(W) = Soc(W)$ by Lemma 2.7.

 $(2 \implies 1)$: Let *W* be a projective δ -semiperfect module. Then *W* is amply δ -supplemented by [10, Lemma 2.4]. As $\delta(W) \subseteq Soc(M)$, *W* is also δ_{ss} -supplemented by [14, Theorem 4.19]. Hence, *W* is a δ_{ss} -perfect module by Lemma 2.4. \Box

Example 2.10. Let *F* be a field, $I = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ and

 $R = \{(x_1, x_2, ..., x_n, x, x, ...) \mid n \in \mathbb{N}, x_i \in M_2(F), x \in I\}.$ is a ring with the component-wise operations such that

$$\delta(R) = \{(x_1, x_2, ..., x_n, x, x, ...) \mid n \in \mathbb{N}, x_i \in M_2(F), x \in J\}, and$$

 $Soc(R) = \{(x_1, x_2, ..., x_n, 0, 0, ...) \mid n \in \mathbb{N}, x_i \in M_2(F)\}$ where

 $J = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}.$

It can be seen in [17, Example 3.3] that, $_RR$ is a δ -perfect ring and so it is δ -semiperfect. But by Proposition 2.9, $_RR$ is not a δ_{ss} -perfect ring as $\delta(R) \nleq Soc(R)$.

In [10], the authors gave a characterization for projective δ -semiperfect modules as follows. A projective module W is semiperfect if and only if $\delta(W) \ll_{\delta} W$, $\frac{W}{\delta(W)}$ is semisimple and each direct decomposition of $\frac{W}{\delta(W)}$ can be lifted to W. Motivated by this fact, we give a new characterization for projective δ_{ss} -semiperfect modules. But firstly, let us give a useful lemma that we need.

Lemma 2.11. The implications given below are equivalent for a projective module W:

- 1. W is δ_{ss} -lifting.
- 2. $\frac{W}{Soc_{\delta}(W)}$ is semisimple and for any $\overline{X} = \frac{X + Soc_{\delta}(W)}{Soc_{\delta}(W)} \leq_{\oplus} \frac{W}{Soc_{\delta}(W)}$, there exists a direct summand A of W such that $\overline{X} = \overline{A}$

Proof. $(1 \Longrightarrow 2)$: Let *W* be a δ_{ss} -lifting module. Since *W* is also δ_{ss} -supplemented, then $\frac{W}{Soc_{\delta}(W)}$ is semisimple by [14, Proposition 4.7]. From assumption, there exists direct summands A, B of X with $X = A \oplus B$, such that $A \leq_{\oplus} W$ and $B \leq Soc_{\delta}(W)$. Hence $\frac{X + Soc_{\delta}(W)}{Soc_{\delta}(W)} = \frac{A + Soc_{\delta}(W)}{Soc_{\delta}(W)}$ is obtained, i.e., $\overline{X} = \overline{A}$. (2 \Longrightarrow 1) : Let S be any submodule of W. Since $\frac{W}{Soc_{\delta}(W)}$ is semisimple, we have $\frac{S + Soc_{\delta}(W)}{Soc_{\delta}(W)} \leq_{\oplus} \frac{W}{Soc_{\delta}(W)}$ and from

assumption, there exists a submodule $D \leq_{\oplus} W$ such that $\frac{S+Soc_{\delta}(W)}{Soc_{\delta}(W)} = \frac{D+Soc_{\delta}(W)}{Soc_{\delta}(W)}$. It follows that $W = D \oplus Y$ for a submodule Y of M and so $\frac{W}{Soc_{\delta}(W)} = \frac{(D+Y+Soc_{\delta}(W))}{Soc_{\delta}(M)} = \frac{(S+Y+Soc_{\delta}(W))}{Soc_{\delta}(W)}$. Since $Soc_{\delta}(W) \ll_{\delta} W$ from [14, Proposition 3.1(2)], then there exists a projective semisimple submodule of E of $Soc_{\delta}(W)$ such that $W = (S+Y) \oplus E$. Then, *S* + *Y* is projective as a direct summand of *W*. From [16, 41.14], we have $S + P = S' \oplus Y$ with $S' \leq S$. Thus, $W = S' \oplus (Y \oplus E)$ and even as $\frac{W}{Soc_{\delta}(W)} = \frac{(S+Soc_{\delta}(W))}{W}$, we have $S \cap (Y \oplus Soc_{\delta}(M)) \leq Soc_{\delta}(W)$. Hence, we have $S \cap (Y \oplus E) = S \cap Y \leq S \cap (Y \oplus Soc_{\delta}(W)) \leq Soc_{\delta}(W) \ll_{\delta} W$. \Box

Theorem 2.12. The listed implications given below are equivalent for a projective module W:

- 1. *W* is δ_{ss} -perfect.
- 2. $\frac{W}{Soc_{\delta}(W)}$ is semisimple and each direct summand of $\frac{W}{Soc_{\delta}(W)}$ is an image of a direct summand of *W*. 3. $\frac{W}{Soc_{\delta}(W)}$ is semisimple and each direct composition of $\frac{W}{Soc_{\delta}(W)}$ is lifted to a direct composition of *W*.

Proof. (1) \implies (3) : It is clear by Lemma 2.11.

 $(3) \Longrightarrow (2)$: It is clear by statements.

(2) \implies (1) : Let $\pi : W \longrightarrow \frac{W}{Soc_{\delta}(W)}$ be the natural homomorphism. It is known that $Ker(\pi) = Soc_{\delta}(W) \ll_{\delta} W$ by [14, Prop. 3.1]. It is enough to show that W is δ_{ss} -supplemented by Lemma 2.7. Let $A \leq W$. Then, $\frac{A+Soc_{\delta}(W)}{Soc_{\delta}(W)} \oplus \frac{B}{Soc_{\delta}(B)} = \frac{W}{Soc_{\delta}(W)}$ as $\frac{W}{Soc_{\delta}(W)}$ is semisimple. By hypothesis, there exists $D \leq_{\oplus} W$ with $\frac{D+Soc_{\delta}(W)}{Soc_{\delta}(W)} = \frac{B}{Soc_{\delta}(W)}$ which implies $D + Soc_{\delta}(W) = B$. It follows that $A + D + Soc_{\delta}(W) = W$ is obtained. By hypothesis, there exists a projective semisimple submodule E of $Soc_{\delta}(P)$ with $A + (D \oplus E) = W$. Now, let us show that $A \cap (D \oplus E)$ is semisimple and it is δ -small in $D \oplus E$ to complete the proof. It can be easily verified that $A \cap (D \oplus E) = A \cap D \le A \cap (D + Soc_{\delta}(W)) = A \cap B \le Soc_{\delta}(W) \ll_{\delta} W$ as $\frac{A + Soc_{\delta}(W)}{Soc_{\delta}(W)} \oplus \frac{B}{Soc_{\delta}(W)} = \frac{W}{Soc_{\delta}(W)}$. From here, $A \cap (D \oplus E)$ is semisimple as a submodule of the semisimple module (see in [14, Prop. 3.1]) $Soc_{\delta}(W)$ and it is also δ -small in W. Moreover, since $D \leq_{\oplus} W$ and $D \leq X \oplus E$, then we get $A \cap (D \oplus E) \ll_{\delta} D \oplus E$ by [13, Lemma 1.2] and [17, Lamma 2.1].

Since all rings with identity is projective, the above theorem verifies the structure of δ_{ss} -perfect rings also characterized in [14, Theorem 5.3]. So, we can repeat the following corollary owing to this theorem.

Corollary 2.13. *R* is a δ_{ss} -perfect ring if and only if $\frac{R}{Soc(R)}$ is semisimple and idempotents lift to module Soc(R).

Proof. As *R* is projective and $Soc(R) \leq S(R)$ by [14, Prop. 5.2], $Soc_{\delta}(R) = Soc(R) \cap S(R) = Soc(R)$ is obtained. Thus, the proof is completed by Theorem 2.12. \Box

In the following theorem the necessary and sufficient conditions are determined for a projective module W to be δ_{ss} -perfect.

Theorem 2.14. A projective module W is δ_{ss} -perfect if and only if each proper submodule of W is included by a maximal submodule of W and there exists a projective δ_{ss} -cover for each simple factor module of W.

Proof. (\Longrightarrow) : The first statement is evident by [10, Theorem 2.15] as every δ_{ss} -perfect module is δ -semiperfect. Since W is projective δ_{ss} -perfect, then $\delta(W) = Soc_{\delta}(W)$ by Lemma 2.7. And as W is δ_{ss} -supplemented by

Proposition 2.9, then $\frac{W}{\delta(W)} = \frac{W}{Soc_{\delta}(W)}$ is semisimple by [14, Prop. 4.7]. So the second implication is verified. (\Leftarrow) : For the necessity we show that *W* provides the conditions of Theorem 2.12. Let us assume that $\frac{W}{Soc_{\delta}(W)}$ is semisimple.

Case 1: If W is semisimple, then $\frac{W}{Soc_{\delta}(W)}$ is semisimple as a factor module of W. Case 2: Let W is not semisimple and let $\pi : W \longrightarrow \frac{W}{Soc_{\delta}(W)}$ be the natural homomorphism. Now, we want to show that $\frac{W}{Soc_{\delta}(W)}$ is semisimple. Suppose that $\frac{W}{Soc_{\delta}(W)}$ is not semisimple. Then, there exists a submodule of $\frac{W}{Soc_{\delta}(W)}$ which is not a direct summand. For this proper essential submodule K of $\frac{W}{Soc_{\delta}(W)}$, $\pi^{-1}(K)$ is a proper essential submodule of W. From assumption, there exists a maximal submodule A of W containing $\pi^{-1}(K)$ and $\frac{W}{A}$ has a projective δ_{ss} -cover as a simple factor module. Following we have a decomposition $W = X \oplus Y$ such that $\pi \mid_X : X \longrightarrow \frac{W}{A}$ is a projective δ_{ss} -cover and $Y \le Ker(\pi \mid_X)$ by [17, Lemma 2.3]. Therefore, we have $Y \le Ker(\pi \mid_X) = X \cap A \le Soc_{\delta}(X) \le Soc_{\delta}(W)$ and $A \le W$ is maximal A + X = W. So, $\frac{W}{Soc_{\delta}(W)} = \frac{A+X}{Soc_{\delta}(W)} \oplus \frac{X+Soc_{\delta}(W)}{Soc_{\delta}(W)}$ as $X \cap A \le Soc_{\delta}(W)$. As $\pi^{-1}(K) \le A$ and $K \le \frac{W}{Soc_{\delta}(W)}$, then $K \le \frac{A}{Soc_{\delta}(W)} \le \frac{W}{Soc_{\delta}(W)}$. Then, $\frac{X+Soc_{\delta}(W)}{Soc_{\delta}(W)} = \frac{Soc_{\delta}(W)}{Soc_{\delta}(W)}$ and so we get $X \le Soc_{\delta}(W)$. As $Y \le Soc_{\delta}(W)$, we have that $W = X + Y \le X + Soc_{\delta}(W) = Soc_{\delta}(W)$. Hence $W = Soc_{\delta}(W)$ and so W is projective semisimple by [14, Prop. 3.1(4)]. This is a contradiction. Now in the remaining part of the proof it will be chown that each Prop. 3.1(4)]. This is a contradiction. Now in the remaining part of the proof it will be shown that each direct decomposition of $\frac{W}{Soc_{\delta}(W)}$ can be lifted to a direct composition of W. Let $\frac{W}{Soc_{\delta}(W)} = \bigoplus_{i \in I} D_i$. Since $\frac{W}{Soc_{\delta}(W)}$ is semisimple, then each D_i is semisimple as a submodule of $\frac{W}{Soc_{\delta}(W)}$. So each D_i can be written as $D_i = \bigoplus_{j \in J} B_j$ where each B_j is simple. Then each B_j has a projective δ_{ss} -cover $f_j : W_j \longrightarrow B_j$ with $Ker(f_i) \le Soc_{\delta}(W_j) \le \delta(W_j)$ as a simple factor module of W. Hence, we have a homomorphism $\bigoplus_{j \in J} f_j : \bigoplus_{j \in J} W_j \longrightarrow \bigoplus_{j \in J} B_j = D_i$ where $\bigoplus_{j \in J} W_j$ is projective and $Ker(\bigoplus_{j \in J} f_j) \le \delta(\bigoplus_{j \in J} W_j)$. So the composition $\frac{W}{Soc_{\delta}(W)} = \bigoplus_{i \in I} D_i$ can be lifted to a direct composition of *W* by [10, Lemma 2.10]. \Box

Now we generalize Theorem 2.14 for δ_{ss} -perfect modules.

Theorem 2.15. Let W be a module. W is a δ_{ss} -perfect module if and only if there exists a projective δ_{ss} -cover for each simple factor module of W and each proper submodule of W is included by a maximal submodule of W.

Proof. (\Longrightarrow) : Let W be a δ_{ss} -perfect module. Then, the first statement is evident by the concept of a δ_{ss} -perfect module. The second one is clear by Proposition 2.8 and [14, Theorem 2.7].

(\Leftarrow) : Let $f : E \longrightarrow W$ be a projective δ_{ss} -cover of W. It is enough to show that E is δ_{ss} -perfect. So, it remains to show that E satisfies the sufficiency conditions of Theorem 2.14. Let $\frac{E}{T}$ be any simple factor module of *W*. Then, $T \leq E$ is maximal.

Case 1 : Let $Ker(f) \leq T$. As $\frac{E}{T}$ is simple, then it is cyclic and so it is free. That means $\frac{E}{T}$ is also projective. So, it has a projective δ_{ss} -cover naturally.

Case 2 : Let $Ker(f) \not\leq T$. By the maximality of *T*, we have T + Ker(f) = E. As $Ker(f) \leq Soc_{\delta}(E) \ll_{\delta} E$, there exists a semisimple projective $P \leq Ker(f)$ with $P \oplus K = E$. So $\frac{E}{T}$ has a projective δ_{ss} -cover, as it is projective. Let $A \leq P$.

Case 1 : Let $\pi(A) = W$. Then A + Ker(f) = E. So, there exists a projective semisimple submodule P of Ker(f) with $A \oplus P = E$. Thus, each proper submodule of $P \cong \frac{E}{A}$ is included by a maximal submodule. Hence, A is included by a maximal submodule of E.

Case 2 : Let $\pi(A) \neq W$. Thus, $\pi(A)$ is included by a maximal $T \leq W$. Hence, $f^{-1}(T) \leq P$ is maximal where $A \leq f^{-1}(T)$. \Box

Theorem 2.16. Let $\{W_i\}_{i \in I}$ be a community of projective δ_{ss} -perfect modules. Then $W = \bigoplus_{i \in I} W_i$ is δ_{ss} -perfect if and only if each W_i is δ_{ss} -perfect.

Proof. (\Longrightarrow) : The claim given in the necessity part is clear.

(\Leftarrow) : For the claim given in the sufficiency part firstly, point that $\delta(W_i) = Soc(W_i) = Soc_{\delta}(W_i)$ for each $i \in I$ as each W_i is δ_{ss} -perfect, by Lemma 2.7. And it is a known that, as $W = \bigoplus_{i \in I} W_i, \bigoplus(\delta(W_i)) = \bigoplus(Soc(W_i))$ implies that $\delta(W) = Soc(W) \ll_{\delta} W$ by [14, Prop. 5.2]. Now since each W_i is projective δ_{ss} -perfect, then each W_i is also δ -semiperfect for every $i \in I$. Thus, W be a δ -semiperfect module by [10, Cor. 2.18]. Hence, W is a δ_{ss} -perfect module by Proposition 2.9. \Box

It is known that a module *W* is local iff *W* is a cover of simple module. Moreover, each projective semiperfect module *E* is of a direct composition of local modules and $Rad(E) \ll E$ [3].

In [10], defining δ -local modules as δ -covers of simple modules, a characterization has been given for projective δ -semiperfect modules as follows.

Lemma 2.17. (see in [10, Cor. 2.22]) A module W is projective δ -semiperfect if and only if W is a direct sum of δ -local modules and $\delta(W) \ll_{\delta} W$.

Motivated by these, first we define δ_{ss} -local modules and give a characterization for projective δ_{ss} -perfect modules via δ_{ss} -local modules.

Definition 2.18. A module W is δ_{ss} -local, if it is a δ_{ss} -cover of a simple module.

Remark 2.19. If W is δ_{ss} -local, then there exists a δ_{ss} -cover from W to a simple module B. Note that B is a projective module as it is cyclic. Since B is δ_{ss} -supplemented, then it is also δ_{ss} -perfect by Lemma 2.4. Hence, W is a δ_{ss} -perfect module by Theorem 2.6.

Since each projective δ_{ss} -local module is δ_{ss} -perfect then the following corollary is obtained.

Corollary 2.20. A projective module W is δ_{ss} -perfect if and only if W is a direct sum of projective δ_{ss} -local modules.

Proof. (\Longrightarrow) : Let *W* is δ_{ss} -perfect and $\pi : W \longrightarrow \frac{W}{Soc_{\delta}(W)}$ be the natural homomorphism. So *W* is a δ_{ss} -cover of $\frac{W}{Soc_{\delta}(W)}$. Then, by Theorem 2.12, $\frac{W}{Soc_{\delta}(W)}$ is semisimple and it is of a direct composition as a direct sum of simple modules. As *W* is projective δ_{ss} -perfect, this direct decomposition is lifted to a diret sum of *W*, that is a direct sum of projective δ_{ss} -local modules.

(\Leftarrow) : Clear by Theorem 2.12 and Remark 2.19. \Box

Corollary 2.21. A ring R is δ_{ss} -perfect if and only if R is a direct sum of projective δ -local modules.

Now we want to characterize the rings whose cyclic modules are δ_{ss} -lifting. But firstly, we give the following useful proposition.

Proposition 2.22. A module W is δ_{ss} -lifting if and only if W is amply δ_{ss} -supplemented and each δ_{ss} -supplement submodule $T \leq W$ has a decomposition $T = A \oplus B$ with $A \leq_{\oplus} W$ and B is projective semisimple.

Proof. (\Longrightarrow) : It is clear by the necessity part of Proposition 3.1 given in [10].

(\Leftarrow): Now, we will show that *W* is δ_{ss} -lifting. Since *W* is (amply) δ_{ss} -supplemented then each submodule $S \leq W$ is of a δ_{ss} -supplement *T* with S + T = W and $S \cap T \leq Soc_{\delta}(T)$. Therefore, there occures a δ_{ss} -supplement $T' \leq T$ contained in *S*, that is, T + T' = W and $T \cap T' \leq Soc_{\delta}(T')$. By hypothesis, *T'* is of a decomposition $T' = A \oplus B$ where $A \leq_{\oplus} W$ and *B* is semisimple projective. Thus, there occures a submodule $A' \leq W$ with $W = A \oplus A'$. By modular law, as $T' \leq T$ and $U \leq T' \leq T$, we have $S = S \cap W = S \cap (T + T') = T' + (S \cap T)$ and $S = S \cap W = S \cap (A \oplus A') = A \oplus (A' \cap S)$. Thus, for the projection map $\pi : A \oplus A' \longrightarrow A', A' \cap S = \pi(S) = \pi(T') + \pi(S \cap T) = \pi(B) + \pi(S \cap T)$ and also, $\pi(T') + \pi(S \cap T) \leq Soc_{\delta}(A')$ since *B* is projective semisimple and $S \cap T \leq Soc_{\delta}(T)$ by [[17, Lemma 2.2]; [4, Cor. 8.1.5] and [13, Lemma 1.2]]. Hence, *W* is δ_{ss} -lifting. \Box

Theorem 2.23. *The following implications are equivalent for a* δ_{ss} *-perfect module W*:

- 1. *W* is δ_{ss} -lifting.
- 2. W has a projective δ_{ss} -cover $f : E \longrightarrow W$ such that $f(D) = X \oplus Y$ where $X \leq_{\oplus} W$ and Y is projective semisimple for any direct summand D of E.

3. W has a projective δ_{ss} -cover $f : E \longrightarrow W$ such that $f(T) = X \oplus Y$ where $X \leq_{\oplus} W$ and Y is projective semisimple for each δ_{ss} -supplement $T \leq E$.

Proof. (1) \implies (3) : It is clear by [10, Theorem 3.5].

 $(3) \Longrightarrow (2)$: It is clear.

(2) \implies (1) : Since *W* is a δ_{ss} -perfect module, *W* is (amply) δ_{ss} -supplemented. For any δ_{ss} -supplement *S* of *W*, there exists a decomposition $S = f(X) \oplus L$ where $X \leq_{\oplus} E$ and $L \leq W$ is projective semisimple from [10, Lemma 3.3]. By hypothesis, $f(X) = A \oplus B$ with $A \leq_{\oplus} E$ and $B \leq W$ is projective semisimple. Thus, $S = A \oplus (B \oplus L)$ such that $B \oplus L$ is semisimple and $A \leq_{\oplus} E$. Hence, *W* is δ_{ss} -lifting by Proposition 2.22. \Box

Corollary 2.24. Each cyclic left R-module is δ_{ss} -lifting for a ring R if and only if R is δ_{ss} -perfect and each cyclic left R-module W is of a projective δ_{ss} -cover $f : E \longrightarrow W$ such that $f(T) = X \oplus Y$ where $X \leq_{\oplus} W$ and Y is projective semisimple for each δ_{ss} -supplement $T \leq E$.

Proof. (\Longrightarrow) : By hypothesis the module $_RR$ is δ_{ss} -lifting as a cyclic module. So, the ring R is a δ_{ss} -perfect by Corollary 2.5. Also, every (cyclic) R-module W is of a projective δ_{ss} -cover by [14, Corollary 5.7]. Thus, each factor module of W is of a projective δ_{ss} -cover that means W is a δ_{ss} -perfect module. Hence, the proof can be completed according to Theorem 2.23.

(\Leftarrow) : Let the ring *R* be δ_{ss} -perfect and *W* be a cyclic left *R*-module. Thus, *W* is a δ_{ss} -perfect module. So *W* is δ_{ss} -lifting by Theorem 2.23. \Box

References

- [1] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, 13. New York: Springer-Verlag, 1974.
- [2] E. Büyükaşık, C. Lomp, When δ-semiperfect rings are semiperfect, Turkish Journal of Mathematics, 34(3) (2010), 317-324. doi: 10.3906/mat-0810-15.
- [3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting Modules, Supplements and Projectivity in Module Theory*, Frontiers in Math, Boston, Birkhauser, 2006.
- [4] F. Kasch, Modules and rings, Academic Press Inc., 1982.
- [5] E. Kaynar, H. Çalışıcı, E. Türkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69(1) (2020), 473-485. doi: 10.31801/cfsuasmas.585727
- [6] F. Kasch, E. A. Mares, Eine kennzeichnung semi-perfekter moduln, Nagoya Math. J., 27 (1966), 525-529.
- [7] M. T. Koşan, δ-lifting and δ-supplemented modules, Algebra Colloq. 14(1) (2007), 53-60. doi: 10.1142/S1005386707000065
- [8] E. A. Mares, Semi-perfect modules, Math. Z. 82 (1963), 347-360.
- [9] S. Mohamed, B. J. Müller, Continuous and discrete modules, Cambridge, Cambridge University Press, 1990.
- [10] X. H. Nguyen, M. T. Koşan, Y. Zhou, On δ-semiperfect modules, Communications in Algebra, 46(11) (2018), 4965-4977.
- [11] Sözen E.Ö. On ss-lifting modules in view of singularity, Sinop Üniversitesi Fen Bilimleri Dergisi (Accepted), (2023).
- [12] Sözen E.Ö. On ⊕-ő_{ss}-supplemented modules, Publications de l'Institut Mathematique, 112(126) (2022), 59-69.
- [13] Y. Talebi, A. R. M. Hamzekolaeei Closed weak δ-supplemented modules, JP Journal of Algebra, Number Theory and Applications, 13(2) (2009), 193-208.
- [14] B. N. Türkmen, E. Türkmen, δ_{ss}-supplemented modules and rings, Analele Stiintifice Ale Universitatii Ovidius Constanta, 28(3) (2020), 193-216. doi: 10.2478/auom-2020-0041
- [15] Y. D. Wang, δ-small submodules and δ-supplemented modules, Int. J. Math. Sci. Art.ID 58132 (2007), 8 pages. doi: 10.1155/2007/58132
- [16] R. Wisbauer, *Foundations of module and ring theory*, Gordon and Breach, 1991.
 [17] Y. Zhou, *Generalizations of perfect, semiperfect and semiregular rings*, Algebra Colloq. 7(3) (2000), 305-318. doi: 10.1007/s10011-000-
- 0305-9
- [18] H. Zöschinger, Komplementierte moduln über Dedekinringen, J. Algebra, 29 (1974), 42-56. doi: 10.1016/0021-8693(74)90109-4