Filomat 38:16 (2024), 5717–5726 https://doi.org/10.2298/FIL2416717Y

Published by Faculty of Sciences and Mathematics, University of Nis, Serbia ˇ Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear mixed triple derivable mapping on prime ∗**-algebras**

Yuan Yang^a , Jianhua Zhanga,[∗]

^aSchool of Mathematics and Statistics, Shaanxi Normal University, Xi'an, P.R. China

Abstract. Let A be a unite prime ∗-algebra containing a non-trivial projection. In this paper, we prove that a map ϕ : $\mathcal{A} \rightarrow \mathcal{A}$ satisfies $\phi([A \circ B, C]) = [\phi(A) \circ B, C] + [A \circ \phi(B), C] + [A \circ B, \phi(C)]$ for all $A, B, C \in \mathcal{A}$ if and only if there exists an element $\lambda \in \mathcal{Z}_S(\mathcal{A})$ such that $\phi(A) = d(A) + i\lambda A$, where $d : \mathcal{A} \to \mathcal{A}$ is an additive ∗-derivation and *A*⋄*B* = *AB*[∗]+*BA*[∗] . Also, we give the structure of this map on factor von Neumann algebras.

1. Introduction

Let *A* be a ∗-algebra over the complex field *C*, and for *A*, *B* ∈ *A*, denote by $[A, B]_∗ = AB - BA^*$ and *A* • *B* = *AB* + *BA*[∗] the skew Lie product and skew Jordan product of *A* and *B*, respectively. In some sense, the skew Lie product and skew Jordan product are used to characterize the algebraic structure. There is a vast of literature related to these products in many topics, (see $[1-9]$). Recall that an additive map ϕ from A into itself is called an additive derivation if $\phi(AB) = \phi(A)B + A\phi(B)$ for $A, B \in \mathcal{A}$. Besides, if $\phi(A^*) = \phi(A)^*$ for all $A \in \mathcal{A}$, then ϕ is an additive *-derivation. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption). If $\phi([A, B]_*) = [\phi(A), B]_* + [A, \phi(B)]_*$ for all $A, B \in \mathcal{A}$ for $A, B \in \mathcal{A}$, then ϕ is called a nonlinear skew Lie derivation. If $\phi(A \bullet B) = \phi(A) \bullet B + A \bullet \phi(B)$ for all $A, B \in \mathcal{A}$, then ϕ is called a nonlinear skew Jordan derivation. Yu and Zhang [12] proved that every nonlinear skew Lie derivation on factor von Neumann algebras is an additive ∗-derivation. A. Taghavi et al. [10] showed that each nonlinear skew Jordan derivation on factor von Neumann algebras is an additive ∗-derivation. In addition, these results are extended to the cases of nonlinear ∗-Lie triple derivations and nonlinear ∗-Jordan triple derivations by Li et al [14] and V. Darvish et al [13], respectively. Recently, many researchers have shown great interest in the study of mixed products associated with skew Lie product or skew Jordan product, such as [[*A*, *B*],*C*][∗] , $A \bullet B \circ C$, $[A \bullet B, C]$ _{*} and so on, where $A \circ B = AB + BA$ and $[A, B] = AB - BA$, (see[18–21]). Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), then ϕ is called a second nonlinear mixed Jordan triple derivable mapping on \mathcal{A} if

$$
\phi(A \circ B \bullet C) = \phi(A) \circ B \bullet C + A \circ \phi(B) \bullet C + A \circ B \bullet \phi(C)
$$

for all $A, B, C \in \mathcal{A}$. Pang et al [15] proved that the second nonlinear mixed Jordan triple derivable mapping on factor von Neuamnn algebras is an additive ∗-derivation. In addition, N. Rehman et al. [16] extended

* Corresponding author: Jianhua Zhang

²⁰²⁰ *Mathematics Subject Classification*. Primary 16W25; Secondary 47B48.

Keywords. ∗-derivation, prime ∗-algebra, mixed.

Received: 21 August 2023; Accepted: 16 January 2024

Communicated by Dijana Mosic´

Research supported by the National Natural Science Foundation of China (Grant No. 11771261).

Email addresses: yangyuanmath@163.com (Yuan Yang), jhzhang@snnu.edu.cn (Jianhua Zhang)

the results of [15] on prime ∗-algebras. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), then ϕ is called a nonlinear mixed Jordan triple derivable mapping on \mathcal{A} if

$$
\phi(A \bullet B \circ C) = \phi(A) \bullet B \circ C + A \bullet \phi(B) \circ C + A \bullet B \circ \phi(C)
$$

for all $A, B, C \in \mathcal{A}$. Ning and Zhang [17] proved that each nonlinear mixed Jordan triple derivable mapping on factor von Neuamnn algebras is an additive ∗-derivation.

The objective of this paper is to investigate the form of a nonlinear mixed triple derivable mapping on prime ∗-algebras. Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption). If ϕ satisfying

$$
\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]
$$

for all $A, B, C \in \mathcal{A}$, then ϕ is called a nonlinear mixed triple derivable mapping on \mathcal{A} , where $A \circ B = AB^* + BA^*$ is the bi-skew Jordan product of $A, B \in \mathcal{A}$. Obviously, this new product is different from the skew Lie product and the skew Jordan product, which has received a fair amount of attentions in some research topics, (see [22–28]). Let $\phi : \mathcal{A} \to \mathcal{A}$ be a map (without the additivity assumption), ϕ is called a nonlinear bi-skew Jordan derivation if $\phi(A \circ B) = \phi(A) \circ B + A \circ \phi(B)$ for all $A, B \in \mathcal{A}$. V. Darvish et al [22] proved that each nonlinear bi-skew Jordan derivations on prime ∗-algebra is an additive ∗-derivation. In [23], they further study nonlinear bi-skew Jordan triple derivations on prime ∗-algebra, obtained the same result. Define a map $\phi : \mathcal{A} \to \mathcal{A}$ such that $\phi(A) = [A, T] - iA$, where $T^* = -T$. Obviously, ϕ is a nonlinear mixed triple derivable mapping, but it does not an additive *-derivation. Let $\mathcal A$ be a prime *-algebra, i.e. $A = 0$ or $B = 0$ if $AAB = 0$, and $\mathcal{A}_{sa} = \{A \in \mathcal{A} : A^* = A\}$. Denote by $\mathcal{Z}(\mathcal{A})$ the central of \mathcal{A} and $\mathcal{Z}_S(\mathcal{A}) = \mathcal{Z}(\mathcal{A}) \cap \mathcal{A}_{sa}$. In this paper, we will give the structure of the nonlinear mixed triple derivable mapping on prime ∗-algebras.

2. Main Result

Theorem 2.1. *Let* A *be a unite prime*∗*-algebra containing a non-trivial projection, and let* ϕ : A → A *be a nonlinear mixed triple derivable mapping, that is, φ satisfies*

$$
\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]
$$

for any A, $B, C \in \mathcal{A}$ *if and only if there exists an element* $\lambda \in \mathcal{Z}_S(\mathcal{A})$ *such that* $\phi(A) = d(A) + i\lambda A$, where $d : \mathcal{A} \to \mathcal{A}$ *is an additive* ∗*-derivation.*

In all that follows, we assume that A is a prime $*$ -algebra containing a non-trivial projection with the unit *I*, and ϕ is a nonlinear mixed triple derivable mapping on A. Write $P_1 \in \mathcal{A}$ to be the non-trivial projection and $P_2 = I - P_1$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$ for $i, j = 1, 2$. Clearly, we only need to prove the necessity. Now we will prove Theorem 2.1 by several lemmas.

Lemma 2.2. $\phi(0) = 0$, $\phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{A})$.

Proof. Clearly, $\phi(0) = 0$. For any $A \in \mathcal{A}_{sa}$, $a \in \mathcal{Z}(\mathcal{A})$, we have

$$
0 = \phi(0) = \phi([A \circ I, a]) = [A \circ I, \phi(a)].
$$

Then, $[A, \phi(a)] = 0$ for any $A \in \mathcal{A}_{sa}$. This implies that $\phi(a) \in \mathcal{Z}(\mathcal{A})$, and so $\phi(\mathcal{Z}(\mathcal{A})) \subseteq \mathcal{Z}(\mathcal{A})$.

Lemma 2.3. ϕ ($\sum_{i,j=1}^{2} A_{ij}$) = $\sum_{i,j=1}^{2} \phi(A_{ij})$ *for all* A_{ij} ∈ \mathcal{A}_{ij} *with* 1 ≤ *i*, *j* ≤ 2*.*

Proof. Write $T = \phi(\sum_{i,j=1}^{2} A_{ij}) - \sum_{i,j=1}^{2} \phi(A_{ij})$. For $1 \le k \ne l \le 2$, it follow from $[P_k \diamond A_{kk}, P_l] = 0$, $[P_k \diamond A_{ll}, P_l] = 0$ and $[P_k \diamond A_{kl}, P_l] = 0$ that

$$
\phi([P_k \diamond \sum_{i,j=1}^2 A_{ij}, P_l]) = \phi([P_k \diamond A_{lk}, P_l])
$$

= $[\phi(P_k) \diamond \sum_{i,j=1}^2 A_{ij}, P_l] + [P_k \diamond \sum_{i,j=1}^2 \phi(A_{ij}), P_l]$
+ $[P_k \diamond \sum_{i,j=1}^2 A_{ij}, \phi(P_l)]$

and

$$
\phi([P_k \diamond \sum_{i,j=1}^2 A_{ij}, P_l]) = [\phi(P_k) \diamond \sum_{i,j=1}^2 A_{ij}, P_l] + [P_k \diamond \phi(\sum_{i,j=1}^2 A_{ij}), P_l]
$$

$$
+ [P_k \diamond \sum_{i,j=1}^2 A_{ij}, \phi(P_l)].
$$

Thus $[P_k \circ T, P_l] = P_k T^* P_l - P_l T P_k = 0$, which implies that $P_l T P_k = 0$. For any $X_{kl} \in \mathcal{A}_{kl}$ with $1 \le k \ne l \le 2$, by $[X_{kl} \circ A_{kk}, P_l] = 0$, $[X_{kl} \circ A_{kl}, P_l] = 0$ and $[X_{kl} \circ A_{lk}, P_l] = 0$, we have

$$
\phi([X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}]) = \phi([X_{kl} \diamond A_{ll}, P_{l}])
$$

$$
= [\phi(X_{kl}) \diamond \sum_{i,j=1}^{2} A_{ij}, P_{l}] + [X_{kl} \diamond \sum_{i,j=1}^{2} \phi(A_{ij}), P_{l}]
$$

$$
+ [X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, \phi(P_{l})].
$$

On the other hand,

$$
\phi([X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, P_l]) = [\phi(X_{kl}) \diamond \sum_{i,j=1}^{2} A_{ij}, P_l] + [X_{kl} \diamond \phi(\sum_{i,j=1}^{2} A_{ij}), P_l]
$$

$$
+ [X_{kl} \diamond \sum_{i,j=1}^{2} A_{ij}, \phi(P_l)].
$$

Then $[X_{kl} \circ T, P_l] = 0$. Thus $X_{kl}T^*P_l - P_lTX^*_{kl} = 0$. This implies that $P_lTP_l = 0$, and so $T = 0$.

Lemma 2.4. *For all* A_{ij} , $B_{ij} \in \mathcal{A}_{ij}$ *with* $(i \neq j)$ *, we have* (1) $\phi(A_{12} + B_{12}) = \phi(A_{12}) + \phi(B_{12});$ (2) $\phi(A_{21} + B_{21}) = \phi(A_{21}) + \phi(B_{21}).$

Proof. (1) Write *T* = $\phi(A_{12} + B_{12}) - (\phi(A_{12}) + \phi(B_{12}))$. For any *X_{kl}* ∈ \mathcal{A}_{k} with 1 ≤ *k* ≠ *l* ≤ 2, it follows from $[X_{kl} \circ A_{12}, P_l] = 0$ that

$$
\begin{aligned} \phi([X_{kl} \diamond (A_{12} + B_{12}), P_l]) &= \phi([X_{kl} \diamond A_{12}, P_l]) + \phi([X_{kl} \diamond B_{12}, P_l]) \\ &= [\phi(X_{kl}) \diamond (A_{12} + B_{12}), P_l] + [X_{kl} \diamond (\phi(A_{12}) + \phi(B_{12})), P_l] \\ &+ [X_{kl} \diamond (A_{12} + B_{12}), \phi(P_l)] \end{aligned}
$$

and

$$
\begin{aligned} \phi([X_{kl}\diamond (A_{12}+B_{12}),P_l])&=[\phi(X_{kl})\diamond (A_{12}+B_{12}),P_l]+[X_{kl}\diamond \phi(A_{12}+B_{12}),P_l]\\ &+[X_{kl}\diamond (A_{12}+B_{12}),\phi(P_l)].\end{aligned}
$$

Then $[X_{kl} \circ T, P_l] = 0$. This implies that $P_l T P_l = 0$. For any $A_{12} \in \mathcal{A}_{12}$, by $[P_1 \circ A_{12}, P_2] = 0$, we have

$$
\begin{aligned} \phi([P_1 \diamond (A_{12} + B_{12}), P_2]) &= \phi([P_1 \diamond A_{12}, P_2]) + \phi([P_1 \diamond B_{12}, P_2]) \\ &= [\phi(P_1) \diamond (A_{12} + B_{12}), P_2] + [P_1 \diamond (\phi(A_{12}) + \phi(B_{12})), P_2] \\ &+ [P_1 \diamond (A_{12} + B_{12}), \phi(P_2)]. \end{aligned}
$$

On the other hand,

$$
\phi([P_1 \diamond (A_{12} + B_{12}), P_2]) = [\phi(P_1) \diamond (A_{12} + B_{12}), P_2] + [P_1 \diamond \phi(A_{12} + B_{12}), P_2] + [P_1 \diamond (A_{12} + B_{12}), \phi(P_2)].
$$

Then $[P_1 \circ T, P_2] = 0$. Hence $P_2TP_1 = 0$.

It follows from the above expression that $φ(A_{12} + B_{12}) – (φ(A_{12}) + φ(B_{12})) ∈ \mathcal{A}_{12}$. Let $T_{12} = φ(A_{12} + B_{12}) –$ $(\phi(A_{12}) + \phi(B_{12}))$. Then, there exists $S_{21} \in \mathcal{A}_{21}$ such that $S_{21} = \phi(-A_{12}^* - B_{12}^*) - (\phi(-A_{12}^*) + \phi(-B_{12}^*))$. By $[(P_2 + A_{12}^*) \circ (P_1 + B_{12}), P_2] = A_{12} + B_{12} - A_{12}^* - B_{12}^*$ and Lemma 2.3, we can obtain that

$$
\phi(A_{12} + B_{12} - A_{12}^* - B_{12}^*) = \phi([\{P_2 + A_{12}^* \} \circ (P_1 + B_{12}), P_2])
$$

\n
$$
= [\phi(P_2 + A_{12}^*) \circ (P_1 + B_{12}), P_2] + [(P_2 + A_{12}^*) \circ \phi(P_1 + B_{12}), P_2]
$$

\n
$$
+ [(P_2 + A_{12}^*) \circ (P_1 + B_{12}), \phi(P_2)]
$$

\n
$$
= [(\phi(P_2) + \phi(A_{12}^*)) \circ (P_1 + B_{12}), P_2]
$$

\n
$$
+ [(P_2 + A_{12}^*) \circ (\phi(P_1) + \phi(B_{12})), P_2] + [(P_2 + A_{12}^*) \circ (P_1 + B_{12}), \phi(P_2)]
$$

\n
$$
= \phi([A_{12}^* \circ P_1, P_2]) + \phi([P_2 \circ B_{12}, P_2]) = \phi(A_{12} - A_{12}^*) + \phi(B_{12} - B_{12}^*)
$$

\n
$$
= \phi(A_{12}) + \phi(B_{12}) + \phi(-A_{12}^*) + \phi(-B_{12}^*).
$$

Thus $T_{12} + S_{21} = 0$. It follows that $T_{12} = 0$, and so $T = 0$. Similarly, we can show that (2) holds. \Box

Lemma 2.5. *For all* A_{ii} , $B_{ii} \in \mathcal{A}_{ii}$ *with* (*i* = 1, 2)*, we have* (1) $\phi(A_{11} + B_{11}) = \phi(A_{11}) + \phi(B_{11});$ (2) $\phi(A_{22} + B_{22}) = \phi(A_{22}) + \phi(B_{22}).$

Proof. (1) Write $T = \phi(A_{11} + B_{11}) - (\phi(A_{11}) + \phi(B_{11}))$. For any $X_{12} \in \mathcal{A}_{12}$, it follows from $[X_{12} \diamond A_{11}, P_2] = 0$ that

$$
\begin{aligned} \phi([X_{12} \diamond (A_{11} + B_{11}), P_2]) &= \phi([X_{12} \diamond A_{11}, P_2]) + \phi([X_{12} \diamond B_{11}, P_2]) \\ &= [\phi(X_{12}) \diamond (A_{11} + B_{11}), P_2] + [X_{12} \diamond (\phi(A_{11}) + \phi(B_{11})), P_2] \\ &+ [X_{12} \diamond (A_{11} + B_{11}), \phi(P_2)] \end{aligned}
$$

and

$$
\phi([X_{12} \diamond (A_{11} + B_{11}), P_2]) = [\phi(X_{12}) \diamond (A_{11} + B_{11}), P_2] + [X_{12} \diamond \phi(A_{11} + B_{11}), P_2] + [X_{12} \diamond (A_{11} + B_{11}), \phi(P_2)].
$$

Then $[X_{12} ∘ T, P_2] = 0$. Hence $P_2TP_2 = 0$. For $1 ≤ k ≠ l ≤ 2$, it follows from $[P_k ∘ A_{11}, P_l] = 0$ that

$$
\begin{aligned} \phi([P_k \diamond (A_{11} + B_{11}), P_l]) &= \phi([P_k \diamond A_{11}, P_l]) + \phi([P_k \diamond B_{11}, P_l]) \\ &= [\phi(P_k) \diamond (A_{11} + B_{11}), P_l] + [P_k \diamond (\phi(A_{11}) + \phi(B_{11})), P_l] \\ &+ [P_k \diamond (A_{11} + B_{11}), \phi(P_l)]. \end{aligned}
$$

On the other hand,

$$
\phi([P_k \diamond (A_{11} + B_{11}), P_l]) = [\phi(P_k) \diamond (A_{11} + B_{11}), P_l] + [P_k \diamond \phi(A_{11} + B_{11}), P_l] + [P_k \diamond (A_{11} + B_{11}), \phi(P_l)].
$$

Then $[P_k \circ T, P_l] = 0$. Hence $P_l T P_k = 0$. For any $X_{21} \in \mathcal{A}_{21}$, it follows from Lemma 2.3 and Lemma 2.4 that

$$
\begin{aligned}\n\phi([X_{21} \diamond (A_{11} + B_{11}), P_1]) &= \phi(X_{21}A_{11}^* - A_{11}X_{21}^* + X_{21}B_{11}^* - B_{11}X_{21}^*) \\
&= \phi(X_{21}A_{11}^* + X_{21}B_{11}^*) + \phi(-A_{11}X_{21}^* - B_{11}X_{21}^*) \\
&= \phi(X_{21}A_{11}^*) + \Phi(X_{21}B_{11}^*) + \phi(-A_{11}X_{21}^*) + \Phi(-B_{11}X_{21}^*) \\
&= \phi(X_{21}A_{11}^* - A_{11}X_{21}^*) + \phi(X_{21}B_{11}^* - B_{11}X_{21}^*) \\
&= [\phi(X_{21}) \diamond (A_{11} + B_{11}), P_1] + [X_{21} \diamond (\phi(A_{11}) + \phi(B_{11})), P_1] \\
&+ [X_{21} \diamond (A_{11} + B_{11}), \phi(P_1)].\n\end{aligned}
$$

On the other hand,

$$
\begin{aligned} \phi([X_{21} \diamond (A_{11} + B_{11}), P_1]) &= [\phi(X_{21}) \diamond (A_{11} + B_{11}), P_1] + [X_{21} \diamond \phi(A_{11} + B_{11}), P_1] \\ &+ [X_{21} \diamond (A_{11} + B_{11}), \phi(P_1)]. \end{aligned}
$$

Then $[X_{21} \circ T, P_1] = X_{21}T^*P_1 - P_1TX_{21}^* = 0$, which implies that $P_1TX_{21}^* = 0$. Hence $P_1TP_1 = 0$, and so $T = 0$. Similarly, we can show that (2) holds.

Lemma 2.6. ϕ *is additive on A.*

Proof. Let $A = \sum_{i,j=1}^{2} A_{ij}$, $B = \sum_{i,j=1}^{2} B_{ij}$, where A_{ij} , $B_{ij} \in \mathcal{A}_{ij}$. It follows from Lemma 2.3-2.5 that

$$
\phi(A + B) = \phi(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}) = \phi(\sum_{i,j=1}^{2} (A_{ij} + B_{ij}))
$$

=
$$
\sum_{i,j=1}^{2} \phi(A_{ij} + B_{ij}) = \phi(\sum_{i,j=1}^{2} A_{ij}) + \phi(\sum_{i,j=1}^{2} B_{ij}) = \phi(A) + \phi(B).
$$

Hence ϕ is additive. \square

Lemma 2.7. $P_1\phi(P_i)P_2 = P_1\phi(P_i)^*P_2$, $P_2\phi(P_i)P_1 = P_2\phi(P_i)^*P_1$, $i \in \{1, 2\}$.

Proof. It follows from Lemma 2.2 and Lemma 2.6 that

$$
0 = \phi([P_1 \diamond P_2, P_1]) = [\phi(P_1) \diamond P_2, P_1] + [P_1 \diamond \phi(P_2), P_1]
$$

\n
$$
= [\phi(P_1)P_2 + P_2\phi(P_1)^*, P_1] + [P_1\phi(P_2)^* + \phi(P_2)P_1, P_1]
$$

\n
$$
= P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 + P_1\phi(P_2)^*P_1 + \phi(P_2)P_1 - P_1\phi(P_2)^* - P_1\phi(P_2)P_1
$$

\n
$$
= P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 - P_1\phi(P_2)^*P_2 + P_2\phi(P_2)P_1.
$$

\n
$$
= P_2\phi(P_1)^*P_1 - P_1\phi(P_1)P_2 + P_1\phi(P_1)^*P_2 - P_2\phi(P_1)P_1.
$$

Hence $P_1\phi(P_1)P_2 = P_1\phi(P_1)^*P_2$ and $P_2\phi(P_1)P_1 = P_2\phi(P_1)^*P_1$. Similarly, we can obtain that

$$
P_1\phi(P_2)P_2 = P_1\phi(P_2)^*P_2
$$
 and $P_2\phi(P_2)P_1 = P_2\phi(P_2)^*P_1$.

 \Box

Remark 2.1. Let $T = P_1\phi(P_1)P_2 - P_2\phi(P_1)P_1$. It follows from Lemma 2.7 that $T^* = -T$. Defining a map $\delta : \mathcal{A} \to \mathcal{A}$ by $\delta(A) = \phi(A) - [A, T]$ for all $A \in \mathcal{A}$. By Lemma 2.6 and Lemma 2.7, it is easy to check that δ is an additive map, and satisfies

$$
\delta([A \diamond B, C]) = [\delta(A) \diamond B, C] + [A \diamond \delta(B), C] + [A \diamond B, \delta(C)]
$$

for any $A, B, C \in \mathcal{M}$. Besides,

$$
\delta(P_i) = P_1 \delta(P_i) P_1 + P_2 \delta(P_i) P_2 \tag{2.1}
$$

with $i \in \{1, 2\}$.

Lemma 2.8. δ (iA) – i δ (A) + (δ (iI) – i δ (I))*A* \in $\mathcal{Z}(\mathcal{A})$ *for any A* \in \mathcal{A}_{sa} *.*

Proof. It follows from Lemma 2.2 that

$$
0 = \delta([\mathrm{i}A \diamond I, C]) = [\delta(\mathrm{i}A) \diamond I, C] + [\mathrm{i}A \diamond \delta(I), C]
$$

and

$$
0 = \delta([A \circ iI, C]) = [\delta(A) \circ iI, C] + [A \circ \delta(iI), C]
$$

for any $A \in \mathcal{A}_{sa}$, $C \in \mathcal{A}$. Then

$$
\delta(\mathrm{i}A) + \delta(\mathrm{i}A)^{*} - \mathrm{i}(\delta(I) - \delta(I)^{*})A \in \mathcal{Z}(\mathcal{A})
$$
\n(2.2)

and

$$
i\delta(A)^* - i\delta(A) + (\delta(iI) + \delta(iI)^*)A \in \mathcal{Z}(\mathcal{A})
$$
\n(2.3)

for any $A \in \mathcal{A}_{sa}$. For any $A \in \mathcal{A}_{sa}$, it follows from Lemma 2.6 and i $A \diamond iI = A \diamond I$ that

$$
0 = \delta([\mathrm{i} A \diamond \mathrm{i} I - A \diamond I, C]) = [\delta(\mathrm{i} A) \diamond \mathrm{i} I - \delta(A) \diamond I, C] + [\mathrm{i} A \diamond \delta(\mathrm{i} I) - A \diamond \delta(I), C].
$$

By the above equation, we can see that

$$
\delta(\mathrm{i}A) - \delta(\mathrm{i}A)^* - \mathrm{i}(\delta(A) + \delta(A)^*) - (\delta(\mathrm{i}I)^* - \delta(\mathrm{i}I))A - \mathrm{i}(\delta(I)^* + \delta(I))A \in \mathcal{Z}(\mathcal{A}).\tag{2.4}
$$

Further more, by Eq.(2.2), Eq.(2.3) and Eq.(2.4), we can obtain that

$$
\delta(\mathrm{i} A) - \mathrm{i}\delta(A) + (\delta(\mathrm{i} I) - \mathrm{i}\delta(I))A \in \mathcal{Z}(\mathcal{A})
$$

for any $A \in \mathcal{A}_{sa}$. \square

Lemma 2.9. (1) For any $C_{ij} \in \mathcal{A}_{ij}$, $\delta(C_{ij}) \in \mathcal{A}_{ij}$ with $1 \le i \ne j \le 2$; (2) $\delta(iP_1) = P_1 \delta(iP_1) P_1$ and $\delta(iP_2) = P_2 \delta(iP_2) P_2$; (3) $\delta(I)^* = -\delta(I)$, $\delta(iA) - i\delta(A) \in \mathcal{Z}(\mathcal{A})$ for any $A \in \mathcal{A}$.

Proof. (1) For any $C_{12} \in \mathcal{A}_{12}$,

$$
2\delta(C_{12}) = \delta([I \diamond P_1, C_{12}]) = [\delta(I) \diamond P_1, C_{12}] + [I \diamond \delta(P_1), C_{12}] + [I \diamond P_1, \delta(C_{12})]
$$

= $(\delta(I) + \delta(I)^*)C_{12} + (\delta(P_1) + \delta(P_1)^*)C_{12} - C_{12}(\delta(P_1)^* + \delta(P_1))$
+ $2P_1\delta(C_{12}) - 2\delta(C_{12})P_1$. (2.5)

Multiplying Eq.(2.5) on both side by P_1 and P_2 , respectively. It follows from Eq.(2.1) that

$$
P_1\delta(C_{12})P_1 = 0
$$
 and $P_2\delta(C_{12})P_2 = 0$.

Multiplying Eq.(2.5) on the left-hand side by P_2 and on the right-hand side by P_1 , then

$$
P_2\delta(C_{12})P_1=0.
$$

Hence $\delta(C_{12}) = P_1 \delta(C_{12}) P_2$. Similarly, for any $C_{21} \in \mathcal{A}_{21}$, we can obtain that $\delta(C_{21}) = P_2 \delta(C_{21}) P_1$. (2) Take $A = B = P_2$, $C = iP_1$, it follows from Eq.(2.1) that

$$
0 = \delta([P_2 \diamond P_2, iP_1]) = [\delta(P_2) \diamond P_2, iP_1] + [P_2 \diamond \delta(P_2), iP_1] + [P_2 \diamond P_2, \delta(iP_1)]
$$

= 2(P_2\delta(iP_1) - \delta(iP_1)P_2).

Then $P_2\delta(iP_1)P_1 = 0$ and $P_1\delta(iP_1)P_2 = 0$. For any $X_{12} \in \mathcal{A}_{12}$, $C \in \mathcal{A}$, it follows from $[iP_1 \diamond X_{12}, C] = 0$ that

$$
0 = \delta([iP_1 \diamond X_{12}, C]) = [\delta(iP_1) \diamond X_{12}, C] = [\delta(iP_1)X_{12}^* + X_{12}\delta(iP_1)^*, C].
$$

Then

$$
\delta(iP_1)X_{12}^* + X_{12}\delta(iP_1)^* \in \mathcal{Z}(\mathcal{A})
$$
\n(2.6)

for any *X*₁₂ ∈ \mathcal{A}_{12} . Multiplying Eq.(2.6) on the left-hand side by *P*₂ and on the right-hand side by *P*₁, we can obtain that

$$
P_2\delta(iP_1)X_{12}^* = 0.
$$

Sine A is prime, we have $P_2\delta(iP_1)P_2 = 0$. Hence $\delta(iP_1) = P_1\delta(iP_1)P_1$. In the same way, we can obtain that $\delta(iP_2) = P_2 \delta(iP_2)P_2.$

(3) It follows from Lemma 2.8 that

$$
\delta(\mathrm{i} C_{12}+\mathrm{i} C_{12}^*)-\mathrm{i}\delta(C_{12}+C_{12}^*)+(\delta(\mathrm{i} I)-\mathrm{i}\delta(I))(C_{12}+C_{12}^*)\in\mathcal{Z}(\mathcal{A})
$$

for any $C_{12} \in \mathcal{A}_{12}$. From the assert (1), we have

$$
\delta(iC_{12}) - i\delta(C_{12}) + (\delta(iI) - i\delta(I))C_{12} = 0.
$$
\n(2.7)

Replacing *C*¹² by i*C*¹² in Eq.(2.7), then

$$
i\delta(C_{12}) - \delta(iC_{12}) + (\delta(iI) - i\delta(I))C_{12} = 0.
$$
\n(2.8)

It follows from Eq.(2.7) and Eq.(2.8) that δ (*iI*) = i δ (*I*). For any $C_{12} \in \mathcal{A}_{12}$, it follows from the assert (2) that

$$
\delta(iC_{12}^*) - \delta(iC_{12}) = \delta([C_{12} \diamond I, iP_1]) = [\delta(C_{12}) \diamond I, iP_1] + [C_{12} \diamond \delta(I), iP_1] + [C_{12} \diamond I, \delta(iP_1)] = i\delta(C_{12})^* - i\delta(C_{12}) + i\delta(I)C_{12}^* - i\delta(I)^*C_{12} + \delta(iI)C_{12}^* - \delta(iI)C_{12}.
$$

Thus

$$
\delta(iC_{12}) - i\delta(C_{12}) - (\delta(iI) + i\delta(I)^*)C_{12} = 0.
$$
\n(2.9)

It follows from Eq.(2.7) and Eq.(2.9) that $\delta(iI) = \frac{1}{2}(i\delta(I) - i\delta(I)^*)$. Thus $\delta(iI)^* = \delta(iI)$, and so $\delta(I)^* = -\delta(I)$. By Lemma 2.8, we have δ (iA) – i δ (A) \in $\mathcal{Z}(\mathcal{A})$ for any $A \in \mathcal{A}_{sa}$. For any $A \in \mathcal{A}$, write $A = A_1 + iA_2$, where $A_1, A_2 \in \mathcal{A}_{sa}$, then

$$
\delta(iA) - i\delta(A) = \delta(i(A_1 + iA_2)) - i\delta(A_1 + iA_2)
$$

=
$$
\delta(iA_1) - \delta(A_2) - i\delta(A_1) - i\delta(iA_2)
$$

=
$$
\delta(iA_1) - i\delta(A_1) + i(i\delta(A_2) - \delta(iA_2)) \in \mathcal{Z}(\mathcal{A}).
$$

Remark 2.2. Let $\Phi(A) = \delta(A) - \delta(I)A$. Obviously, $\Phi : \mathcal{A} \to \mathcal{A}$ is an additive map and $\Phi(I) = 0$.

The proof of Theorem 2.1. For any $B, C \in \mathcal{A}$, on the one hand,

$$
\delta([B^* + B, C]) = \delta([I \circ B, C]) = [\delta(I) \circ B, C] + [I \circ \delta(B), C] + [I \circ B, \delta(C)]
$$

= $[\delta(I)B^* + \delta(I)^*B, C] + [\delta(B)^* + \delta(B), C]$
+ $[B^* + B, \delta(C)].$ (2.10)

On the other hand, it follows from Lemma 2.9 that

$$
\delta([-B^* + B, C]) = \delta([iI \diamond B, iC]) = [\delta(iI) \diamond B, iC] + [iI \diamond \delta(B), iC]
$$

+
$$
[iI \diamond B, \delta(iC)]
$$

=
$$
[-\delta(I)B^* + \delta(I)^*B, C] + [-\delta(B)^* + \delta(B), C]
$$

+
$$
[-B^* + B, \delta(C)].
$$
 (2.11)

Compare Eq.(2.10) and Eq.(2.11), we have

 $\delta([B, C]) = [\delta(I)^*B + \delta(B), C] + [B, \delta(C)]$ (2.12)

for any *B*, $C \in \mathcal{A}$. For any *A*, *B*, $C \in \mathcal{A}$, it follows from Eq.(2.12) that

$$
\delta([A \diamond B, C]) = [\delta(I)^* A \diamond B + \delta(A \diamond B), C] + [A \diamond B, \delta(C)].
$$

On the other hand,

$$
\delta([A \diamond B, C]) = [\delta(A) \diamond B, C] + [A \diamond \delta(B), C] + [A \diamond B, \delta(C)].
$$

Thus

$$
\delta(I)^{*} A \diamond B + \delta(A \diamond B) - \delta(A) \diamond B - A \diamond \delta(B) \in \mathcal{Z}(\mathcal{A}). \tag{2.13}
$$

Take $B = I$ in Eq.(2.13), we have

$$
\delta(A^*) - \delta(A)^* + (\delta(I)^* - \delta(I))A^* \in \mathcal{Z}(\mathcal{A}).
$$
\n(2.14)

It follows from Eq.(2.12) and Eq.(2.14) that

$$
\Phi([A,B])=[\Phi(A),B]+[A,\Phi(B)]
$$

and

$$
\Phi(A^*) - \Phi(A)^* \in \mathcal{Z}(\mathcal{A}) \tag{2.15}
$$

for any $A, B \in \mathcal{A}$. By [11, Main Theorem], there exists an additive derivation $\theta : \mathcal{A} \to \mathcal{A}$ such that $\Phi(A) = \theta(A) + \xi(A)$, where $\xi : \mathcal{A} \to \mathcal{Z}(\mathcal{A})$ is an additive map vanishing at commutators.

It follows from Lemma 2.9 and Eq.(2.15) that

$$
\theta(A_{ij}^*) = \theta(A_{ij})^* \tag{2.16}
$$

for any $A_{ij} \in \mathcal{A}_{ij}$ with $1 \le i \ne j \le 2$. For any $A_{11} \in \mathcal{A}_{11}$, $A_{12} \in \mathcal{A}_{12}$, it follows from Eq. (2.16) that

$$
\theta(A_{12}^*)A_{11}^* + A_{12}^* \theta(A_{11}^*) = \theta(A_{12}^* A_{11}^*) = \theta(A_{11} A_{12})^* = \theta(A_{12}^*)A_{11}^* + A_{12}^* \theta(A_{11})^*
$$

and

$$
\theta(A_{21}^*)A_{11}^* + A_{21}^*\theta(A_{11}^*) = \theta(A_{21}^*A_{11}^*) = \theta(A_{11}A_{21})^* = \theta(A_{21}^*)A_{11}^* + A_{21}^*\theta(A_{11})^*.
$$

Thus

$$
A_{12}^*(\theta(A_{11}^*) - \theta(A_{11})^*) = 0 \text{ and } A_{21}^*(\theta(A_{11}^*) - \theta(A_{11})^*) = 0.
$$
 (2.17)

Write $T = \theta(A_{11}^*) - \theta(A_{11})^*$. By Eq.(2.17), we have

$$
A_{12}^*T = 0
$$
 and $A_{21}^*T = 0$.

Since A is prime, we can obtain that $P_1T = 0$ and $P_2T = 0$. Hence $\theta(A_{11}^*) = \theta(A_{11})^*$. In the same way, $\theta(A_{22}^*) = \theta(A_{22})^*$. It follows that $\theta(A^*) = \theta(A)^*$. Since $\delta(A) = \delta(I)A + \theta(A)^+ + \xi(A)$ for all $A \in \mathcal{A}$. For any *A*, B , $C \in \mathcal{A}$, on the one hand,

$$
\delta([A \circ B, C]) = \delta(I)[A \circ B, C] + \theta([A \circ B, C]).
$$

On the other hand,

$$
\delta([A \diamond B, C]) = [(\delta(I)A + \theta(A) + \xi(A)) \diamond B, C] + [A \diamond (\delta(I)B + \theta(B) + \xi(B)), C] + [A \diamond B, \delta(I)C + \theta(C) + \xi(C)]
$$

Thus

$$
[(\delta(I)A + \xi(A)) \diamond B, C] + [A \diamond (\delta(I)B + \xi(B)), C] = 0
$$

for any $A, B, C \in \mathcal{A}$. It follows from Lemma 2.9 that

$$
[\xi(A) \diamond B, C] + [A \diamond \xi(B), C] = 0.
$$
\n(2.18)

For any *X*₁₂ ∈ \mathcal{A}_{12} , take *B* = *X*₁₂, *C* = *P*₁ in Eq.(2.18), we have

$$
[\xi(A)\diamond X_{12},P_1]=0,
$$

which implies that $ξ(A)X_{12}^* - ξ(A)^*X_{12} = 0$. Thus

$$
\begin{cases} \xi(A)X_{12}^* = 0, \\ \xi(A)^* X_{12} = 0. \end{cases}
$$

Since A is prime, we have

$$
\begin{cases} \xi(A)P_1 = 0, \\ \xi(A)P_2 = 0. \end{cases}
$$

Thus $\xi(A) = 0$ for any $A \in \mathcal{A}$. Since $\phi(A) = \theta(A) + [A, T] + \delta(I)A$, it follows from Lemma 2.9 that there exists an element $\lambda \in \mathcal{Z}_s(\mathcal{A})$ such that $\phi(A) = d(A) + i\lambda A$, where $d(A) = \theta(A) + [A, T]$ is an additive *-derivation.

Let M be a factor von Neumann algebra. It is well known that a factor von Neumann algebra M is prime and its center is C*I*. As a consequence of Theorem 2.1, we have the following corollary.

Corollary 2.10. *Let* M *be a factor von Neumann algebra with* dim $M > 1$, and let $\phi : M \rightarrow M$ *be a nonlinear mixed triple derivable mapping, that is,* $φ$ *satisfies*

$$
\phi([A \diamond B, C]) = [\phi(A) \diamond B, C] + [A \diamond \phi(B), C] + [A \diamond B, \phi(C)]
$$

for any A, B, C \in *M if and only if there exists a real number* λ *such that* $\phi(A) = d(A) + i\lambda A$ *, where d* : $M \rightarrow M$ *is an additive* ∗*-derivation.*

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgments

This work is supported by National Natural Science Foundation of China [grant number 11771261].

References

- [1] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), 27-31.
- [2] A. Taghavi, F. Kolivand, E. Tavakoli, *A note on strong (skew)* η*-Lie products preserving maps on some algebras*, Linear and Multilinear Algebra. **67** (2019) 886–895.
- [3] L. Moln´ar, *A condition for a subspace of B*(*H*) *to be an ideal*, Linear Algebra Appl. **235** (1996) 229–234.
- [4] P. Šemrl, *Quadratic functionals and Jordan ∗-derivations*, Studia Math. 97 (1991) 157–165.
- [5] P. Šemrl, *Jordan ∗-derivations of standard operator algebras*, Proc. Amer. Math. Soc. **120** (1994) 515–519.
- [6] T. K. Lee, T. L. Wong, Y. Zhou, *The structure of Jordan* ∗*-derivations of prime rings*, Linear and Multilinear Algebra. **63** (2015) 411-422.
- [7] C. Li, F. Lu, X. Fang, *Nonlinear mappings preserving product XY* + *YX*[∗] *on factor von Neumann algebras*, Linear Algebra Appl. **438**
- (2013) 2339–2345. [8] C. Li, F. Lu, *Nonlinear maps preserving the Jordan triple 1-*∗*-product on von Neumann algebras*, Complex Analysis and Operator Theory. **11** (2017) 109–117.
- [9] J. Cui, C. Li, *Maps preserving product XY* − *YX*[∗] *on factor von Neumann algebras*, Linear Algebra Appl. **431** (2009) 833–842.
- [10] A. Taghavi, H. Rohi, V. Darvish, *Nonlinear* ∗*-Jordan derivations on von Neumann algebras*, Linear and Multilinear Algebra. **64** (2016) 426–439.
- [11] W. S. Martindale, *Lie derivations of primitive rings*, Michigan Math. J. **11** (1964) 183–187.
- [12] W. Yu, J. Zhang, *Nonlinear* ∗*-Lie derivations on factor von Neumann algebras*, Linear Algebra Appl. **437** (2012) 1979–1991.
- [13] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, *Nonlinear* ∗*-Jordan triple derivations on prime* ∗*-algebras*, Rocky Mt. J. Math. **50** (2020) 543–549.
- [14] C. Li, F. Zhao, Q. Chen, *Nonlinear skew Lie triple derivations between factors*, Acta Mathematica Sinica, English Series. **32** (2016) 821–830.
- [15] Y. Pang, D. Zhang, D. Ma, *The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras*, Bulletin of the Iranian Mathematical Society. **47** (2021) 1325–1335.
- [16] N. Rehman, J. Nisar, M. Nazim, *A note on nonlinear mixed Jordan triple derivation on* ∗*-algebras*, Communications in Algebra. **51** (2023) 1334–1343.
- [17] T. Ning, J. Zhang, *Nonlinear mixed* ξ*-Jordan triple derivable maps on factor von Neumann algebras*, Acta Mathematica Sinica, Chinese Series. **64** (2020) 319–328.
- [18] Y. Zhou, Z. Yang, J. Zhang, *Nonlinear mixed Lie triple derivations on prime* ∗*-algebras*, Communications in Algebra. **47** (2019) 4791–4796.
- [19] C. Li, D. Zhang, *Nonlinear mixed Jordan triple* ∗*-derivations on factor von Neumann algebras*, Filomat. **36** (2022) 2637–2644.
- [20] Y. Zhao, C. Li, Q. Chen, *Nonlinear maps preserving mixed product on factors*, Bulletin of the Iranian Mathematical Society. **47** (2021) 1325–1335.
- [21] C. Li, Y. Zhao, F. Zhao, *Nonlinear maps preserving the mixed product* [*A*•*B*,*C*][∗] *on von Neumann algebras*, Filomat. **35** (2021) 2775–2781.
- [22] V. Darvish, M. Nouri, M. Razeghi, *Nonlinear bi-skew Jordan derivations on* ∗*-algebra*, Filomat. **36** (2022) 3231–3239.
- [23] V. Darvish, M. Nouri, M. Razeghi, *Nonlinear triple product A*∗*B* + *B* [∗]*A for derivations on* ∗*-algebras*, Math. Notes. **108** (2020) 179–187.
- [24] M. Wang, G. Ji, *A characterization of* ∗*-isomorphism on factor von Neumann algebras*, Acta Mathematica Sinica, Chinese Series. **58** (2015) 71-78.
- [25] A. Taghavi, S. Gholampoor, *Maps preserving product A*∗*B* + *B* [∗]*A on C*[∗] *-algebras*, Bulletin of the Iranian Mathematical Society. **48** (2022) 757–767.
- [26] M. Ashraf, M. S. Akhter, M. A. Ansari, *Nonlinear bi-skew Jordan-type derivations on factor von Neumann algebras*, Filomat. **37** (2023) 5591–5599.
- [27] F. Zhao, D. Zhang, C. Li, *Nonlinear bi-skew Jordan-type derivations on* ∗*-algebras*, Filomat. **37** (2023) 4211–4219.
- [28] B. Ferreira, F. Wei, *Mixed* ∗*-Jordan-type derivations on* ∗*-algebras*, Journal of Algebra and Its Applications. **22** (2023).