Filomat 38:16 (2024), 5717–5726 https://doi.org/10.2298/FIL2416717Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear mixed triple derivable mapping on prime *-algebras

Yuan Yang^a, Jianhua Zhang^{a,*}

^a School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, P.R. China

Abstract. Let \mathcal{A} be a unite prime *-algebra containing a non-trivial projection. In this paper, we prove that a map $\phi : \mathcal{A} \to \mathcal{A}$ satisfies $\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]$ for all $A, B, C \in \mathcal{A}$ if and only if there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that $\phi(A) = d(A) + i\lambda A$, where $d : \mathcal{A} \to \mathcal{A}$ is an additive *-derivation and $A \diamond B = AB^* + BA^*$. Also, we give the structure of this map on factor von Neumann algebras.

1. Introduction

Let \mathcal{A} be a *-algebra over the complex field \mathbb{C} , and for $A, B \in \mathcal{A}$, denote by $[A, B]_* = AB - BA^*$ and $A \bullet B = AB + BA^*$ the skew Lie product and skew Jordan product of A and B, respectively. In some sense, the skew Lie product and skew Jordan product are used to characterize the algebraic structure. There is a vast of literature related to these products in many topics, (see [1–9]). Recall that an additive map ϕ from \mathcal{A} into itself is called an additive derivation if $\phi(AB) = \phi(A)B + A\phi(B)$ for $A, B \in \mathcal{A}$. Besides, if $\phi(A^*) = \phi(A)^*$ for all $A \in \mathcal{A}$, then ϕ is an additive *-derivation. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption). If $\phi([A, B]_*) = [\phi(A), B]_* + [A, \phi(B)]_*$ for all $A, B \in \mathcal{A}$ for $A, B \in \mathcal{A}$, then ϕ is called a nonlinear skew Lie derivation. If $\phi(A \bullet B) = \phi(A) \bullet B + A \bullet \phi(B)$ for all $A, B \in \mathcal{A}$, then ϕ is called a nonlinear skew Jordan derivation. Yu and Zhang [12] proved that every nonlinear skew Lie derivation on factor von Neumann algebras is an additive *-derivation. A. Taghavi et al. [10] showed that each nonlinear skew Jordan derivation on factor von Neumann algebras is an additive *-derivation. In addition, these results are extended to the cases of nonlinear *-Lie triple derivations and nonlinear *-Jordan triple derivations by Li et al [14] and V. Darvish et al [13], respectively. Recently, many researchers have shown great interest in the study of mixed products associated with skew Lie product or skew Jordan product, such as $[[A, B], C]_*$, $A \bullet B \circ C$, $[A \bullet B, C]_*$ and so on, where $A \circ B = AB + BA$ and [A, B] = AB - BA, (see[18–21]). Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), then ϕ is called a second nonlinear mixed Jordan triple derivable mapping on \mathcal{A} if

$$\phi(A \circ B \bullet C) = \phi(A) \circ B \bullet C + A \circ \phi(B) \bullet C + A \circ B \bullet \phi(C)$$

for all $A, B, C \in \mathcal{A}$. Pang et al [15] proved that the second nonlinear mixed Jordan triple derivable mapping on factor von Neuamnn algebras is an additive *-derivation. In addition, N. Rehman et al. [16] extended

* Corresponding author: Jianhua Zhang

²⁰²⁰ Mathematics Subject Classification. Primary 16W25; Secondary 47B48.

Keywords. *-derivation, prime *-algebra, mixed.

Received: 21 August 2023; Accepted: 16 January 2024

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (Grant No. 11771261).

Email addresses: yangyuanmath@163.com (Yuan Yang), jhzhang@snnu.edu.cn (Jianhua Zhang)

the results of [15] on prime *-algebras. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), then ϕ is called a nonlinear mixed Jordan triple derivable mapping on \mathcal{A} if

$$\phi(A \bullet B \circ C) = \phi(A) \bullet B \circ C + A \bullet \phi(B) \circ C + A \bullet B \circ \phi(C)$$

for all $A, B, C \in \mathcal{A}$. Ning and Zhang [17] proved that each nonlinear mixed Jordan triple derivable mapping on factor von Neuamnn algebras is an additive *-derivation.

The objective of this paper is to investigate the form of a nonlinear mixed triple derivable mapping on prime *-algebras. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption). If ϕ satisfying

$$\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]$$

for all $A, B, C \in \mathcal{A}$, then ϕ is called a nonlinear mixed triple derivable mapping on \mathcal{A} , where $A \diamond B = AB^* + BA^*$ is the bi-skew Jordan product of $A, B \in \mathcal{A}$. Obviously, this new product is different from the skew Lie product and the skew Jordan product, which has received a fair amount of attentions in some research topics, (see [22–28]). Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), ϕ is called a nonlinear bi-skew Jordan derivation if $\phi(A \diamond B) = \phi(A) \diamond B + A \diamond \phi(B)$ for all $A, B \in \mathcal{A}$. V. Darvish et al [22] proved that each nonlinear bi-skew Jordan derivations on prime *-algebra is an additive *-derivation. In [23], they further study nonlinear bi-skew Jordan triple derivations on prime *-algebra, obtained the same result. Define a map $\phi : \mathcal{A} \to \mathcal{A}$ such that $\phi(A) = [A, T] - iA$, where $T^* = -T$. Obviously, ϕ is a nonlinear mixed triple derivable mapping, but it does not an additive *-derivation. Let \mathcal{A} be a prime *-algebra, i.e. A = 0 or B = 0if $A\mathcal{A}B = 0$, and $\mathcal{A}_{sa} = \{A \in \mathcal{A} : A^* = A\}$. Denote by $\mathcal{Z}(\mathcal{A})$ the central of \mathcal{A} and $\mathcal{Z}_S(\mathcal{A}) = \mathcal{Z}(\mathcal{A}) \cap \mathcal{A}_{sa}$. In this paper, we will give the structure of the nonlinear mixed triple derivable mapping on prime *-algebras.

2. Main Result

Theorem 2.1. Let \mathcal{A} be a unite prime *-algebra containing a non-trivial projection, and let $\phi : \mathcal{A} \to \mathcal{A}$ be a nonlinear mixed triple derivable mapping, that is, ϕ satisfies

$$\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]$$

for any $A, B, C \in \mathcal{A}$ if and only if there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that $\phi(A) = d(A) + i\lambda A$, where $d : \mathcal{A} \to \mathcal{A}$ is an additive *-derivation.

In all that follows, we assume that \mathcal{A} is a prime *-algebra containing a non-trivial projection with the unit *I*, and ϕ is a nonlinear mixed triple derivable mapping on \mathcal{A} . Write $P_1 \in \mathcal{A}$ to be the non-trivial projection and $P_2 = I - P_1$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$ for i, j = 1, 2. Clearly, we only need to prove the necessity. Now we will prove Theorem 2.1 by several lemmas.

Lemma 2.2. $\phi(0) = 0, \phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{A}).$

Proof. Clearly, $\phi(0) = 0$. For any $A \in \mathcal{A}_{sa}$, $a \in \mathcal{Z}(\mathcal{A})$, we have

$$0 = \phi(0) = \phi([A \diamond I, a]) = [A \diamond I, \phi(a)].$$

Then, $[A, \phi(a)] = 0$ for any $A \in \mathcal{A}_{sa}$. This implies that $\phi(a) \in \mathcal{Z}(\mathcal{A})$, and so $\phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{A})$. \Box

Lemma 2.3. $\phi(\sum_{i,j=1}^{2} A_{ij}) = \sum_{i,j=1}^{2} \phi(A_{ij})$ for all $A_{ij} \in \mathcal{A}_{ij}$ with $1 \le i, j \le 2$.

Proof. Write $T = \phi(\sum_{i,j=1}^{2} A_{ij}) - \sum_{i,j=1}^{2} \phi(A_{ij})$. For $1 \le k \ne l \le 2$, it follow from $[P_k \diamond A_{kk}, P_l] = 0$, $[P_k \diamond A_{ll}, P_l] = 0$ and $[P_k \diamond A_{kl}, P_l] = 0$ that

$$\begin{split} \phi([P_k \diamond \sum_{i,j=1}^2 A_{ij}, P_l]) &= \phi([P_k \diamond A_{lk}, P_l]) \\ &= [\phi(P_k) \diamond \sum_{i,j=1}^2 A_{ij}, P_l] + [P_k \diamond \sum_{i,j=1}^2 \phi(A_{ij}), P_l] \\ &+ [P_k \diamond \sum_{i,j=1}^2 A_{ij}, \phi(P_l)] \end{split}$$

and

$$\begin{split} \phi([P_k \diamond \sum_{i,j=1}^2 A_{ij}, P_l]) &= [\phi(P_k) \diamond \sum_{i,j=1}^2 A_{ij}, P_l] + [P_k \diamond \phi(\sum_{i,j=1}^2 A_{ij}), P_l] \\ &+ [P_k \diamond \sum_{i,j=1}^2 A_{ij}, \phi(P_l)]. \end{split}$$

Thus $[P_k \diamond T, P_l] = P_k T^* P_l - P_l T P_k = 0$, which implies that $P_l T P_k = 0$. For any $X_{kl} \in \mathcal{A}_{kl}$ with $1 \le k \ne l \le 2$, by $[X_{kl} \diamond A_{kk}, P_l] = 0$, $[X_{kl} \diamond A_{kl}, P_l] = 0$ and $[X_{kl} \diamond A_{lk}, P_l] = 0$, we have

$$\begin{split} \phi([X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}]) &= \phi([X_{kl} \diamond A_{ll}, P_{l}]) \\ &= [\phi(X_{kl}) \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}] + [X_{kl} \diamond \sum_{i,j=1}^{2} \phi(A_{ij}), P_{l}] \\ &+ [X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, \phi(P_{l})]. \end{split}$$

On the other hand,

$$\begin{split} \phi([X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}]) &= [\phi(X_{kl}) \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}] + [X_{kl} \diamond \phi(\sum_{i,j=1}^{2} A_{ij}), P_{l}] \\ &+ [X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, \phi(P_{l})]. \end{split}$$

Then $[X_{kl} \diamond T, P_l] = 0$. Thus $X_{kl}T^*P_l - P_lTX^*_{kl} = 0$. This implies that $P_lTP_l = 0$, and so T = 0.

Lemma 2.4. For all $A_{ij}, B_{ij} \in \mathcal{A}_{ij}$ with $(i \neq j)$, we have (1) $\phi(A_{12} + B_{12}) = \phi(A_{12}) + \phi(B_{12})$; (2) $\phi(A_{21} + B_{21}) = \phi(A_{21}) + \phi(B_{21})$.

Proof. (1) Write $T = \phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12}))$. For any $X_{kl} \in \mathcal{A}_{kl}$ with $1 \le k \ne l \le 2$, it follows from $[X_{kl} \diamond A_{12}, P_l] = 0$ that

$$\begin{split} \phi([X_{kl} \diamond (A_{12} + B_{12}), P_l]) &= \phi([X_{kl} \diamond A_{12}, P_l]) + \phi([X_{kl} \diamond B_{12}, P_l]) \\ &= [\phi(X_{kl}) \diamond (A_{12} + B_{12}), P_l] + [X_{kl} \diamond (\phi(A_{12}) + \phi(B_{12})), P_l] \\ &+ [X_{kl} \diamond (A_{12} + B_{12}), \phi(P_l)] \end{split}$$

and

$$\begin{split} \phi([X_{kl} \diamond (A_{12} + B_{12}), P_l]) &= [\phi(X_{kl}) \diamond (A_{12} + B_{12}), P_l] + [X_{kl} \diamond \phi(A_{12} + B_{12}), P_l] \\ &+ [X_{kl} \diamond (A_{12} + B_{12}), \phi(P_l)]. \end{split}$$

Then $[X_{kl} \diamond T, P_l] = 0$. This implies that $P_lTP_l = 0$. For any $A_{12} \in \mathcal{A}_{12}$, by $[P_1 \diamond A_{12}, P_2] = 0$, we have

$$\phi([P_1 \diamond (A_{12} + B_{12}), P_2]) = \phi([P_1 \diamond A_{12}, P_2]) + \phi([P_1 \diamond B_{12}, P_2])$$

= $[\phi(P_1) \diamond (A_{12} + B_{12}), P_2] + [P_1 \diamond (\phi(A_{12}) + \phi(B_{12})), P_2]$
+ $[P_1 \diamond (A_{12} + B_{12}), \phi(P_2)].$

On the other hand,

$$\phi([P_1 \diamond (A_{12} + B_{12}), P_2]) = [\phi(P_1) \diamond (A_{12} + B_{12}), P_2] + [P_1 \diamond \phi(A_{12} + B_{12}), P_2] + [P_1 \diamond (A_{12} + B_{12}), \phi(P_2)].$$

Then $[P_1 \diamond T, P_2] = 0$. Hence $P_2 T P_1 = 0$.

It follows from the above expression that $\phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12})) \in \mathcal{A}_{12}$. Let $T_{12} = \phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12}))$. Then, there exists $S_{21} \in \mathcal{A}_{21}$ such that $S_{21} = \phi(-A_{12}^* - B_{12}^*) - (\phi(-A_{12}^*) + \phi(-B_{12}^*))$. By $[(P_2 + A_{12}^*) \diamond (P_1 + B_{12}), P_2] = A_{12} + B_{12} - A_{12}^* - B_{12}^*$ and Lemma 2.3, we can obtain that

$$\begin{split} \phi(A_{12} + B_{12} - A_{12}^* - B_{12}^*) &= \phi([(P_2 + A_{12}^*) \diamond (P_1 + B_{12}), P_2]) \\ &= [\phi(P_2 + A_{12}^*) \diamond (P_1 + B_{12}), P_2] + [(P_2 + A_{12}^*) \diamond \phi(P_1 + B_{12}), P_2] \\ &+ [(P_2 + A_{12}^*) \diamond (P_1 + B_{12}), \phi(P_2)] \\ &= [(\phi(P_2) + \phi(A_{12}^*)) \diamond (P_1 + B_{12}), P_2] \\ &+ [(P_2 + A_{12}^*) \diamond (\phi(P_1) + \phi(B_{12})), P_2] + [(P_2 + A_{12}^*) \diamond (P_1 + B_{12}), \phi(P_2)] \\ &= \phi([A_{12}^* \diamond P_1, P_2]) + \phi([P_2 \diamond B_{12}, P_2]) = \phi(A_{12} - A_{12}^*) + \phi(B_{12} - B_{12}^*) \\ &= \phi(A_{12}) + \phi(B_{12}) + \phi(-A_{12}^*) + \phi(-B_{12}^*). \end{split}$$

Thus $T_{12} + S_{21} = 0$. It follows that $T_{12} = 0$, and so T = 0. Similarly, we can show that (2) holds.

Lemma 2.5. For all A_{ii} , $B_{ii} \in \mathcal{A}_{ii}$ with (i = 1, 2), we have (1) $\phi(A_{11} + B_{11}) = \phi(A_{11}) + \phi(B_{11})$; (2) $\phi(A_{22} + B_{22}) = \phi(A_{22}) + \phi(B_{22})$.

Proof. (1) Write $T = \phi(A_{11} + B_{11}) - (\phi(A_{11}) + \phi(B_{11}))$. For any $X_{12} \in \mathcal{A}_{12}$, it follows from $[X_{12} \diamond A_{11}, P_2] = 0$ that

$$\phi([X_{12} \diamond (A_{11} + B_{11}), P_2]) = \phi([X_{12} \diamond A_{11}, P_2]) + \phi([X_{12} \diamond B_{11}, P_2])$$

= $[\phi(X_{12}) \diamond (A_{11} + B_{11}), P_2] + [X_{12} \diamond (\phi(A_{11}) + \phi(B_{11})), P_2]$
+ $[X_{12} \diamond (A_{11} + B_{11}), \phi(P_2)]$

and

$$\begin{split} \phi([X_{12} \diamond (A_{11} + B_{11}), P_2]) &= [\phi(X_{12}) \diamond (A_{11} + B_{11}), P_2] + [X_{12} \diamond \phi(A_{11} + B_{11}), P_2] \\ &+ [X_{12} \diamond (A_{11} + B_{11}), \phi(P_2)]. \end{split}$$

Then $[X_{12} \diamond T, P_2] = 0$. Hence $P_2TP_2 = 0$. For $1 \le k \ne l \le 2$, it follows from $[P_k \diamond A_{11}, P_l] = 0$ that

$$\phi([P_k \diamond (A_{11} + B_{11}), P_l]) = \phi([P_k \diamond A_{11}, P_l]) + \phi([P_k \diamond B_{11}, P_l])$$

= $[\phi(P_k) \diamond (A_{11} + B_{11}), P_l] + [P_k \diamond (\phi(A_{11}) + \phi(B_{11})), P_l]$
+ $[P_k \diamond (A_{11} + B_{11}), \phi(P_l)].$

On the other hand,

$$\phi([P_k \diamond (A_{11} + B_{11}), P_l]) = [\phi(P_k) \diamond (A_{11} + B_{11}), P_l] + [P_k \diamond \phi(A_{11} + B_{11}), P_l] + [P_k \diamond (A_{11} + B_{11}), \phi(P_l)].$$

Then $[P_k \diamond T, P_l] = 0$. Hence $P_l T P_k = 0$. For any $X_{21} \in \mathcal{A}_{21}$, it follows from Lemma 2.3 and Lemma 2.4 that

$$\begin{split} \phi([X_{21} \diamond (A_{11} + B_{11}), P_1]) &= \phi(X_{21}A_{11}^* - A_{11}X_{21}^* + X_{21}B_{11}^* - B_{11}X_{21}^*) \\ &= \phi(X_{21}A_{11}^* + X_{21}B_{11}^*) + \phi(-A_{11}X_{21}^* - B_{11}X_{21}^*) \\ &= \phi(X_{21}A_{11}^*) + \Phi(X_{21}B_{11}^*) + \phi(-A_{11}X_{21}^*) + \Phi(-B_{11}X_{21}^*) \\ &= \phi(X_{21}A_{11}^* - A_{11}X_{21}^*) + \phi(X_{21}B_{11}^* - B_{11}X_{21}^*) \\ &= [\phi(X_{21}) \diamond (A_{11} + B_{11}), P_1] + [X_{21} \diamond (\phi(A_{11}) + \phi(B_{11})), P_1] \\ &+ [X_{21} \diamond (A_{11} + B_{11}), \phi(P_1)]. \end{split}$$

On the other hand,

$$\phi([X_{21} \diamond (A_{11} + B_{11}), P_1]) = [\phi(X_{21}) \diamond (A_{11} + B_{11}), P_1] + [X_{21} \diamond \phi(A_{11} + B_{11}), P_1] + [X_{21} \diamond (A_{11} + B_{11}), \phi(P_1)].$$

Then $[X_{21} \diamond T, P_1] = X_{21}T^*P_1 - P_1TX_{21}^* = 0$, which implies that $P_1TX_{21}^* = 0$. Hence $P_1TP_1 = 0$, and so T = 0. Similarly, we can show that (2) holds. \Box

Lemma 2.6. ϕ *is additive on* \mathcal{A} *.*

Proof. Let $A = \sum_{i,j=1}^{2} A_{ij}$, $B = \sum_{i,j=1}^{2} B_{ij}$, where A_{ij} , $B_{ij} \in \mathcal{A}_{ij}$. It follows from Lemma 2.3-2.5 that

$$\phi(A+B) = \phi(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}) = \phi(\sum_{i,j=1}^{2} (A_{ij} + B_{ij}))$$
$$= \sum_{i,j=1}^{2} \phi(A_{ij} + B_{ij}) = \phi(\sum_{i,j=1}^{2} A_{ij}) + \phi(\sum_{i,j=1}^{2} B_{ij}) = \phi(A) + \phi(B).$$

Hence ϕ is additive. \Box

Lemma 2.7. $P_1\phi(P_i)P_2 = P_1\phi(P_i)^*P_2$, $P_2\phi(P_i)P_1 = P_2\phi(P_i)^*P_1$, $i \in \{1, 2\}$.

Proof. It follows from Lemma 2.2 and Lemma 2.6 that

$$0 = \phi([P_1 \diamond P_2, P_1]) = [\phi(P_1) \diamond P_2, P_1] + [P_1 \diamond \phi(P_2), P_1]$$

= $[\phi(P_1)P_2 + P_2\phi(P_1)^*, P_1] + [P_1\phi(P_2)^* + \phi(P_2)P_1, P_1]$
= $P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 + P_1\phi(P_2)^*P_1 + \phi(P_2)P_1 - P_1\phi(P_2)^* - P_1\phi(P_2)P_1$
= $P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 - P_1\phi(P_2)^*P_2 + P_2\phi(P_2)P_1$.
= $P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 + P_1\phi(P_1)^*P_2 - P_2\phi(P_1)P_1$.

Hence $P_1\phi(P_1)P_2 = P_1\phi(P_1)^*P_2$ and $P_2\phi(P_1)P_1 = P_2\phi(P_1)^*P_1$. Similarly, we can obtain that

$$P_1\phi(P_2)P_2 = P_1\phi(P_2)^*P_2$$
 and $P_2\phi(P_2)P_1 = P_2\phi(P_2)^*P_1$.

Remark 2.1. Let $T = P_1\phi(P_1)P_2 - P_2\phi(P_1)P_1$. It follows from Lemma 2.7 that $T^* = -T$. Defining a map $\delta : \mathcal{A} \to \mathcal{A}$ by $\delta(A) = \phi(A) - [A, T]$ for all $A \in \mathcal{A}$. By Lemma 2.6 and Lemma 2.7, it is easy to check that δ is an additive map, and satisfies

$$\delta([A \diamond B, C]) = [\delta(A) \diamond B, C] + [A \diamond \delta(B), C] + [A \diamond B, \delta(C)]$$

for any $A, B, C \in \mathcal{M}$. Besides,

$$\delta(P_i) = P_1 \delta(P_i) P_1 + P_2 \delta(P_i) P_2 \tag{2.1}$$

with $i \in \{1, 2\}$.

Lemma 2.8. $\delta(iA) - i\delta(A) + (\delta(iI) - i\delta(I))A \in \mathbb{Z}(\mathcal{A})$ for any $A \in \mathcal{A}_{sa}$.

Proof. It follows from Lemma 2.2 that

$$0 = \delta([iA \diamond I, C]) = [\delta(iA) \diamond I, C] + [iA \diamond \delta(I), C]$$

and

$$0 = \delta([A \diamond iI, C]) = [\delta(A) \diamond iI, C] + [A \diamond \delta(iI), C]$$

for any $A \in \mathcal{A}_{sa}$, $C \in \mathcal{A}$. Then

$$\delta(iA) + \delta(iA)^* - i(\delta(I) - \delta(I)^*)A \in \mathcal{Z}(\mathcal{A})$$
(2.2)

and

$$i\delta(A)^* - i\delta(A) + (\delta(iI) + \delta(iI)^*)A \in \mathcal{Z}(\mathcal{A})$$
(2.3)

for any $A \in \mathcal{A}_{sa}$. For any $A \in \mathcal{A}_{sa}$, it follows from Lemma 2.6 and $iA \diamond iI = A \diamond I$ that

$$0 = \delta([iA \diamond iI - A \diamond I, C]) = [\delta(iA) \diamond iI - \delta(A) \diamond I, C] + [iA \diamond \delta(iI) - A \diamond \delta(I), C]$$

By the above equation, we can see that

$$\delta(iA) - \delta(iA)^* - i(\delta(A) + \delta(A)^*) - (\delta(iI)^* - \delta(iI))A - i(\delta(I)^* + \delta(I))A \in \mathbb{Z}(\mathcal{A}).$$
(2.4)

Further more, by Eq.(2.2), Eq.(2.3) and Eq.(2.4), we can obtain that

$$\delta(iA) - i\delta(A) + (\delta(iI) - i\delta(I))A \in \mathcal{Z}(\mathcal{A})$$

for any $A \in \mathcal{A}_{sa}$. \square

Lemma 2.9. (1) For any $C_{ij} \in \mathcal{A}_{ij}$, $\delta(C_{ij}) \in \mathcal{A}_{ij}$ with $1 \le i \ne j \le 2$; (2) $\delta(iP_1) = P_1\delta(iP_1)P_1$ and $\delta(iP_2) = P_2\delta(iP_2)P_2$; (3) $\delta(I)^* = -\delta(I)$, $\delta(iA) - i\delta(A) \in \mathbb{Z}(\mathcal{A})$ for any $A \in \mathcal{A}$.

Proof. (1) For any $C_{12} \in \mathcal{A}_{12}$,

$$2\delta(C_{12}) = \delta([I \diamond P_1, C_{12}]) = [\delta(I) \diamond P_1, C_{12}] + [I \diamond \delta(P_1), C_{12}] + [I \diamond P_1, \delta(C_{12})] = (\delta(I) + \delta(I)^*)C_{12} + (\delta(P_1) + \delta(P_1)^*)C_{12} - C_{12}(\delta(P_1)^* + \delta(P_1)) + 2P_1\delta(C_{12}) - 2\delta(C_{12})P_1.$$
(2.5)

Multiplying Eq.(2.5) on both side by P_1 and P_2 , respectively. It follows from Eq.(2.1) that

$$P_1\delta(C_{12})P_1 = 0$$
 and $P_2\delta(C_{12})P_2 = 0$

Multiplying Eq.(2.5) on the left-hand side by P_2 and on the right-hand side by P_1 , then

$$P_2\delta(C_{12})P_1 = 0.$$

Hence $\delta(C_{12}) = P_1 \delta(C_{12}) P_2$. Similarly, for any $C_{21} \in \mathcal{A}_{21}$, we can obtain that $\delta(C_{21}) = P_2 \delta(C_{21}) P_1$. (2) Take $A = B = P_2$, $C = iP_1$, it follows from Eq.(2.1) that

$$0 = \delta([P_2 \diamond P_2, iP_1]) = [\delta(P_2) \diamond P_2, iP_1] + [P_2 \diamond \delta(P_2), iP_1] + [P_2 \diamond P_2, \delta(iP_1)] = 2(P_2\delta(iP_1) - \delta(iP_1)P_2).$$

Then $P_2\delta(iP_1)P_1 = 0$ and $P_1\delta(iP_1)P_2 = 0$. For any $X_{12} \in \mathcal{A}_{12}$, $C \in \mathcal{A}$, it follows from $[iP_1 \diamond X_{12}, C] = 0$ that

$$\begin{split} 0 &= \delta([\mathrm{i} P_1 \diamond X_{12}, C]) = [\delta(\mathrm{i} P_1) \diamond X_{12}, C] \\ &= [\delta(\mathrm{i} P_1) X_{12}^* + X_{12} \delta(\mathrm{i} P_1)^*, C]. \end{split}$$

Then

$$\delta(\mathbf{i}P_1)X_{12}^* + X_{12}\delta(\mathbf{i}P_1)^* \in \mathcal{Z}(\mathcal{A})$$
(2.6)

for any $X_{12} \in \mathcal{A}_{12}$. Multiplying Eq.(2.6) on the left-hand side by P_2 and on the right-hand side by P_1 , we can obtain that

$$P_2\delta(iP_1)X_{12}^*=0.$$

Sine \mathcal{A} is prime, we have $P_2\delta(iP_1)P_2 = 0$. Hence $\delta(iP_1) = P_1\delta(iP_1)P_1$. In the same way, we can obtain that $\delta(iP_2) = P_2\delta(iP_2)P_2$.

(3) It follows from Lemma 2.8 that

$$\delta(iC_{12} + iC_{12}^*) - i\delta(C_{12} + C_{12}^*) + (\delta(iI) - i\delta(I))(C_{12} + C_{12}^*) \in \mathcal{Z}(\mathcal{A})$$

for any $C_{12} \in \mathcal{A}_{12}$. From the assert (1), we have

$$\delta(iC_{12}) - i\delta(C_{12}) + (\delta(iI) - i\delta(I))C_{12} = 0.$$
(2.7)

Replacing C_{12} by iC_{12} in Eq.(2.7), then

$$i\delta(C_{12}) - \delta(iC_{12}) + (\delta(iI) - i\delta(I))C_{12} = 0.$$
(2.8)

It follows from Eq.(2.7) and Eq.(2.8) that $\delta(iI) = i\delta(I)$. For any $C_{12} \in \mathcal{A}_{12}$, it follows from the assert (2) that

$$\begin{split} \delta(\mathrm{i}C_{12}^*) &- \delta(\mathrm{i}C_{12}) = \delta([C_{12} \diamond I, \mathrm{i}P_1]) = [\delta(C_{12}) \diamond I, \mathrm{i}P_1] + [C_{12} \diamond \delta(I), \mathrm{i}P_1] \\ &+ [C_{12} \diamond I, \delta(\mathrm{i}P_1)] \\ &= \mathrm{i}\delta(C_{12})^* - \mathrm{i}\delta(C_{12}) + \mathrm{i}\delta(I)C_{12}^* - \mathrm{i}\delta(I)^*C_{12} \\ &+ \delta(\mathrm{i}I)C_{12}^* - \delta(\mathrm{i}I)C_{12}. \end{split}$$

Thus

$$\delta(iC_{12}) - i\delta(C_{12}) - (\delta(iI) + i\delta(I)^*)C_{12} = 0.$$
(2.9)

It follows from Eq.(2.7) and Eq.(2.9) that $\delta(iI) = \frac{1}{2}(i\delta(I) - i\delta(I)^*)$. Thus $\delta(iI)^* = \delta(iI)$, and so $\delta(I)^* = -\delta(I)$. By Lemma 2.8, we have $\delta(iA) - i\delta(A) \in \mathcal{Z}(\mathcal{A})$ for any $A \in \mathcal{A}_{sa}$. For any $A \in \mathcal{A}$, write $A = A_1 + iA_2$, where $A_1, A_2 \in \mathcal{A}_{sa}$, then

$$\delta(\mathbf{i}A) - \mathbf{i}\delta(A) = \delta(\mathbf{i}(A_1 + \mathbf{i}A_2)) - \mathbf{i}\delta(A_1 + \mathbf{i}A_2)$$

= $\delta(\mathbf{i}A_1) - \delta(A_2) - \mathbf{i}\delta(A_1) - \mathbf{i}\delta(\mathbf{i}A_2)$
= $\delta(\mathbf{i}A_1) - \mathbf{i}\delta(A_1) + \mathbf{i}(\mathbf{i}\delta(A_2) - \delta(\mathbf{i}A_2)) \in \mathcal{Z}(\mathcal{A}).$

1			
L	_	_	

Remark 2.2. Let $\Phi(A) = \delta(A) - \delta(I)A$. Obviously, $\Phi : \mathcal{A} \to \mathcal{A}$ is an additive map and $\Phi(I) = 0$.

The proof of Theorem **2.1.** For any $B, C \in \mathcal{A}$, on the one hand,

$$\delta([B^* + B, C]) = \delta([I \diamond B, C]) = [\delta(I) \diamond B, C] + [I \diamond \delta(B), C] + [I \diamond B, \delta(C)]$$

= $[\delta(I)B^* + \delta(I)^*B, C] + [\delta(B)^* + \delta(B), C]$
+ $[B^* + B, \delta(C)].$ (2.10)

On the other hand, it follows from Lemma 2.9 that

$$\delta([-B^* + B, C]) = \delta([iI \diamond B, iC]) = [\delta(iI) \diamond B, iC] + [iI \diamond \delta(B), iC]$$

+ [iI \delta B, \delta(iC)]
= [-\delta(I)B^* + \delta(I)^*B, C] + [-\delta(B)^* + \delta(B), C]
+ [-B^* + B, \delta(C)]. (2.11)

Compare Eq.(2.10) and Eq.(2.11), we have

 $\delta([B,C]) = [\delta(I)^*B + \delta(B), C] + [B,\delta(C)]$ (2.12)

for any $B, C \in \mathcal{A}$. For any $A, B, C \in \mathcal{A}$, it follows from Eq.(2.12) that

$$\delta([A \diamond B, C]) = [\delta(I)^*A \diamond B + \delta(A \diamond B), C] + [A \diamond B, \delta(C)]$$

On the other hand,

$$\delta([A \diamond B, C]) = [\delta(A) \diamond B, C] + [A \diamond \delta(B), C] + [A \diamond B, \delta(C)]$$

Thus

$$\delta(I)^*A \diamond B + \delta(A \diamond B) - \delta(A) \diamond B - A \diamond \delta(B) \in \mathcal{Z}(\mathcal{A}).$$
(2.13)

Take B = I in Eq.(2.13), we have

$$\delta(A^*) - \delta(A)^* + (\delta(I)^* - \delta(I))A^* \in \mathcal{Z}(\mathcal{A}).$$
(2.14)

It follows from Eq.(2.12) and Eq.(2.14) that

$$\Phi([A,B]) = [\Phi(A),B] + [A,\Phi(B)]$$

and

$$\Phi(A^*) - \Phi(A)^* \in \mathcal{Z}(\mathcal{A}) \tag{2.15}$$

for any $A, B \in \mathcal{A}$. By [11, Main Theorem], there exists an additive derivation $\theta : \mathcal{A} \to \mathcal{A}$ such that $\Phi(A) = \theta(A) + \xi(A)$, where $\xi : \mathcal{A} \to \mathcal{Z}(\mathcal{A})$ is an additive map vanishing at commutators.

It follows from Lemma 2.9 and Eq.(2.15) that

$$\theta(A_{ij}^*) = \theta(A_{ij})^* \tag{2.16}$$

for any $A_{ij} \in \mathcal{A}_{ij}$ with $1 \le i \ne j \le 2$. For any $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}$, it follows from Eq. (2.16) that

$$\theta(A_{12}^*)A_{11}^* + A_{12}^*\theta(A_{11}^*) = \theta(A_{12}^*A_{11}^*) = \theta(A_{11}A_{12})^* = \theta(A_{12}^*)A_{11}^* + A_{12}^*\theta(A_{11})^*$$

and

$$\theta(A_{21}^*)A_{11}^* + A_{21}^*\theta(A_{11}^*) = \theta(A_{21}^*A_{11}^*) = \theta(A_{11}A_{21})^* = \theta(A_{21}^*)A_{11}^* + A_{21}^*\theta(A_{11})^*.$$

Thus

$$A_{12}^*(\theta(A_{11}^*) - \theta(A_{11})^*) = 0 \text{ and } A_{21}^*(\theta(A_{11}^*) - \theta(A_{11})^*) = 0.$$
(2.17)

Write $T = \theta(A_{11}^*) - \theta(A_{11})^*$. By Eq.(2.17), we have

$$A_{12}^*T = 0$$
 and $A_{21}^*T = 0$.

Since \mathcal{A} is prime, we can obtain that $P_1T = 0$ and $P_2T = 0$. Hence $\theta(A_{11}^*) = \theta(A_{11})^*$. In the same way, $\theta(A_{22}^*) = \theta(A_{22})^*$. It follows that $\theta(A^*) = \theta(A)^*$. Since $\delta(A) = \delta(I)A + \theta(A) + \xi(A)$ for all $A \in \mathcal{A}$. For any $A, B, C \in \mathcal{A}$, on the one hand,

$$\delta([A \diamond B, C]) = \delta(I)[A \diamond B, C] + \theta([A \diamond B, C]).$$

On the other hand,

$$\delta([A \diamond B, C]) = [(\delta(I)A + \theta(A) + \xi(A)) \diamond B, C] + [A \diamond (\delta(I)B + \theta(B) + \xi(B)), C]$$
$$+ [A \diamond B, \delta(I)C + \theta(C) + \xi(C)]$$

Thus

$$[(\delta(I)A + \xi(A)) \diamond B, C] + [A \diamond (\delta(I)B + \xi(B)), C] = 0$$

for any $A, B, C \in \mathcal{A}$. It follows from Lemma 2.9 that

$$[\xi(A) \diamond B, C] + [A \diamond \xi(B), C] = 0. \tag{2.18}$$

For any $X_{12} \in \mathcal{A}_{12}$, take $B = X_{12}$, $C = P_1$ in Eq.(2.18), we have

$$[\xi(A)\diamond X_{12},P_1]=0,$$

which implies that $\xi(A)X_{12}^* - \xi(A)^*X_{12} = 0$. Thus

$$\begin{cases} \xi(A)X_{12}^* = 0, \\ \xi(A)^*X_{12} = 0. \end{cases}$$

Since \mathcal{A} is prime, we have

$$\xi(A)P_1 = 0, \\ \xi(A)P_2 = 0.$$

Thus $\xi(A) = 0$ for any $A \in \mathcal{A}$. Since $\phi(A) = \theta(A) + [A, T] + \delta(I)A$, it follows from Lemma 2.9 that there exists an element $\lambda \in \mathcal{Z}_s(\mathcal{A})$ such that $\phi(A) = d(A) + i\lambda A$, where $d(A) = \theta(A) + [A, T]$ is an additive *-derivation. \Box

Let \mathcal{M} be a factor von Neumann algebra. It is well known that a factor von Neumann algebra \mathcal{M} is prime and its center is $\mathbb{C}I$. As a consequence of Theorem 2.1, we have the following corollary.

Corollary 2.10. Let \mathcal{M} be a factor von Neumann algebra with dim $\mathcal{M} > 1$, and let $\phi : \mathcal{M} \to \mathcal{M}$ be a nonlinear mixed triple derivable mapping, that is, ϕ satisfies

$$\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]$$

for any $A, B, C \in M$ if and only if there exists a real number λ such that $\phi(A) = d(A) + i\lambda A$, where $d : M \to M$ is an additive *-derivation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgments

This work is supported by National Natural Science Foundation of China [grant number 11771261].

References

- [1] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), 27–31.
- [2] A. Taghavi, F. Kolivand, E. Tavakoli, A note on strong (skew) η-Lie products preserving maps on some algebras, Linear and Multilinear Algebra. 67 (2019) 886–895.
- [3] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996) 229–234.
- [4] P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991) 157-165.
- [5] P. Šemrl, Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994) 515–519.
- [6] T. K. Lee, T. L. Wong, Y. Zhou, The structure of Jordan *-derivations of prime rings, Linear and Multilinear Algebra. 63 (2015) 411-422.
- [7] C. Li, F. Lu, X. Fang, Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438
- (2013) 2339–2345.
 [8] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras, Complex Analysis and Operator Theory. 11 (2017) 109–117.
- [9] J. Cui, C. Li, Maps preserving product XY YX* on factor von Neumann algebras, Linear Algebra Appl. 431 (2009) 833–842.
- [10] A. Taghavi, H. Rohi, V. Darvish, Nonlinear *-Jordan derivations on von Neumann algebras, Linear and Multilinear Algebra. 64 (2016) 426–439.
- [11] W. S. Martindale, Lie derivations of primitive rings, Michigan Math. J. 11 (1964) 183-187.
- [12] W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979–1991.
- [13] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear *-Jordan triple derivations on prime *-algebras, Rocky Mt. J. Math. 50 (2020) 543–549.
- [14] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Mathematica Sinica, English Series. 32 (2016) 821–830.
- [15] Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bulletin of the Iranian Mathematical Society. 47 (2021) 1325–1335.
- [16] N. Rehman, J. Nisar, M. Nazim, A note on nonlinear mixed Jordan triple derivation on *-algebras, Communications in Algebra. 51 (2023) 1334–1343.
- [17] T. Ning, J. Zhang, Nonlinear mixed ξ-Jordan triple derivable maps on factor von Neumann algebras, Acta Mathematica Sinica, Chinese Series. 64 (2020) 319–328.
- [18] Y. Zhou, Z. Yang, J. Zhang, Nonlinear mixed Lie triple derivations on prime *-algebras, Communications in Algebra. 47 (2019) 4791–4796.
- [19] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on factor von Neumann algebras, Filomat. 36 (2022) 2637–2644.
- [20] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving mixed product on factors, Bulletin of the Iranian Mathematical Society. 47 (2021) 1325–1335.
- [21] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product [A B, C], on von Neumann algebras, Filomat. 35 (2021) 2775–2781.
- [22] V. Darvish, M. Nouri, M. Razeghi, Nonlinear bi-skew Jordan derivations on +-algebra, Filomat. 36 (2022) 3231–3239.
- [23] V. Darvish, M. Nouri, M. Razeghi, Nonlinear triple product A*B + B*A for derivations on *κ*-algebras, Math. Notes. 108 (2020) 179–187.
- [24] M. Wang, G. Ji, A characterization of *-isomorphism on factor von Neumann algebras, Acta Mathematica Sinica, Chinese Series. 58 (2015) 71–78.
- [25] A. Taghavi, S. Gholampoor, Maps preserving product A*B + B*A on C*-algebras, Bulletin of the Iranian Mathematical Society. 48 (2022) 757–767.
- [26] M. Ashraf, M. S. Akhter, M. A. Ansari, Nonlinear bi-skew Jordan-type derivations on factor von Neumann algebras, Filomat. 37 (2023) 5591–5599.
- [27] F. Zhao, D. Zhang, C. Li, Nonlinear bi-skew Jordan-type derivations on *-algebras, Filomat. 37 (2023) 4211–4219.
- [28] B. Ferreira, F. Wei, Mixed *-Jordan-type derivations on *-algebras, Journal of Algebra and Its Applications. 22 (2023).