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Abstract. The aim of this paper is to propose a categorical definition of extremally disconnected and
Stone objects (spaces) in a topological category and examine the relationship between them. Moreover, we
characterize each of Tk, k = 0, 1, 2, compact, extremally disconnected, and Stone (transitive) spatial graphs
and prebornological spaces as well as investigate some properties of them. Finally, we compare our results.

1. Introduction

Recall from [20], p.70 that a topological space Y is a Stone space if and only if Y is Hausdorff, compact, and
totally disconnected (i.e., the only connected subspaces of Y are the empty set and the singletons [20], p.69);
totally disconnected spaces are referred to as hereditarily disconnected in [16], p.360. One of the application
of Stone spaces in topology and functional analysis is Stone’s construction of the compactification of a
completely regular space [32] which contains a universal property that has a connection with the notion of
adjoint functor in category theory. Another application of Stone spaces in topology and functional analysis
is Stone’s generalization of the Weierstrass approximation theorem [32].

Stone [33], also, introduced the notion of extremal disconnectedness in order to find out the topological
equivalent of the condition of completeness for Boolean algebras. The extremally disconnected spaces have
a connection with projective topological spaces which have applications in functional analysis, sheaf theory,
topos theory, and logic [18–20, 31–33].

Compact Hausdorff spaces have many useful properties which one can use in proving theorems and
making constructions. Since such spaces are defined in terms of clossedness, several authors studied them
in a category. Hausdorffness and compactness with respect to a factorization structure were defined in
[21, 25] for a general category, with respect to closure operators was done in [14] for abstract categories, and
with respect to the notion of closedness was defined in [3, 6] for a topological category [30].

If one wishes to extend a particular concept in general topology to topological categories, it is neces-
sary first to describe and formulate it in terms of initial lifts, final lifts, products, pushouts, copruducts,
discreteness, and indiscreteness which are available. Extensions of concepts may have several equivalent
descriptions for topological spaces and when interpreted in other topological categories they may give
rise to distinct concepts, one of these distinct forms may be more useful than another. There are several
generalizations of usual topological T2-axiom to the topological categories [3, 5], with no reference to points
and neighbourhoods since the point (resp. neighbourhood) notion may not be available for non set-based
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topological categories (resp. for topological categories not related to topological spaces) (see Definition
2.1, below). Also, T2-axiom can be generalized to a topological category by using that the diagonal map
embeds as a closed subspace of its product with itself [3, 15]. One way to define the notion of Hausdorff
locale would be to say that the diagonal map embeds the locale as a closed sublocale of its product with
itself [20].

The notion of closedness is a basic concept of general topology that is used to define, for example, the
T2-axiom, compactness, extremal disconnectedness; this notion was extended in [3] (see Definitions 3.2
and 4.1, below).
In view of this, it will be useful to be able to not only extend these notions to an arbitrary topological
category but also to have the characterization of each of them and present important theorems in general
topology such as the Tietze Extension Theorem, the Tychonoff Theorem, the Baire Theorem, the Urysohn
Lemma among others in certain topological categories of interest. Recently, the presentation of the Urysohn
lemma and Tietze extension theorem were studied in [17, 23, 24, 29].

In this paper, we introduce various forms of Stone objects (spaces) in a topological category and inves-
tigate the relationship between them. Also,

(i) we characterize Stone (transitive) spatial graphs and Stone prebornological spaces, and investigate
some of their properties.

(ii) we characterize each of Tk, k = 0, 1, 2, (transitive) spatial graphs as well as examine the relationship
among them.

(iii) we show that, in the presence of PreT2 topological spaces, all T0,T1, T2, and sober spaces are
equivalent.

(iv) we introduce extremally disconnected objects in a topological category and give the characterization
of each of extremally disconnected and compact (transitive) spatial graphs and prebornological spaces.

(v) we compare our results.

2. Premilinaries

Let E be a category and Set be the category of sets.
A functor U : E → Set is said to be topological or E is a topological category over Set if and only if the

following conditions hold:
(1) U is concrete, i.e., faithful (U is mono on hom sets) and amnestic (if U( f ) = id and f is an isomorphism,

then f = id) [28], p.278.
(2) U has small fibers, i.e., U−1(b) is a set for all b in Set [28], p.278.
(3) For every U-source, i.e., family 1i : b → U(Xi) of maps in Set, there exists a family fi : X → Xi in

E such that U( fi) = 1i and if U(hi : Y → Xi) = k1i : UY → b → U(Xi), then there exists a lift k : Y → X of
k : UY → UX, i.e., U(k) = k. This latter condition means that every U-source has an initial lift [1], p.333
or [30], p. 17. It is well known that the existence of initial lifts of arbitrary U-source is equivalent to the
existence of final lifts (the dual of the initial lifts) for arbitrary U-sink [1], p.335.

A topological functor U : E → Set is said to be normalized if there is only one structure on the empty
set and on a point [3], p.334. A non set-based topological functor is said to be normalized if the constant
objects, i.e., subterminals have a unique structure [9], p.592.

Recall from [28], p.279 that a topological functor U : E → Set has a left adjoint D : Set→ E, where D(e)
is obtained as the final lift of the empty sink on e. An object of the form e = DUe is called a discrete object
in E. An object e in E is discrete if and only if every map U(e)→ U(c) lifts to a map e→ c for each object c
in E [28] or [30], p.28.

Also, a topological functor U : E → Set has a right adjoint ID : Set → E, where ID(b) is obtained as
the initial lift of the empty source on b [1], p.336. An object b in E is indiscrete of and only if every map
U(c)→ U(b) lifts to a map c→ b for each object c in E [30], p.28.

Let E be a topological category and X ∈ E. M is called a subspace of X if there exists monomorphism
i : M→ X that is an initial lift (i.e., an embedding) and we denote it by M ⊂ X.
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Let B be a non-empty set and let B2∨
∆ B2 be taking two distinct copies of B2 identified along ∆. The

map S : B2
∨∆ B2

→ B3 is given by S(a, b)1 = (a, b, b) and S(a, b)2 = (a, a, b) and the map A : B2
∨∆ B2

→ B3 is
given by A(a, b)1 = (a, b, a) and A(a, b)2 = (a, a, b).

The fold map ∇ : B2∨
∆ B2
→ B2 is given by ▽((a, b)i) = (a, b) for i = 1, 2 [3], p.337.

Let X ∈ Ob(E) with U(X) = B, where E is a set based topological category.
Let SW (resp. AW) be the initial lift of the U-source S (resp. A) : B2∨

∆ B2
→ U(X3) = B3 and (B2∨

∆ B2)
′

be the final lift of the U-sink {q ◦ i1, q ◦ i2 : U(X2) = B2
→ B2

∨∆ B2
}, where ik : B2

→ B2∐B2, k = 1, 2 are the
canonical injection maps and q : B2∐B2

→ B2∨
∆ B2 is the quotient map.

Definition 2.1. (1) If X does not contain an indiscrete subspace with (at least) two points, then X is said to
be a T0 object [26].

(2) If the initial lift of the U-source ∇ : B2
∨∆ B2

→ U(D(B2)) and A : B2
∨∆ B2

→ U(X3) (resp. S :
B2
∨∆ B2

→ U(X3)) is discrete, then X is said to be a T0 (resp. T1) object [3], p.338.
(3) If the initial lift of the U-source ∇ : B2

∨∆ B2
→ U(D(B2)) and id : B2

∨∆ B2
→ U(B2

∨∆ B2)
′

is discrete,
then X is said to be a T′0 object [3], p.338.

(4) If SW = (B2∨
∆ B2)

′

(resp. SW = AW), then X is said to be a PreT′2 (resp. PreT2) object.
(5) If X is PreT2 (resp. PreT′2) and T0, then X is said to be a T2 (resp. LT2) object [3], p.338.
(6) If X is PreT2 and T′0 (resp. T0), then X is said to be a KT2 (resp. NT2) object [5], p.42.

Remark 2.2. (1) In Top (the category of topological spaces and continuous functions), by Remark 1.6 of
[5], T0, T′0, and T0 (resp. NT2, T2, and KT2) reduce to T0 (resp. T2 ) axiom. A topological space is
PreT′2 = PreT2 = PreT2 if and only if for any two distinct points, if there is a neighborhood of one missing
the other, then the points have disjoint neighborhoods [3], p.338. There is no implication between PreT2
and each of T0 and T1. Take the integers set Z with indiscrete and cofinite topologies. In the realm of PreT2
topological spaces, by Theorem 3.5 of [9], all T0,T1, and T2 spaces are equivalent.

(2) In any topological category, by Theorem 3.1 of [7], PreT′2 (resp. LT2) implies PreT2 (resp. KT2) and
there is no implication between T0 and each of PreT2,T2, and KT2.

3. Separation and compactness

Rel denotes the category of directed graphs (relation spaces) where objects are sets with a binary relation
and where morphisms f : (A1,R)→ (B1,S) are functions with f (a)S f (b) if aRb for all a, b ∈ A1 [15], p.56.

The category RRel (resp. Prord) of spatial graphs (reflexive relation spaces) (resp. reflexive and
transitive relation spaces (preordered set)) is the full subcategory of Rel [15], page 57.

Note that every filter convergence space and pretopological space induce a graph and spatial graph,
respectively [15], page 57. Also, there is a one to one relation between topological space and a transitive
spatial graph [15], page 59. There is a fully faithful functor from preordered sets to topological spaces that
equips a preordered set with its Alexandroff topology.

Proposition 3.1. An epimorphism f : (A1,R) −→ (B1,S) is final in Rel and RRel (resp. Prord) if and only if for
all s, t ∈ B1, sSt holds in B1 precisely when there exist a, b ∈ A1 such that aRb, f (a) = s and f (b) = t (resp. there exist
ai ∈ B1, i = 1, 2, ...n with a = a1Sa2Sa3Sa4...San = b such that for each k = 1, 2, ...n − 1 there are ck, ck+1 ∈ A1 such
that f (ck) = ak, f (ck+1) = ak+1 and ckRck+1 ) [30].

A source fi : (A1,R) −→ (Bi,Ri), i ∈ I is initial in Rel (resp. RRel or Prord) iff, for all a, b ∈ A1, aRb holds
exactly when fi(a)Ri fi(b) for all i ∈ I [15], p.57 or [30], p.21.

The discrete structure (A,R) on A in Rel is given by R = the empty relation =∅ and the discrete structure (A,R)
on A in RRel is given by aRb iff a = b for all a, b in A.

Rel, RRel and Prord are topological categories [15], p.57.
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The category PBorn of prebornological spaces has as objects (A1,F ), whereF is a family of subsets of A1
that contains all finite subsets of A1 and is closed under finite unions and as morphisms f : (A1,F )→ (B1,G)
are the functions such that f (C) ∈ G if C ∈ F [27], p. 530. Furthermore, if F , ∅ and F is hereditary closed,
then (A1,F ) is called a bornological space [27], p.530 or [30], p.21. The category Born bornological spaces
is the full subcategory of PBorn and they are topological categories [27, 30].

Let
∨
∞

x B be taking countably many disjoint copies of B and identifying them at the point x ∈ B. The
map A∞x :

∨
∞

x B→ B∞ (resp. ▽∞x :
∨
∞

x B −→ B) is given by A∞x (ai) = (x, ..., x, a, x, x, ...) (resp. ▽∞x (ai) = a for all
i ∈ I), where ai is in the i-th component of

∨
∞

x B and B∞ is the countable product of B, where I is the index
set {i : ai is in the i-th component of

∨
∞

x B} [4], p. 386.
Let X ∈ Ob(E) with U(X) = B and N ⊂ X, where E is a set based topological category.

Definition 3.2. (1) If the initial lift of the U-source ▽∞x : ∨∞x B→ UD(B) and A∞x : ∨∞x B→ U(X∞) is discrete,
then {x} is said to be closed [3], p.336.

(2) If {∗}, the image of N, is closed in X/N or N = ∅, then N is said to be closed, where X/N is the final lift
of the epi U-sink Q : U(X)→ B/N = (B\N) ∪ {∗}, identifying N with a point * [3], p.336

(3) If NC, the complement of N, is closed, then N is said to be open [8], p.492.
(4) If the image of each closed (open) subobject of X is a closed (open) subobject of Y, then f : X −→ Y

is said to be closed (open) [6], p.225.
(5) If the projection map π2 : X × Z −→ Z is closed for each object Z in E, then X is said to be a compact

object [6], p.225.
(6)If the only subsets of X both open and closed are X and ∅, then X is said to be strongly connected [8],

p.493.
(7) If the only strongly connected subspaces of X are singletons and ∅, then X is said to be strongly

hereditarily disconnected [12], p.290.

In Top, compactness (resp. strong connectedness, strong hereditary disconnectedness, openness, and
closedness) coincides with the usual compactness [6], p.225 (resp. connectedness [8], p.493, hereditary
disconnectedness [12], p.290, openness [8], p.493, and closedness [3], p.336).

Recall from [11] that the closure clX(N) of N is the intersection of all closed sets in X containing N and
the notion of closedness induces a closure operator in some categories [11–13, 17, 22–24, 29].

Theorem 3.3. (1) f : (A,R1) → (B,R) is a morphism of Rel, then f reflects discreteness i.e., if (B,R) is discrete,
then so is (A,R1).

(2) Every subset of a graph is both open and closed.
(3) Every graph is compact and strongly hereditarily disconnected.

Proof. (1) If (B,R) is discrete i.e., R = ∅ but (A,R1) is not discrete i.e., R1 , ∅, then there exists a, b in A such
that aR1b. Since f : (A,R1) → (B,R) is a morphism in Rel, it follows that f (a)R f (b), a contradiction. Hence
R1 = ∅.

(2) Let (B,R) ∈ Ob(Rel) and N ⊂ B. If N = ∅, then in view of Definition 3.2, N is closed. If N = {x} for some
x ∈ B, then let R1 be the initial structure on ∨∞x B induced by ▽∞x : ∨∞x B → (B, ∅) and A∞x : ∨∞x B → (B∞,R∞),
where ∅ is the discrete relation on B and R∞ is the product relation on B∞.

By part (1), we must have R1 = ∅ and by Definition 3.2, {x} is closed in (B,R).
If N has cardinality at least 2, then {∗} is closed in B/N and by Definition 3.2, N is closed. Since NC is

closed, by Definition 3.2, N is open.
(3) It follows from part (2) and Definition 3.2.

Theorem 3.4. Let (B,S), (A,R) ∈ Ob(RRel).
(1) (A,R) is compact if and only if for every x ∈ A there exist a, b ∈ A with xRa and bRx.
(2) If (A,R) is KT2, then N ⊂ A is open if and only if it is closed.
(3) If M is closed subset of a compact KT2 spatial graph (A,R), then M is compact.
(4) A compact subset of KT2 spatial graph need not be closed.
(5) Product of compact spatial graphs is compact.
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(6) Let f : (A,R) −→ (B,S) be a morphism in RRel.
(i) If (A,R) is compact, then f (A) is compact.
(ii) If (A,R) is compact and (B,S) is KT2, then f need not be closed.

Proof. (1) Suppose (A,R) is compact with A , ∅. Let B = {∞} ∪ A where∞ < A.
Define a relation T ⊂ B × B as for a, b ∈ B aTb if and only if a = ∞ or b = ∞ or aRb for a, b ∈ A. Note that

(B,T) is a spatial graph. Let K = {(x, x) : x ∈ A} ⊂ A × B. By Theorem 2.4 of [12], the closure clA×B(K) of K is
closed and since (A,R) is compact, π2(clA×B(K)) is a closed set in B. Note that A ⊂ π2(clA×B(K)) and sT∞ and
∞Tt for s, t ∈ A ⊂ π2(clA×B(K)). Since π2(clA×B(K)) is closed, by Theorem 3.8 of [11], ∞ ∈ π2(clA×B(K)) and
there exist (b, b), (a, a) ∈ K and x ∈ A with (x,∞) ∈ clA×B(K), (x,∞), ((a, a)) ∈ Z, and ((b, b), (x,∞)) ∈ Z, where Z
is the product structure on A × B. By Proposition 3.1, we must have xRa and bRx.

Suppose for every x ∈ A there exist a, b ∈ A with xRa and bRx. We need to show that for each spatial
graph (B,T), the projection mapπ2 : (A×B,Z) −→ (B,T) is closed. Suppose K ⊂ A×B is closed. If K = ∅, then
π2(K) = ∅ is closed. Suppose K , ∅ and for s ∈ B there exist t,u ∈ π2(K) such that sTt and uTs. t,u ∈ π2(K)
implies there exist a, b ∈ A with (a, t), (b,u) ∈ K. By assumption, we have xRa and bRx for every x ∈ A. By
Proposition 3.1, ((x, s), (a, t)) ∈ Z and ((b,u), (x, s)) ∈ Z. By Theorem 3.8 of [11], (x, s) ∈ K since K is closed and
hence, s ∈ π2(K). By Theorem 3.8 of [11], π2(K) is closed and hence, (A,R) is compact.

(2) Suppose (A,R) is KT2, N is closed, and for each x ∈ A there exist c, d ∈ NC such that xRc and dRx. If
xRc, then cRx because (A,R) is KT2. Since xRc, cRx and N is closed, by Theorem 3.8 of [11], x < N i.e., x ∈ NC.
Similarly, if dRx, then x ∈ NC and by Theorem 2.3 of [12], N is open.

Conversely, if N is open and for each x ∈ A there exist c, d ∈ N with xRc and dRx, then cRx and xRd since
(A,R) is KT2. By Theorem 2.3 of [12], x < NC since N is open. Hence, by Theorem 3.8 of [11], N is closed.

(3) Suppose that M is closed subset of a compact KT2 spatial graph (A,R) and x ∈ M. Since (A,R) is
compact and x ∈ A, by Part (1), there exist a, b ∈ A with xRa and bRx. Since (A,R) is KT2, by Theorem 2.4
of [12], aRx, xRb and since M is closed, a, b ∈ M. Let (M,R1) be the subspace of (A,R). By Proposition 3.1,
xR1a = xRa and bR1x = bRx and by Part (1), (M,R1) is compact.

(4) The indiscrete spatial graph (Z,Z2) is KT2 and by Part (1), the subset {1, 2, 3, 4, 5} of Z is compact but
by Theorem 3.8 of [11], {1, 2, 3, 4, 5} is not closed.

(5) Let (Ai,Ri) be compact spatial graphs, x = (x1, x2, ...) ∈ A, and (A =
∏

i∈I Ai,R) be the product space.
Since (Ai,Ri) is compact and xi ∈ Ai for each i ∈ I, by Part (1), there exist ai, bi ∈ Ai such that xiRiai and biRixi.
Note that a = (a1, a2, ...), b = (b1, b2, ...) ∈ A and by Proposition 3.1, xRa and bRx. Hence, by Part (1), (A,R) is
compact.

(6) Let f : (A,R) −→ (B,S) be a morphism in RRel.
(i) If (A,R) is compact and y ∈ f (A), then by Part (1), there exist a, b ∈ A with xRa, bRx and y = f (x). f

is a relation preserving mapping implies f (x)S f (a) and f (b)S f (x). Hence, by Part (1), f (A) is compact.
(ii) Let (A = {r, p},R) with R = {(r, r), (p, p), (r, p)} and (A = {r, p},A2) be the indiscrete spatial graph. The

identity function id : A −→ A is a relation preserving mapping and by Part (1), (A,R) is compact, (A,A2) is
KT2, and {r} is closed in (A,R) but id({r}) = {r} is not closed in (A,A2).

Theorem 3.5. Let (B,R) ∈ Ob(Prord).
(1) (B,R) is compact if and only if for every x ∈ B there exist a, b ∈ B with xRa and bRx.
(2) The following are equivalent:

(a) (B,R) is T′0.
(b) R is anti-symmetric.
(c) (B,R) is T0.
(d) (B,R) is T0.

(3) The following are equivalent:
(a) (B,R) is NT2.
(b) (B,R) is LT2.
(c) (B,R) is T2.
(d) (B,R) is KT2.
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Proof. The proof of part (1) is similar to the proof of part (1) of Theorem 3.4.
(2) (a) ⇒ (b): Suppose (B,R) is T′0 and for any x, y ∈ B, xRy and yRx. We show that x = y. Assume

x , y. Let s = (x, y)1 and t = (x, y)2. Note that ∇(s) = (x, y) = ∇(t), i1((x, y)) = s, i2((x, y)) = t, (x, y)R2(y, y) and
(y, y)R2(x, y), where R2 is the product relation on B2. Since (B,R) is T′0, by Definition 2.1 and Proposition 3.1,
s = t. Thus, x = y, i.e., R is anti-symmetric.

The equivalence of parts (b) and (c) are given in Theorem 3.8 of [11].
(b) ⇒ (d): Suppose that R is anti-symmetric. Let R3 be the product relation on B3 and R1 be the initial

structure on the wedge B2∨
∆ B2 induced by

A : B2
∨∆ B2

→ (B3,R3) and ∇ : B2
∨∆ B2

→ (B2,N)

where N is discrete relation on B2. If sR1t for any points s and t of the wedge B2∨
∆ B2, then π1A(s)Rπ1A(t),

π2A(s)Rπ2A(t), π3A(s)Rπ3A(t), and ∇(s) = ∇(t). Since ∇(s) = ∇(t), s and t have the form: (x, y)i and (x, y) j for
some x, y ∈ B and i, j ∈ {1, 2}.

If s = (x, y)1 (resp. (x, y)2) and t = (x, y)2 (resp. (x, y)1), then

π1A(s)Rπ1A(t) = xRx,

π2A(s)Rπ2A(t) = yRx (resp.xRy),

π3A(s)Rπ3A(t) = xRy (resp. yRx),

and
∇(s) = (x, y) = ∇(t).

Since R is anti-symmetric, x = y and thus s = t.
If s = (x, y)1 (resp. (x, y)2) and t = (x, y)1 ((resp.(x, y)2)), then s = t. Hence, by Definition 2.1 and

Proposition 3.1, (B,R) is T0.
(d)⇒ (a): Suppose (B,R) is T0. Let (B2∨

∆ B2)′ be the final lift of

q ◦ i1, q ◦ i2 : (B2,R2)→ B2
∨∆ B2,

where R1 is the initial structure on the wedge B2∨
∆ B2 induced by

id : B2
∨∆ B2

→ (B2
∨∆ B2)′ and ∇ : B2

∨∆ B2
→ (B2,N)

where N is discrete relation on B2. If sR1t for s, t ∈ B2∨
∆ B2, then, in particular, ∇(s) = (a, b) = ∇(t) for some

a, b ∈ B. If a = b, then s = t.
If s = (a, b)1 (resp. (a, b)2) and t = (a, b)2 (resp. (a, b)1) with a , b, then by Proposition 3.1, there exists

(d, d) ∈ B2 such that (a, b)R2(d, d) and (d, d)R2(a, b) with ik((a, b)) = (a, b)k = s, in((a, b)) = (a, b)n = t for k,n = 1, 2
and k , n. By Proposition 3.1, we have aRd, bRd, dRa, and dRb. Since R is transitive, aRb and aRb. Note that

π1A(s)Rπ1A(t) = aRa,

π2A(s)Rπ2A(t) = bRa (resp. aRb),

π3A(s)Rπ3A(t) = aRb (resp. bRa),

and
∇(s) = (a, b) = ∇(t)

and thus s = t since (B,R) is T0.
If s = (a, b)k and t = (a, b)k for k = 1, 2, then s = t. Thus, R1 is discrete and by 2.1, (B,R) is T′0.
(3) By Theorems 6.3 and 6.4 of [10], (B,R) is PreT2 if and only if (B,R) is PreT′2 and hence, the result

follows from Part (2).
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4. Stone spaces

We define extremally disconnected and various forms of Stone objects in a topological category. More-
over, we characterize Stone graphs, Stone (transitive) spatial graphs, Stone prebornological spaces, and
investigate some of their properties.

Let X ∈ Ob(E) and clX(N) be the closure of N [11], where N ⊂ X and U : E → Set is topological.
Next, we introduce Stone SHNT2 (SHKT2, SHLT2 or SHT2) objects in a topological category.

Definition 4.1. (1) If the closure of every open subspace of X is open, then X is said to be an extremally
disconnected object.

(2) If X is KT2, compact, and strongly hereditarily disconnected, then X is called a Stone SHKT2 object.
(3) If X is NT2, compact, and strongly hereditarily disconnected, then X is called a Stone SHNT2 object.
(4) If X is LT2, compact, and strongly hereditarily disconnected, then X is called a Stone SHLT2 object.
(5) If X is T2, compact, and strongly hereditarily disconnected, then X is called a Stone SHT2 object.

Theorem 4.2. (1) Every Stone SHLT2 (resp. SHT2) object is a Stone SHKT2 object.
(2) In the realm of PreT′2 objects, the following are equivalent:

(i) A Stone SHLT2 object.
(ii) A Stone SHT2 object.
(iii) A Stone SHKT2 object.

Proof. Let Y ∈ Ob(E), where U : E → Set is topological.
(1) If Y is a Stone SHLT2 object, then, in particular, Y is LT2 and by Definition 2.1, Y is PreT′2 and T0. By

Theorem 2.4 of [5] and Theorem 3.1 of [7], Y is T′0 and PreT2, respectively. Therefore, by Definition 2.1, Y is
KT2 and hence, Y is a Stone SHKT2 object.

If Y is a Stone SHT2 object, then Y is T2, i.e., Y is PreT2 and T0. Since Y is T0, by Theorem 2.4 of [5], Y is
T′0. Therefore, by Definition 2.1, Y is KT2 and hence, Y is Stone SHKT2 object.

(2) (i)⇒ (ii).If Y is a ELT2 object, then by Definition 4.1, Y is ET2, i.e., Y is PreT′2 and T0. By Theorem 3.1
of [7], Y is PreT2 and by Definition 2.1, Y is T2 and hence, Y is ET2.

By Part (1), we get (ii)⇒ (iii).
(iii) ⇒ (i) If Y is a EKT2 object, then, in particular, Y is PreT2 and by Definition 2.1, the initial lift of the

U-sources S : B2
∨∆ B2

→ U(Y3) and A : B2
∨∆ B2

→ U(Y3), where U(Y) = B, are same, i.e., SW = AW . By
the assumption that Y is PreT′2, we get (B2∨

∆ B2)
′

= SW , where (B2∨
∆ B2)

′

is the final lift of the U-sink
{q ◦ i1, q ◦ i2 : U(X2) = B2

→ B2
∨∆ B2

} (A,S, q, and ik, k = 1, 2 are defined in Section 2). Consequently,
(B2∨

∆ B2)
′

= AW . Since Y is T′0 (because Y is KT2), then the initial lift of ∇ : B2
∨∆ B2

→ U(D(B2)) and
id : B2

∨∆ B2
→ U(B2

∨∆ B2)
′

is discrete. Thus, the initial lift of the U-source ∇ : B2
∨∆ B2

→ U(D(B2)) and
A : B2

∨∆ B2
→ U(Y3) is discrete, i.e., Y is T0 and by Definition 2.1, Y is LT2. Hence, Y is ELT2.

Theorem 4.3. Let Y ∈ Ob(PreT2(Top)). The following are equivalent:
(i) Y is T1.
(ii) Y is sober.
(iii) Y is T0.
(iv) Y is T2.

Proof. (i)⇒ (ii) Assume a pre-Hausdorff topological space Y is T1 and N is a nonempty closed subset of Y.
If N = {x}, x ∈ Y, then clY({x}) = {x} = {x} = N since Y is T1.

Suppose N has the cardinality of at least 2. There are x, y ∈ Y with x , y. Since Y is T1, there is a
neighborhood of x and y each one missing the other. Since Y is PreT2, the points x and y have disjoint
neighborhoods W and V, respectively. Note that WC

∩ N and VC
∩ N are proper closed subsets of N and

N = (WC
∩N)∪ (VC

∩N), i.e., N is reducible. Thus, nonempty irreducible closed subsets of Y has to be one
point sets and Y is sober.
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(ii)⇒ (iii) and (iv)⇒ (i) are trivial.
(iii) ⇒ (iv). Assume a pre-Hausdorff topological space Y is T0 and x, y ∈ Y with x , y. Since Y is T0,

there is a neighborhood of one missing the other and Y is PreT2 implies the points x and y have disjoint
neighborhoods. Hence, Y is T2.

Remark 4.4. In Top, by Remark 2.2 and Definition 4.1, the notion of extremal disconnectedness coincide
with the usual extremal disconnectedness [2], p. 325 or [20], p. 102 and all Stone SHKT2, SHLT2, SHT2, and
SHNT2 objects reduce to the usual Stone spaces [20], p.70. There is no implication between PreT2 and each
of T0,T1 and sobriety. Take the Sierpinski space and integers set Z with indiscrete and cofinite topologies.
In the realm of PreT2 topological spaces, by Theorem 4.3, all T0,T1, T2, and sober spaces are equivalent.

Theorem 4.5. Let (B,R) ∈ Ob(Rel).
(1) Every graph is strongly hereditarily disconnected and extremally disconnected.
(2) (B,R) is a Stone SHLT2 graph if and only if for every z, x, y,w ∈ B if xRz, yRz, and yRw, then x = y or z = w.
(3) (B,R) is a Stone SHNT2 graph if and only if the following two conditions hold:

(i) For each x, y ∈ B, if there exists z ∈ B with xRz and yRz, then for any w ∈ B, xRw if and only if yRw.
(ii) R is anti-symmetric or either (y, y) < R or (x, x) < R for each x, y ∈ B.

(4) The following are equivalent:
(i) (B,R) is a Stone SHT2 graph.
(ii) (B,R) is SHKT2 graph.
(iii) For each x, y ∈ B, if there exists z ∈ B with xRz and yRz, then for any w ∈ B, xRw if and only if yRw.

Proof. The proof of part (1) follows from Theorem 3.3 and Definitions 3.2 and 4.1.
(2) Assume (B,R) is a Stone SHLT2 graph and xRz, yRz, and yRw for each z, x, y,w ∈ B.
Note that

π1S(x, y)1Rπ1S(z,w)2 = xRz,

π2S(x, y)1Rπ2S(z,w)2 = yRz,

π3S(x, y)1Rπ3S(z,w)2 = yRw.

Since (B,R) is LT2, it is PreT′2 and by Proposition 3.1, there exists a pair (a1, a2), (b1, b2) in B2 such that
(a1, a2)R2(b1, b2) and q ◦ ik(a1, a2) = (x, y)1, q ◦ ik(b1, b2) = (z,w)2 for k = 1, 2. Hence, (x, y)1 and (z,w)2 have to
lie in the same component of the wedge and we have to have x = y or z = w.

Let s, t ∈ B2∨
∆ B2. In view of Theorem 3.3 and Part (1), (B,R) is compact and extremally disconnected.

The proof that (B,R) is T0 is similar to the proof of Part (1) of Theorem 3.3.
We show (B,R) is PreT′2, i.e., (I) and (II) are equivalent, where
(I): there exists a pair (a1, a2), (b1, b2) in B2 such that (a1, a2)R2(b1, b2), q ◦ ik(b1, b2) = t, and q ◦ ik(a1, a2) = s

for k = 1, 2
(II): π1S(s)Rπ1S(t), π2S(s)Rπ2S(t), and π3S(s)Rπ3S(t).

We show (I) implies (II). If s = (x, y)k and t = (z,w)k for k = 1, 2, then π1S(s)Rπ1S(t) = xRz and
π2S(s)Rπ2S(t) = yRw = π3S(s)Rπ3S(t) = π2S(s)Rπ2S(t) and by Proposition 3.1, (x, y)R2(z,w), q ◦ ik(z,w) = t,
and q ◦ ik(x, y) = s for k = 1, 2.

If t = (z,w)2 and s = (x, y)1, then π1S(s)Rπ1S(t) = xRz, π2S(s)Rπ2S(t) = yRz and π3S(s)Rπ3S(t) = yRw. By
assumption, we get y = x or z = w.

If y = x, then (x, x)R2(z,w) and q ◦ i2(x, y) = s, q ◦ i2(z,w) = t. If z = w, then (x, y)R2(z, z), q ◦ i1(z,w) = t,
and q ◦ i1(x, y) = s.

If t = (z,w)1 and s = (x, y)2, then π1S(s)Rπ1S(t) = xRz, π2S(s)Rπ2S(t) = xRw and π3S(s)Rπ3S(t) = yRw. By
assumption, we get the result.

Next, we show (I) implies (II). If (x, y)R2(z,w), q ◦ ik(z,w) = (z,w)k = t, and q ◦ ik(x, y) = (x, y)k = s for
k = 1, 2, then by Proposition 3.1, xRz and yRw. If k = 1, then

π1S(s)Rπ1S(t) = xRz, π2S(s)Rπ2S(t) = yRw = π3S(s)Rπ3S(t).
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If k = 2, then
π1S(s)Rπ1S(t) = xRzπ2S(s)Rπ2S(t), π3S(s)Rπ3S(t) = yRw.

Thus, (B,R) is PreT′2 and it is LT2. Hence, (B,R) is a Stone SHLT2 graph.
(3) Assume (B,R) is a Stone SHNT2 graph and for each x, y,w ∈ B there exists z ∈ B such that xRz and

yRz.
Note that

π1S(x, y)1Rπ1S(z,w)2 = xRz = π1A(x, y)1Rπ1A(z,w)2,

π2S(x, y)1Rπ2S(z,w)2 = yRz = π2A(x, y)1Rπ2A(z,w)2,

π3A(x, y)1Rπ3A(z,w)2 = xRw, π3S(x, y)1Rπ3S(z,w)2 = yRw.

Since xRz, yRz, and (B,R) is NT2, in particular, it is preT2, by Proposition 3.1, we must have xRw if and only
if yRw.

Suppose there exist d, c ∈ B with d , c, (d, d), (c, d), (c, c) ∈ R and (d, c) ∈ R. Let D = {d, c} and RD be the
subrelation on D. By Proposition 3.2, RD = D2, the indiscrete relation on D2, a contradiction since (B,R) is
NT2, in particular, it is (B,R) is T0. Hence, R must be anti-symmetric or for each y, x ∈ B either (y, y) < R or
(x, x) < R.

Assume the conditions hold and s, t ∈ B2∨
∆ B2. We show (B,R) is HNT2. In view of Theorem 3.3, (B,R)

is compact and extremally disconnected. If R is anti-symmetric or for each y, x ∈ B either (y, y) < R or
(x, x) < R, then by Definition 2.1, (B,R) is T0.

Let RA (resp. RS) be the initial structure on B2∨
∆ B2 induced by πiA : B2

∨∆ B2
→ (B,R) (resp.

πiS : B2
∨∆ B2

→ (B,R)), where πi are the projections maps for i = 1, 2, 3. We show (B,R) is PreT2, i.e.,
RA = RS.

Let (s, t) ∈ RS, where s, t ∈ B2∨
∆ B2. If s = (x, y)k and t = (z,w)k for k = 1, 2, then by Proposition 3.1,

π1S(s)Rπ1S(t) = xRz = π3A(s)Rπ3A(t) = π1A(s)Rπ1A(t),

π2S(s)Rπ2S(t) = yRw = π3S(s)Rπ3S(t) = π2A(s)Rπ2A(t).

Thus, (s, t) ∈ RA.
If t = (z,w)2 and s = (x, y)1, then

π1S(s)Rπ1S(t) = xRz = π1A(s)Rπ1A(t)

π2S(s)Rπ2S(t) = yRz = π2A(s)Rπ2A(t).

By assumption, we get π3A(s)Rπ3A(t) = xRw if and only f π3S(s)Rπ3S(t) = yRw and thus, (s, t) ∈ RA.
If t = (z, z) and s = (x, y)1, then

π1S(s)Rπ1S(t) = xRz = π1A(s)Rπ1A(t),

π2S(s)Rπ2S(t) = yRz = π2A(s)Rπ2A(t),

π3A(s)Rπ3A(t) = xRz,

and π3S(s)Rπ3S(t) = yRz. Clearly, π3A(s)Rπ3A(t) = xRz iff π3S(s)Rπ3S(t) = yRz and so, (s, t) ∈ RA.
If s = (x, x) and t = (z, z), then the result is trivial.

If t = (z,w)1 and s = (x, y)2, then

π1S(s)Rπ1S(t) = xRz = π1A(s)Rπ1A(t),

π2S(s)Rπ2S(t) = yRz = π2A(s)Rπ2A(t).

By assumption, we obtain π3A(s)Rπ3A(t) = xRw iff π3S(s)Rπ3S(t) = yRw and thus, (s, t) ∈ RA.
Therefore, RS ⊂ RA and the case RA ⊂ RS can be shown similarly.By Definition 2.1, (B,R) is PreT2 and it is
NT2. Hence, by Definition 4.1, (B,R) is a Stone SHNT2 graph.
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(4) By Part (1) of Theorem 4.2, we get (i)⇒ (ii).
Note that (B,R) is T0 if and only if it is T′0 (see the proof of Theorem 3.3 (1)) and by Definition 2.1, we

have (ii)⇒ (i).
By Part (2) and Theorem 3.3, (ii) and (iii) are equivalent.

Theorem 4.6. Let (A,R) ∈ Ob(RRel).
(1) If (A,R) is KT2 (resp. T2, LT2 or NT2), then it is extremally disconnected.
(2) (A,R) is a Stone SHKT2 space if and only if R is symmetric, transitive, and for every x ∈ A there exist a, b ∈ A

with xRa and bRx.
(3) The following are equivalent.

(i) (A,R) is Stone SHNT2.
(ii) (A,R) is Stone SHT2.
(iii) (A,R) is Stone SHLT2.

Proof. (1) If (A,R) is KT2 and N open in A, then by Theorem 2.4 of [12], the closure clA(N) of N is closed and
by Theorem 3.4, clA(N) is open. Hence, (A,R) is extremally disconnected.

If (A,R) is LT2 (resp. T2 or NT2) and N open in A, then by Theorem 3.3 of [12], the closure clA(N) of N is
both closed and open. Hence, (A,R) is extremally disconnected.

(2) Assume (A,R) is a Stone SHKT2 space. Since (A,R) is KT2, by Theorem 3.2 of [12], R is symmetric
and transitive. By Theorem 3.4, for every x ∈ A there exist a, b ∈ A with xRa and bRx.

Suppose the conditions hold. We show (A,R) is Stone SHKT2. Since R is symmetric and transitive, in
view of Theorem 3.2 of [12], (A,R) is KT2. By Theorem 3.4, (A,R) is strongly hereditarily disconnected.
Since for every x ∈ A there exist a, b ∈ A with xRa and bRx, in view of Theorem 3.4, (A,R) is compact and
hence, (A,R) is a Stone SHKT2 space.

Part (3) follows from Definition 4.1, Theorem 3.4, and Theorem 3.2 of [12].

Theorem 4.7. Let (A,R) ∈ Ob(Prord).
(1) If (A,R) is KT2 (resp. T2, LT2 or NT2), then it is strongly hereditarily disconnected and extremally disconnected.
(2) The following are equivalent:

(i) (A,R) is Stone SHNT2.
(ii) (A,R) is Stone SHT2.
(iii (A,R) is Stone SHLT2.
(iv) (A,R) is Stone SHKT2.

Proof. (1) If (A,R) is KT2 (resp. T2, LT2 or NT2) and N open in A, then by Theorem 3.6 of [10] and Theorem 3.5,
N is both open and closed. Thus, (A,R) is strongly hereditarily disconnected and extremally disconnected.

(2) follows from Part (1) and Theorem 3.5.

Theorem 4.8. Let PBorn be the category of prebornological spaces and bounded functions [27].
(1) Every prebornological space is compact, connected, and extremally disconnected.
(2) A prebornological space (A1,F ) is strongly hereditarily disconnected iff (A1,F ) is a trivial prebornological

space, i.e, A has the cardinality of at most 1.
(3) The following are equivalent:

(i) (A1,F ) is Stone SHKT2.
(ii) (A1,F ) is Stone SHLT2.
(iii) (A1,F ) is Stone SHT2.
(iv) (A1,F ) is Stone SHNT2.

(4) The following are equivalent:
(i) (A1,F ) is KT2.
(ii) (A1,F ) is LT2.
(iii) (A1,F ) is T2.
(iv) (A1,F ) is a bornological space.
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Proof. (1) By Theorem 3.10 of [4], closed subsets of a prebornological space are only itself and ∅. Hence, by
Definitions 3.2 and 4.1, we get the result.

(2) and (3) follow from part (1) and Definition 3.2.
(4) By Theorem 2.6 of [5], (A1,F ) is PreT2 iff it is PreT′2 if and only if it is a bornological space. The result

follows from Theorem 3.6 of [11].

Let TE be the full subcategory of E consisting of T objects, where E is a topological category.

Theorem 4.9. (1) SHKT2Rel = SHT2Rel = PreT2Rel and they are topological categories.
(2) SHLT2Rel ⊂ SHKT2Rel = SHT2Rel.
(3) KT2RRel = PreT2RRel = PreT′2Prord = PreT2Prord and they are topological categories.
(4) SHLT2RRel = SHNT2RRel = SHT2RRel ⊂ SHKT2RRel.
(5) SHT2PBorn = SHLT2PBorn = SHKT2PBorn = SHNT2PBorn.
(6) SHLT2Prord = SHT2Prord = SHNT2Prord = SHKT2Prord.

Proof. The first parts of (1)-(6) follow from Theorems 4.5- 4.8 and the second parts of (1) and (3) follow from
Theorem 3.4 of [9] since PreT2Rel and PreT2RRel are topological categories.

Remark 4.10. (1) In Rel, by Theorem 4.5,
T0 ⇒ T′0 = T0 = T1 and PreT′2 = LT2 ⇒ NT2 ⇒ KT2 = T2 = PreT2 ⇒ T′0 = T0 = T1.
Let A = {p, r, s}, R1 = {(r, r), (r, p), (p, p), (p, r)}, R2 = {(p, r), (r, r), (p, p)}, and R3 = {(p, p), (r, s), (r, p), (p, s)}. By

Theorem 4.5, (A,R1) is T′0 but it is not T0, the indiscrete relation space (Z,Z2) is KT2 but it is neither NT2 nor
LT2 nor T0, where Z is integers. By Theorem 4.5, (A,R3) is NT2 but it is not LT2 and (A,R2) is T0 but it is not
KT2. There is no implication between T0 and KT2 = PreT2 = T2.

By Theorem 4.5, SHLT2 ⇒ SHNT2 ⇒ SHKT2 = ET2 and (Z,Z2) is Stone SHKT2 but it is neither Stone
SHNT2 nor SHLT2 and (A,R3) is Stone SHNT2 but it is not Stone SHLT2.

In the presence of PreT′2 graphs, by Theorem 4.5, all Stone SHKT2,SHLT2,SHT2, and ENT2 graphs are
equivalent.

By Theorem 4.9, the subcategories SHKT2Rel and SHT2Rel have all limits and colimits.
By Theorem 4.5, every discrete and indiscrete graph is strongly hereditarily disconnected and extremally

disconnected.
(2) In RRel, by Theorem 4.6, SHLT2 = SHNT2 = SHT2 ⇒ SHKT2 and (Z,Z2) is Stone SHKT2 but it is not

Stoe SHNT2 = SHLT2,
and in the presence of PreT′2 spatial graphs, all Stone SHKT2,SHLT2,SHT2, and SHNT2 spatial graphs are
equivalent.

If a spatial graph (A,R) is KT2 (resp. T2, LT2 or NT2), then by Theorem 4.6, it is strongly hereditarily
disconnected and extremally disconnected. (Z,Z2) is KT2 but it is not NT2 = T2 = LT2. Let A = {r, p}
with R = {(p, p), (r, r), (p, r)}. By Theorem 2.3 of [12], all subsets of A are open and closed. Hence, (A,R) is
strongly hereditarily disconnected and extremally disconnected but by Theorem 3.2 of [12], it is not KT2.
By Theorem 2.3 of [12], every discrete and indiscrete spatial graph is extremally disconnected.

By Theorem 3.4, we have:
(i) A compact subset of a KT2 spatial graph need not be closed.
(ii) Tychonoff Theorem holds in RRel.
(iii) Any morphism in RRel whose domain is compact and whose codomain is KT2 need not be closed.
(iv) If (A,R) is KT2, then (A,R) has a partition consisting of open subsets.
By Theorem 3.2 of [12], the following are equivalent:
(i) (A,R) is PreT2.
(ii) (A,R) is KT2.
(iii) R is an equivalence relation on B.
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(3) In PBorn, by Theorem 4.8, all Stone SHKT2,SHLT2,SHT2, and SHNT2 prebornological spaces are
equivalent. By Theorem 4.9, the subcategories T2PBorn,LT2PBorn, and KT2PBorn are topological cate-
gories. Hence, they have all limits and colimits.

By Theorem 4.8, each of discrete and indiscrete prebornological space is extremally disconnected.
(4) In Prord, by Theorem 3.5,

KT2 = LT2 = NT2 = T2 ⇒ T0 = T0 = T′0 and by Theorem 4.7, all Stone SHKT2,SHLT2,SHT2, and SHNT2
transitive spatial graphs are equivalent.

By Theorem 4.7, if a transitive spatial graph (A,R) is KT2 (resp. T2, LT2 or NT2), then it is extremally
disconnected. (Z,Z2) is Stone SHKT2. By Theorem 3.6 of [10], each of discrete and indiscrete transitive
spatial graph is extremally disconnected. By Theorems 3.4 and 3.5, Tychonoff Theorem holds in Prord.

(I) By Theorems 6.3 and 6.4 of [10], the following are equivalent.
(i) (A,R) is PreT2.
(ii) (A,R) is PreT′2.
(iii) R is an equivalence relation on B.
(II) By Theorem 3.5, the following are equivalent.
(i) (A,R) is T′0.
(ii) (A,R) is overlineT0.
(iii) (A,R) is T0.
(iv) R is a partial relation on B.
(5) In any topological category, by Theorem 4.2, every Stone SHLT2 (resp. SHT2) object is Stone SHKT2

and in the realm of PreT′2 objects, SHLT2 = SHT2 = SHKT2.
By parts (1) and (3), there is no implication between Stone SHLT2 and Stone SHNT2 objects.

5. Comments

Note that a notion of strong compactness at the level of topological categories was defined in [6]. In
Top, if a space is T1, then by Remark 2.2 of [6], compactness and strong compactness (resp. by Remark 2.1
of [6] and Definition 4.1, hereditary disconnectedness and strong hereditary disconnectedness) coincide.
Hence, in Definition 4.1, replacing compactness (resp. strong hereditary disconnectedness) with strong
compactness (resp. hereditary disconnectedness), many potential extensions of Stone objects may be
possible. One form of these extensions may be more useful than another in certain applications but looking
for the right extension may be meaningless. In Top, each of these extensions of Stone objects reduce to the
usual Stone space [20], p.70.

(1) It will be better to characterize each of these extensions of Stone objects in well-known topological
categories in order to find out how these forms of Stone objects relate to each other in general topological
categories.

The notions of hereditary disconnectedness [16], p. 325 and total disconnectedness [2], p. 154 or [16],
p. 369 were also defined in a topological category in [12]. Note that totally disconnected spaces and
hereditarily disconnected spaces are referred to as totally separated spaces and totally disconnected spaces,
respectively, in [20], p.69. In Top, in the presence of compact T2 topological spaces, the notions of hereditary
disconnectedness and total disconnectedness are equivalent [20], p.70.

If a spatial graph is KT2, then by Theorem 5.2 of [12] and Theorem 4.6, the notions of hereditary
disconnectedness and extremal disconnectedness are equivalent and total disconnectedness implies both
hereditary disconnectedness and extremal disconnectedness. If a spatial graph is NT2, then, by Theorem
5.2 and Remark 5.4 of [12] and Theorem 4.6, all the notions of extremal disconnectedness, hereditary
disconnectedness and total disconnectedness are equivalent.

By Theorem 4.5, all the notions of extremal disconnectedness, hereditary disconnectedness, and total
disconnectedness are equivalent in Rel.

In PBorn, by Theorem 5.3 of [12] and Theorem 4.8, the notions of hereditary disconnectedness and
extremal disconnectedness are equivalent and total disconnectedness implies both hereditary disconnect-
edness and extremal disconnectedness. In the realm of NT2 prebornological spaces, by Remark 5.4 and
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Theorem 5.3 of [12] and Remark 4.10, all the notions of extremal disconnectedness, hereditary disconnect-
edness, and total disconnectedness are equivalent.

By Remark 4.10, each of discrete and indiscrete graph (resp. spatial graph, transitive spatial graph,
prebornological, bornological, topological) space is extremally disconnected.

(2) Are discrete and indiscrete objects extremally disconnected in a topological category?
(3) How each of extremally, hereditarily, and totally disconnected objects are related to each other in a

topological category.
If U : E → Set is topological and D is a full subcategory of E such that the restriction U1 = U|D : D →

Set is still topological, then for an object X ∈ Dwe have two notions of Stone objects one with respect to U
and one with respect to U1. One may expect that the two notions may differ. Take E = Rel andD = RRel
(Parts (1) and (2) of Remark 4.10).

(4) Under what conditions could these notions be the same?
Recall from [11] that X is called T0 (resp. T0 or T′0) sober if X is T0 (resp. T0 or T′0) and quasi-sober (every

nonempty irreducible closed subset of X [13] is the closure of a point).
In Top, by Remark 2.2, the abstract notion of sober space reduces with the usual one and in the realm of

PreT2 topological spaces, by Theorem 4.3, all T0,T1, T2, and sober spaces are equivalent. Also, Theorem 4.3
can be shown by using Theorem 3.5 of [9] and Lemma of ([20], page 43).

In Prord, by Theorem 3.6 of [10] and Theorem 3.5, T0 (resp. T0 or T′0) sober spaces are equivalent.
(5) Does Theorem 4.3 hold in a topological category?
(6) How are sober objects related to each other in a topological category?
(7) Are there any relations between sober objects and Ti objects, i = 0, 1, 2, in a topological category?
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