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Abstract. In this study, we examine the s-th forward difference sequence in an n-normed space X,
which tends to zero and is inspired by the consecutive terms of a sequence approaching zero. Functions
that transform sequences satisfying this condition into sequences that also satisfy it are called s-ward
continuous functions. Inclusion theorems related to this kind of continuity and uniform continuity are also
considered. Additionally, we investigate the concept of s-ward compactness of a subset of X via s-quasi-
Cauchy sequences. It turns out that the uniform limit of a sequence of s-ward continuous functions is also
s-ward continuous, and the set of s-ward continuous functions is a closed subset of the set of continuous
functions.

1. Introduction and preliminaries

Although some evaluations were initially made regarding the axioms of an abstract n-dimensional met-
ric, the main developments concerning the definition of the 2-metric, 2-normed spaces and their topological
properties were described by Gähler [8]. Subsequently these concepts were extended to the most general-
ized case of n-metric and n-normed spaces, where n is an arbitrary natural number, by Gähler[9]. Shortly
after the introduction of the concept of an n-normed space, the concept of a 2-inner product space was also
defined in [5]. Afterwards, many authors made impressive improvements in n-normed spaces and 2-inner
product spaces ([6, 10–13, 15, 17–19]). The notion of an n-normed space was conceived by considering
whether there exists a problem where the n-norm topology is effective while the norm topology is not. As
an application of the concept of an n-norm, we can examine cases where a term in the definition of the
n-norm reflects changes in shape; in such instances, the n-norm represents the associated volume of the
corresponding surface. Suppose that, for any particular output, one requires n-inputs, with one main input
and the remaining (n-1)-inputs as dummy inputs needed to complete the operation. This concept may find
applications in various scientific areas.

Definition 1.1. An n-norm on a real vector space X of dimension d, where 2 ≤ n ≤ d, is a real valued
function ∥., ..., .∥ on Xn that satisfies the following conditions:

1. ∥x1, x2, ..., xn∥ = 0 if and only if x1, x2, ..., xn are linearly dependent,
2. ∥x1, x2, ..., xn∥ = ||xi1 , ..., xin || for every permutation (i1, ..., in) of (1, ...,n),
3. ∥x1, x2, ..., kxn∥ = |k|∥x1, x2, ..., xn∥ for any real number k,
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4. ∥y + z, x1, ..., xn−1∥ ≤ ∥y, x1, ..., xn−1∥ + ∥z, x1, ..., xn−1∥.

A set X equipped with an n-norm ∥., ..., .∥ is referred to as an n-normed space.

Definition 1.2. A sequence (xk) is said to converge to an l ∈ X in an n-normed space X if, for each ϵ > 0,
there exists a positive integer N such that for every k ≥ N

∥xk − l,u1, . . . ,un−1∥ < ϵ, ∀u1, . . . ,un−1 ∈ X.

Definition 1.3. A sequence (xk) is called a Cauchy sequence if, for each ϵ > 0, there exists a positive integer
N such that for every k,m ≥ N

∥xk − xm,u1, . . . ,un−1∥ < ϵ, ∀u1, . . . ,un−1 ∈ X.

If every Cauchy sequence in X converges to an element of X, we call X complete, and if X is complete,
then it is called an n-Banach space.

Recently, the notion of quasi-Cauchy sequences was introduced in [2]. The distance between consecutive
terms of a sequence tending to zero is expressed by Burton and Coleman through the quasi-Cauchy
sequence. Building on this concept, various types of continuity were defined in [3, 4, 7]. The aim of this
research is to generalize the notions of a quasi-Cauchy sequence and ward continuity of a function to
the concepts of an s-quasi-Cauchy sequence and s-ward continuity of a function in an n-normed space,
for any fixed positive integer s. Additionally, the paper presents interesting theorems related to ordinary
continuity, uniform continuity, compactness, and s-ward continuity. The results not only extend those of
[7] to an n-normed space but also introduce new findings in 2-normed spaces as a special case for n = 2.

2. Main results

In this paper, X represents a first countable n-normed space with an n-norm denoted by ∥., ..., .∥, R
denotes the set of all real numbers, and s represents a fixed positive integer.

Definition 2.1. A sequence (xk) of points in X is s-quasi-Cauchy if, for all u1,u2, ...,un−1 ∈ X, it satisfies

lim
k→∞
||∆sxk,u1,u2, ...,un−1|| = 0,

where ∆sxk = xk+s − xk for each positive integer k.

If one sets s = 1, the sequence reverts to ordinary quasi-Cauchy sequences. Additionally, utilizing the
equality

xk+s − xk = xk+s − xk+s−1 + xk+s−1 − xk+s−2... − xk+2 + xk+2 − xk+1 + xk+1 − xk,

we observe that any quasi-Cauchy sequence is s-quasi-Cauchy. However, the converse is not necessarily
true.

Every Cauchy sequence is s-quasi-Cauchy, as is any convergent sequence. Additionally, a sequence of
partial sums of a convergent series is s-quasi-Cauchy. One observes that the set ∆s(X), the set of s-quasi-
Cauchy sequences in X, forms a vector space. If (xk) and (yk) are s-quasi-Cauchy sequences in X such
that

lim
k→∞
||∆sxk,u1,u2, ...,un−1|| = 0 and lim

k→∞
||∆syk,u1,u2, ...,un−1|| = 0

for all u1,u2, ...,un−1 ∈ X, then

lim
k→∞
||∆s(xk + yk),u1,u2, ...,un−1|| ≤ lim

k→∞
||∆sxk,u1,u2, ...,un−1|| + lim

k→∞
||∆syk,u1,u2, ...,un−1|| = 0.

Thus, the sum of two s-quasi-Cauchy sequences is again s-quasi-Cauchy. It is clear that (axk) is an s-quasi-
Cauchy sequence in X for any constant a ∈ R.
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Definition 2.2. A subset A of X is termed s-ward compact if every sequence in the set A possesses an
s-quasi-Cauchy subsequence.

If a set A is an s-ward compact subset of X, then any subset of A is also s-ward compact. Furthermore,
any ward compact subset of X is s-ward compact. The union of a finite number of s-ward compact subsets
of X is s-ward compact. Additionally, any sequentially compact subset of X is s-ward compact.

For each real number α > 0, an α-ball with center a in X is defined as

Bα(a, x1, ..., xn−1) = {x ∈ X : ||a − x, x1 − x, ..., xn−1 − x|| < α}

for x1, ..., xn−1 ∈ X. The family of all sets Wi(a) = Bαi (a, xi1 , ..., xi(n−1) ), where i = 1, 2, .., forms an open basis at
a. Let βn−1 be the collection of linearly independent sets B with n − 1 elements. For B ∈ βn−1, the mapping

pB(x) = ||x, x1, ..., xn−1||

for x ∈ X, x1, ..., xn−1 ∈ B defines a seminorm on X, and the collection {pB : B ∈ βn−1} of seminorms makes X
a locally convex topological vector space. For each x ∈ X, different from zero, there exist x1, ..., xn−1 ∈ B such
that x, x1, x2, ..., xn−1 are linearly independent, so ||x, x1, ..., xn−1|| , 0, which ensures that X is a Hausdorff
space. A neighborhood of the origin for this topology is in the form of a finite intersection

n⋂
i=1

{x ∈ X : ||x, xi1 − x, ..., xi(n−1) − x|| < ϵ},

where ϵ > 0.
Now, the following theorem characterizes total boundedness, not only for n-normed spaces but also

for 2-normed spaces. It extends the results for quasi-Cauchy sequences given in [7] for 2-normed valued
sequences to n-normed valued s-quasi-Cauchy sequences, where setting s = 1 recovers earlier results for
2-normed spaces. It is worth noting that Theorem 3 in [4] can not be obtained simply by putting n = 1 in the
n-normed space to obtain a normed space, which would be awkward. In contrast, the following theorem
is interesting for studying a new space.

Lemma 2.3. If a subset of X is totally bounded, then every sequence in A contains an s-quasi-Cauchy subsequence.

Proof. Let A be totally bounded, and consider any sequence (xn) in A. Since A is totally bounded, it is
covered by a finite number of balls in X with diameter less than 1. Let A1 be one of these sets covering A
with diameter less than 1, xn1 be an element of the sequence (xn) that lies in A1. As A1 is totally bounded, it
is covered by a finite number of balls with diameter less than 1/2. Choose of these balls and denote it as A2.
This ball must contain xn for infinitely many values of n. Choose a positive integer n2 such that n2 > n1 and
xn2 ∈ A2. Since A2 ⊂ A1, it follows that xn2 ∈ A1. Continue this process iteratively. At the k-th step, choose
a ball Ak in Ak−1 of diameter less than 1/k that contains xn for infinitely many n. Choose nk > nk−1, for any
positive integer k, such that xnk ∈ Ak. So, xnk , xnk+1 , ..., xnk+s , ... lie in Ak. The diameter of Ak is less than 1/k,
so the distance between any two terms xnk and xnk+s for s > 0 is less than 1/k. As k increases, the diameter
of Ak decreases, and therefore, the distance betwen terms in the subsequence becomes arbitrarily small as
k increasess. Therefore, (xnk ) is an s-quasi-Cauchy subsequence of (xn).

Theorem 2.4. A subset of X is totally bounded if and only if it is s-ward compact for every positive integer s.

Proof. If A is totally bounded, then, according to Lemma 2.3, every sequence in A possesses an s-quasi-
Cauchy subsequence. Consequently, the set A is s-ward compact for any given positive integer s. Assume A
is not a totally bounded set. Choose any x1 ∈ A and α > 0. Since A is not totally bounded, the neighborhood
of a point x1 in A, denoted by Bα(x1,u1

1, ...,u
1
n−1) = {y ∈ A; ||x1 − y,u1

1 − y, ...,u1
n−1 − y|| < α}, is not equal to A.

Consequently, there exists x2 ∈ A such that x2 < Bα(x1,u1
1, ...,u

1
n−1), implying, ||x1 − x2,u1

1 − x2, ...,u1
n−1 − x2|| ≥

α. As A is not totally bounded, the union of the neighborhoods Bα(x1,u1
1, ...,u

1
n−1) ∪ Bα(x2,u2

1, ...,u
2
n−1)
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is not equal to A, where Bα(x2,u2
1, ...,u

2
n−1) is the neighborhood of a point x2 in A. Continuining this

procedure, we obtain a sequence (xk) of points in A such that xk+s <
⋃k+s−1

i=1 Bα(xi,ui
1, ...,u

i
n−1). Consequently,

||xk+s − xk,ui
1 − xk, ...,ui

n−1 − xk|| ≥ α, for all nonzero ui
1, ...,u

i
n−1 in A, where i = 1, ..., k + s − 1. As a result, the

sequence (xk) has no s-quasi-Cauchy subsequence for any positive integer s, contradicting the assumption
that A is s-ward compact for every positive integer s. Therefore, if A is not totally bounded, it can not be
s-ward compact for some positive integers.

Definition 2.5. A function f is termed s-ward continuous on a subset A of X if

limk→∞||∆sxk,u1,u2, ...,un−1|| = 0

is satisfied, for all u1,u2, ...,un−1 ∈ X, then

limk→∞||∆s f (xk), f (u1), f (u2), ..., f (un−1)|| = 0.

Theorem 2.6. Any function f that is s-ward continuous function on a subset A of X is continuous on A.

Proof. Let f be s-ward continuous on A ⊂ X, and consider any sequence (xk) in A converging to l, that is

limk→∞||xk − l,u1,u2, ...,un−1|| = 0

for all u1,u2, ...,un−1 ∈ X. Now, let’s construct a new sequence using certain terms from (xk):

(tm) = (x1, ..., x1, l, ..., l, x2, ..., x2, l, ..., l, ..., xn, ..., xn, l, ...l, ...)

where the same terms are repeated s-times. Since every convergent sequences is Cauchy, and moreover,
any Cauchy sequence is s-quasi-Cauchy, it follows that

limm→∞||∆stm,u1,u2, ...,un−1|| = limm→∞||tm+s − tm,u1,u2, ...,un−1|| = 0

where either
limm→∞||tm+s − l,u1,u2, ...,un−1|| = 0

or
limm→∞||l − tm,u1,u2, ...,un−1|| = 0

for every u1,u2, ...,un−1. This result implies that (tm) is an s-quasi Cauchy sequence. Now, since the function
f is assumed to be s-ward continuous, utilizing this assumption yields

limm→∞||∆s f (tm), f (u1), f (u2), ..., f (un−1)||
= limm→∞|| f (tm+s) − f (tm), f (u1), f (u2), ..., f (un−1)|| = 0

where either
limm→∞|| f (tm+s) − f (l), f (u1), f (u2), ..., f (un−1)|| = 0

or
limm→∞|| f (l) − f (tm), f (u1), f (u2), ..., f (un−1)|| = 0.

Hence, ( f (xk)) converges to f (l).

Since the sum of two s-ward continuous functions on A is s-ward continuous, and c f is s-ward continuous
for any constant real number c, the set of s-ward continuous functions on A forms a vector subspace of the
vector space of all continuous function on A.

Theorem 2.7. Every s-ward continuous function on A ⊂ X is also ward continuous on A.
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Proof. Assume that (xk) is a quasi-Cauchy sequence in A, and f is any s-ward continuous function on A. If
s = 1, the result is obvious. For s > 1, consider a sequence

(tm) = (x1, x1, ..., x1︸       ︷︷       ︸
s−times

, x2, x2, ..., x2︸       ︷︷       ︸
s−times

, ..., xn, xn, ..., xn︸       ︷︷       ︸
s−times

, ...),

that is, s-quasi-Cauchy, meaning

limm→∞||∆stm,u1,u2, ...,un−1|| = 0.

We then have

limm→∞||∆s f (tm), f (u1), f (u2), ..., f (un−1)|| = 0

by utilizing the s-ward continuity of the function f . Therefore,

limm→∞||∆ f (tm), f (u1), f (u2), ..., f (un−1)|| = 0.

Thus, the s-ward continuity of the function f implies the ward continuity of f on A ⊂ X.

Theorem 2.8. The image of an s-ward compact subset of X under an s-ward continuous function is s-ward compact.

Proof. Assume that f is an s-ward continuous function, and A is an s-ward compact subset of X. Choose
a sequence t as t = (tk) ⊂ f (A), where (tk) = ( f (xk)) with xk ∈ A. Since A is s-ward compact, there exists a
subsequence (xm) of (xk) such that

lim
m→∞

||∆sxm,u1,u2, ...,un−1|| = 0

for all u1,u2, ...,un−1 ∈ X. Utilizing the s-ward continuity of f , we have

lim
m→∞

||∆s f (xm), f (u1), f (u2), ..., f (un−1)|| = 0.

So, there exists an s-quasi-Cauchy subsequence ( f (xm)) of t. This result implies that the subset f (A) ⊂ X is
s-ward compact.

The s-ward continuous image of any compact subset of X is compact. This result follows directly from
Theorem 2.6.

Theorem 2.9. If a function f is uniformly continuous on a subset A of X, then it is also s-ward continuous on A.

Proof. Let f be a uniformly continuous function on A, and consider the sequence (xk) an s-quasi-Cauchy
sequence in A. The aim is to prove that the sequence ( f (xk)) is also an s-quasi-Cauchy sequence in A. Take
any ε > 0. There exists a δ > 0 such that if

||x − y,u1,u2, ...,un−1|| < δ, then || f (x) − f (y), f (u1), f (u2), ..., f (un−1)|| < ϵ.

For this δ > 0, there exists an N = N(δ) such that

||∆sxk,u1,u2, ...,un−1|| < δ

for every u1,u2, ...,un−1 ∈ X whenever k > N. The uniform continuity of f on A for every k > N implies

||∆s f (xk), f (u1), f (u2), ..., f (un−1)|| < ε

for every f (u1), f (u2), ..., f (un−1) ∈ X. Consequently, the sequence ( f (xk)) is s-quasi-Cauchy, demonstrating
that the function f is s-ward continuous.
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Theorem 2.10. The uniform limit of a sequence of s-ward continuous functions is also s-ward continuous.

Proof. Let ( ft) be a sequence of s-ward continuous functions uniformly converging to a function f . Consider
an s-quasi-Cauchy sequence (xk) in A, and choose any ε > 0. There exists an integer N ∈ Z+ such that

|| ft(x) − f (x), f (u1), f (u2), ..., f (un−1)|| <
ε
3

for every x ∈ A, and all f (u1), f (u2), ..., f (un−1) ∈ X whenever t ≥ N. Utilizing the s-ward continuity of fN,
there is a positive integer N1(ε) > N such that

||∆s ft(xk), f (u1), f (u2), ..., f (un−1)|| <
ε
3

for every t ≥ N1. Now, for t ≥ N1, we have

||∆s f (xk), f (u1), f (u2), ..., f (un−1)|| = || f (xk+s) − f (xk), f (u1), f (u2), ..., f (un−1)||
≤ || f (xk+s) − fN(xk+s), f (u1), f (u2), ..., f (un−1)|| + ||∆s fN(xk), f (u1), f (u2), ..., f (un−1)||

+|| fN(xk) − f (xk), f (u1), f (u2), ..., f (un−1)|| < ε3 +
ε
3 +

ε
3 = ε.

Therefore, the function f is s-ward continuous on A.

Theorem 2.11. The collection of the s-ward continuous functions on A ⊂ X forms a closed subset of the collection of
all continuous functions on A.

Proof. Let E be the collection of all s-ward continuous functions on A ⊂ X, and E be the closure of E. E is
defined such that for every x ∈ X, there exists xk ∈ E with limk→∞ xk = x, and E is closed if E = E. It is
obvious that E ⊆ E. Let f be any element of the set of all closure points of E, which means there exists a
sequence of points ft in E such that

lim
t→∞
|| ft − f , f (u1), f (u2), ..., f (un−1)|| = 0

for all f (u1), f (u2), ..., f (un−1) ∈ X, and ft is a s-ward continuous. Choose the sequence (xk) as any s-quasi-
Cauchy sequence. Since ( ft) converges to f , for every ε > 0 and x ∈ E, there is any N such that for every
t ≥ N,

|| f (x) − ft(x), f (u1), f (u2), ..., f (un−1)|| <
ε
3
.

As fN is s-ward continuous, N1 > N exists such that for all t ≥ N1,

||∆s fN(xk), f (u1), f (u2), ..., f (un−1)|| <
ε
3
.

Hence, for all t ≥ N1,

||∆s f (xk), f (u1), f (u2), ..., f (un−1)|| = || f (xk+s) − f (xk), f (u1), f (u2), ..., f (un−1)||
≤ || f (xk+s) − fN(xk+s), f (u1), f (u2), ..., f (un−1)|| + || f (xk) − fN(xk), f (u1), f (u2), ..., f (un−1)||

+||∆s fN(xk), f (u1), f (u2), ..., f (un−1)|| < ε3 +
ε
3 +

ε
3 = ε.

Since the function f is s-ward continuous in E, then E = E, using Theorem 2.6, and it concludes the proof.
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3. Conclusion

This paper investigates the generalization of the notions of quasi-Cauchy sequences and ward continu-
ous functions to the concepts of s-quasi-Cauchy sequences and s-ward continuous functions in n-normed
spaces. Additionally, intriguing interesting inclusion theorems related to ordinary continuity, uniform con-
tinuity, s-ward continuity, and s-ward compactness are established. The paper establishes that the uniform
limit of a sequence of s-ward continuous functions is s-ward continuous, and the set of s-ward continuous
functions forms a closed subset of the set of continuous functions. We recommend further research on
s-quasi-Cauchy sequences of points and fuzzy functions in an n-normed fuzzy space as potential avenues
for further studies. However, due to structural differences, the methods of proof may differ from those
presented in this study (see [16], [1]). Additionally, we suggest investigating s-quasi-Cauchy sequences of
double sequences in n-normed spaces as another potential area for further study (see [20], [14]).
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[16] Lj. D. R. Kočinac, V. A. Khan, K. M. A. S. Alshlool, H. Altaf, On some topological properties of intuitionistic 2-fuzzy n-normed linear

spaces, Hacet. J. Math. Stat. 49 (2020), 208–220.
[17] A. Malceski, l∞ as n-normed space, Mat. Bilten. 21 (1997), 103–110.
[18] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten 21 (1997), 81–102.
[19] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299–319.
[20] M. Mursaleen, S. K, Sharma, Riesz lacunary almost convergent double sequence spaces defined by sequence of Orlicz functions over

n-mormed spaces, TWMS J. Pure Appl. Math. 8 (2017), 43–63.


