Filomat 38:16 (2024), 5807–5818 https://doi.org/10.2298/FIL2416807A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A characterization of *h***-strongly porous subsets of** R

$\mathbf{Maya\ Altunok}^{a,*}, \mathbf{ Mehmet\ Küçükaslan}^{\mathbf{b}}$

^aTarsus University, Faculty of Engineering, Department of Natural and Mathematical Sciences, Turkey ^bMersin University, Faculty of Sciences and Arts, Department of Mathematics, Turkey

Abstract. In this paper, notion of *h*-porosity of the subsets of real numbers at zero is investigated. Then, a characterization for *h*-strongly porous subsets of real numbers is given.

1. Introduction

In real number system, the concept of porosity can be considered as the distribution of numbers within the set. A set is said to be porous if it contains "holes" or "gaps" in itself. More specifically, for a porous set, there exist intervals or neighborhoods that don't contain any elements of the set. First studies about set porosity was given by Denjoy in [5], [6] and Khintchine in [9]. Then, porosity arose a paper about cluster sets [7]. A lot of basic properties of porosity can be found in [10]. By the help of a special function the definition of upper porosity for a subset of real numbers at a point, redefined for the subsets of natural numbers at infinity [1]. Then, porosity convergence of real valued sequences defined by the authors in [2]. Some properties of porosity convergence was defined and studied in [3], [4]. Also, Dovgoshey and Bilet characterized the notion of strongly right upper porosity of a subset of $\mathbb R$ at a point [8]. They define a new class of subsets of \mathbb{R}^+ which are strongly porous at zero. It has many nontrivial modifications of the notion of porosity.

In this study, we deal with the problem considered in [8] by using *h*-porosity notion instead of right upper porosity notion.

Let $h : [0, +\infty) \to \mathbb{R}$ be a nonnegative, continuous and increasing function on $[0, +\infty)$ such that

 $h(0) = 0$, $h(x) > 0$ for all $x > 0$

holds.

Definition 1.1. The right upper *h*-porosity of $M \subset \mathbb{R}$ at zero is defined as

$$
\overline{p}_h(M) := \limsup_{\delta \to 0^+} \frac{\lambda_h(M,0,\delta)}{h(\delta)},
$$
\n(1)

where λ(*M*, 0, δ) denotes the length of the largest open subinterval of (0, δ) that contains no point of *M*, and $\lambda_h(M, 0, \delta) := h(\lambda(M, 0, \delta)).$

²⁰²⁰ *Mathematics Subject Classification*. Primary 28A10; Secondary 28A05.

Keywords. porosity, strongly porous sets, subsets of real numbers.

Received: 08 August 2023; Revised: 20 February 2024; Accepted: 04 March 2024

Communicated by Ljubiša D. R. Kočinac

^{*} Corresponding author: Maya Altınok

Email addresses: mayaaltinok@tarsus.edu.tr (Maya Altınok), mkkaslan@gmail.com (Mehmet Küçükaslan)

The right lower *h*-porosity for $M \subset \mathbb{R}^+$ at zero can defined similarly, replaced lim inf instead of lim sup. In this paper, we will take account only the right upper h -porosity of subsets of \mathbb{R}^+ and we will use following terminology:

A set $M \subseteq \mathbb{R}^+$ is called:

(i) *h*-porous at zero if $\overline{p}_h(M) > 0$;

(ii) *h*-strongly (denoted by *h*-str) porous at zero if $\overline{p}_h(M) = 1$;

(iii) *h*-nonporous at zero if $\overline{p}_h(M) = 0$.

Let M_d be the set of all decreasing sequences $\tilde{\mu} = {\mu_n}$ with $\mu_n \in M$ for all $n \in \mathbb{N}$ such that $\lim_{n \to \infty} \mu_n = 0$ holds.

Remark 1.2. Let's point out that $M_d = \emptyset \Leftrightarrow 0 \notin M'$ (*M'* denotes the set of all accumulation points of *M*).

Let I_M be the set of all open interval sequences $\{(k_n, l_n)\}\subseteq \mathbb{R}^+$ such that following conditions hold: (i) $k_n > 0$ for each $n \in \mathbb{N}$.

(ii) (k_n, l_n) is the interior of a connected component of *extM* (exterior of *M*) for all $n \in \mathbb{N}$, i.e., $(k_n, l_n) \cap M = \emptyset$ but for every $(k_n, l_n) \subseteq (a, b)$ we have

 $(a, b) \neq (k_n, l_n) \Rightarrow (a, b) \cap M \neq \emptyset.$

(iii) The limit relations $\lim_{n\to\infty} h(k_n) = 0$ and $\lim_{n\to\infty} \frac{h(l_n) - h(k_n)}{h(l_n)}$ $\frac{h^{(1-n)(k_n)}}{h(l_n)}=1$ hold. Let us note that if $0 \notin M'$, then we put $I_M = \emptyset$.

Now, let us define an equivalence relation, "^{*h*}["] on the set of sequences of R⁺ by following way: Let $\tilde{x} = \{x_n\}$ and $\tilde{y} = \{y_n\}$, $n \in \mathbb{N}$. We write $\tilde{x} \stackrel{h}{\asymp} \tilde{y}$ if there are constants $c_*, c^* > 0$ such that

$$
c_*h(x_n) \le h(y_n) \le c^*h(x_n) \tag{2}
$$

holds, for all $n \in \mathbb{N}$. Equivalently, we can say $\tilde{x} \overset{h}{\asymp} \tilde{y}$ if

$$
0 < \liminf_{n \to \infty} \frac{h(x_n)}{h(y_n)} \le \limsup_{n \to \infty} \frac{h(x_n)}{h(y_n)} < \infty \tag{3}
$$

holds.

Definition 1.3. Let $M \subset \mathbb{R}^+$ be a set and $\tilde{\alpha} \in M_d$ be a sequence. If there is an interval sequence $\{(k_n, l_n)\}\$ of *I^M* such that

$$
\tilde{\alpha} \stackrel{h}{\asymp} \tilde{k} \tag{4}
$$

where $\tilde{k} = \{k_n\}$, then the set *M* is called *h*- $\tilde{\alpha}$ -str porous at zero.

The set *M* is completely *h*-str porous at zero if *M* is *h*- $\tilde{\alpha}$ -str porous at zero for every $\tilde{\alpha} \in M_d$.

Remark 1.4. If $0 \notin M'$, then from Remark 1.2 the set *M* is completely *h*-str porous at zero.

Let us denote the set of all completely *h*-str porous at zero subsets of \mathbb{R}^+ with $\mathbf{CSP}_h(0)$. Namely, **CSP_h(0**) := { $M ⊆ ℝ⁺$: *M* is completely *h* -str porous at zero}

2. A characterization of CSPh(0)

In this section, we will focus on to characterizing of the sets of **CSPh**(**0**). At first, we shall start to serve some Lemmas for to achieve our aim.

Lemma 2.1. Let $M \subset \mathbb{R}^+$ be a set, $\tilde{\alpha} = \{\alpha_n\}_{n \in \mathbb{N}}$, $\tilde{\beta} = \{\beta_k\}_{k \in \mathbb{N}} \in M_d$ be arbitrary sequences. If M is h- $\tilde{\alpha}$ -str porous at *zero and there is* $n = n(k)$ *for every natural number k with*

$$
c_*h(\alpha_n) \le h(\beta_k) \le c^*h(\alpha_n),\tag{5}
$$

hold where c_{}, c* ∈* (0, ∞) *be any constants. Then M is also h-β̃-str porous at zero.*

Proof. Let *M* ⊂ R⁺ be *h*- $\tilde{\alpha}$ -str porous at zero set. Then, the inequality (5) and the definition of *h*- $\tilde{\alpha}$ -str porous at zero gives that *M* is *h*- $\tilde{\beta}$ -str porous at zero. \square

Example 2.2. Let us consider a sequence $\tilde{m} = \{m_n\} = \left\{\frac{1}{n!}\right\}$ $n \in \mathbb{N}$ and $h(x) = x^2$ for $x \in \mathbb{R}^+$. Define a set $M \subset \mathbb{R}^+$ as *M* := {0} ∪ { m_n : $n \in \mathbb{N}$ }.

Figure 1: The set M is pointed here

Obviously $\{(m_{n+1}, m_n)\}_{n\in\mathbb{N}}\in I_M$ and M is x^2 - m -str porous at zero. Also, every sequence $\tilde{\beta}\in M_d$ have the condition of Lemma 2.1 when we take $\tilde{\alpha} = \tilde{m}$, $c_* = c^* = 1$.

So, *M* is x^2 - $\tilde{\beta}$ -str porous at zero for every $\tilde{\beta} \in M_d$. Hence, $M \in \mathbf{CSP_h(0)}$ holds.

Example 2.3. Let \tilde{m} be the sequence defined in Example 2.2 and $h(x) = \ln(1 + x)$ for $x \in [0, \infty)$. Define the set *N* as follows:

$$
N = \{0\} \cup \{[m_n, 2m_n] : n \in \mathbb{N}\}.
$$

It is clear that $2m_{n+1} < m_n$ for all $n > 1$. Basic Mathematical calculations gives that the sequence $\{(2m_{1+n+1}, m_{1+n})\}$ belongs to I_N . Write $2m = \{2m_n\}$. Then, *N* is *h*-2 m -str porous at zero for $h(x) = \ln(1 + x)$. Let $\tilde{\beta} = {\beta_k} \in N_d$. For every $k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$
\ln(1 + m_n) \le \ln(1 + \beta_k) \le \ln(1 + 2m_n). \tag{6}
$$

holds. From same reason as in Example 2.2, the inequality (6) gives that $N \in \mathbf{CSP}_h(0)$.

Lemma 2.4. Let $M \subset \mathbb{R}^+$, $\tilde{\alpha} \in M_d$ and $\{(k_n, l_n)\} \in I_M$. Then, following expressions are equivalent:

(i) $\tilde{\alpha} \stackrel{h}{\asymp} \tilde{k}$ where $\tilde{k} = \{k_n\}$. *(ii) Following inequalities*

$$
1 \le \liminf_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)} \text{ and } \limsup_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)} < \infty
$$

hold.

(iii)

$$
\limsup_{n\to\infty}\frac{h(k_n)}{h(\alpha_n)}<\infty \quad and \quad h(\alpha_n)\leq h(k_n)
$$

*hold for su*ffi*ciently large n.*

Proof. It is easy to see that (*ii*) implies that (*i*). Let us assume that (*iii*) is true. Since $h(\alpha_n) \le h(k_n)$, then $1 \leq \frac{h(k_n)}{h(\alpha_n)}$ $\frac{h(k_n)}{h(\alpha_n)}$ is true for all $n \in \mathbb{N}$. This implies that $1 \leq \liminf_{n \to \infty} \frac{h(k_n)}{h(\alpha_n)}$ $\frac{h(k_n)}{h(\alpha_n)}$ holds. Hence, *(ii)* is proved.

Now, let's prove that (*i*) gives (*iii*). The inequality lim sup_{*n*→∞} $\frac{h(k_n)}{h(\alpha_n)}$ $\frac{h(k_n)}{h(\alpha_n)} < \infty$ is obtained by considering the assumption $\tilde{\alpha} \stackrel{h}{\asymp} \tilde{k}$. Also, we have

$$
\lim_{n \to \infty} \frac{h(l_n)}{h(k_n)} = \infty,\tag{7}
$$

because of $\{(k_n, l_n)\}\in I_M$. The condition (*i*) implies that the sequence $\left(\frac{h(a_n)}{h(k_n)}\right)$ $\left(\frac{h(\alpha_n)}{h(k_n)}\right)$ is bounded from below and upper. So, if we consider (7), then we can say that there exists $n_0 \in \mathbb{N}$ such that

$$
\frac{h(\alpha_n)}{h(k_n)} \leq \frac{h(l_n)}{h(k_n)}
$$

holds for all $n \geq n_0$. Then, we have

$$
h(\alpha_n) \le h(l_n) \tag{8}
$$

for all $n \geq n_0$. From (8) it can be obtained by considering the properties of *h* that $\alpha_n \leq l_n$ holds for all $n \geq n_0$. In this situation, $k_n \leq \alpha_n$ may be satisfied for all $n \geq n_0$. But this is not possible because $\alpha_n \in M$ and $(k_n, l_n) \cap M = \emptyset$. So, $\alpha_n \leq k_n$ must be hold. Hence, the proof is completed. \square

Remark 2.5. Let $M \subset \mathbb{R}^+$ is *h*- $\tilde{\alpha}$ -str porous at zero for $\tilde{\alpha} = \{\alpha_n\} \in M_d$. Then there is an interval sequence $\{(k_n, l_n)\}_{n\in\mathbb{N}}$ in I_M such that the conditions (*ii*) and (*iii*) of Lemma 2.4 are equivalent with the situation of *h*-α˜-str porous at zero of *M*.

By the help of Remark 2.5 we can easily establish a set *W* ⊂ \mathbb{R}^+ such that *W* is *h*-str porous at zero but $W \notin \mathbf{CSP}_h(0)$

Example 2.6. Let $\tilde{m} = \left\{\frac{1}{n!}\right\}$ be the sequence in Example 2.2 and $h(x) = x^2$ for $x \in \mathbb{R}^+$. Let us establish the set *W* as follows:

$$
W = \{0\} \cup \left\{ \left[\frac{1}{(2n+1)!}, \frac{1}{(2n)!} \right] : n \in \mathbb{N} \right\}.
$$

Figure 2: The set W is bold here

The sequence $\left\{\left(\frac{1}{(2n+2)!}, \frac{1}{(2n+1)!}\right)\right\}$ belongs to I_W and $\lim_{n\to\infty} \frac{(\frac{1}{(2n+1)!})^2}{(\frac{1}{(2n+2)!})^2}$ $\frac{\left(\frac{1}{(2n+1)!}\right)^2}{\left(\frac{1}{(2n+2)!}\right)^2} = \infty$. So, *W* is *x*²-str porous at zero. Now, let us take account the sequence $\tilde{\eta} = {\eta_n}$ with $\eta_n = \sqrt{\frac{\eta_n}{n}}$ $\sqrt{\frac{1}{(2n+1)!\frac{1}{(2n)!}}}$. It is clear that $\tilde{\eta}$ belongs to W_d . Let $\{(k_n, l_n)\}\in I_W$ be an arbitrary interval sequence and $\eta_n \leq k_n$ for all $n \in \mathbb{N}$. Since, $\eta_n \in \left[\frac{1}{(2n+1)!}, \frac{1}{(2n)!}\right] \subseteq W$, then we have $\eta_n \leq \frac{1}{(2n)!} \leq k_n$. If $W \in \mathbf{CSP_h}(0)$, then W is $\tilde{\eta}$ -str porous at zero. Thus, by Remark 2.5, we can take $\{(k_n, l_n)\}\$ such that $\eta_n \leq k_n$ for $n \in \mathbb{N}$. So,

$$
\limsup_{n\to\infty}\frac{h(k_n)}{h(\eta_n)}\geq \limsup_{n\to\infty}\frac{h(m_{2n})}{h(\eta_n)}=\limsup_{n\to\infty}\frac{[\frac{1}{(2n)!}]^2}{[\frac{1}{(2n+1)!}\frac{1}{(2n)!}]}=\infty.
$$

Hence, we obtain from Remark 2.5 that A is not $\tilde{\eta}$ -str porous at zero, contrary to the assumption. So, $W \notin \mathbf{CSP}_h(0)$.

If a subset $M\subset \mathbb{R}^+$ is h - $\tilde{\beta}$ -str porous at zero for $\tilde{\beta}\in M_d$, then the set M is h -str porous at zero. Also, we have following proposition.

Proposition 2.7. Let $M \subset \mathbb{R}^+$ be a set and $0 \in M'$. If M is h-str porous at zero, then there exists $\tilde{\beta} \in M_d$ such that *M* is *h*- $\tilde{\beta}$ -str porous at zero.

Remark 2.8. If $0 \notin M'$, then *M* is *h*-str porous at zero but from Remark 1.2 there isn't any $\tilde{\beta} \in M_d$.

Definition 2.9. The set *M* ⊂ \mathbb{R}^+ is uniformly *h*-str porous at zero if there is a constant *c* > 0, such that for every $\tilde{\beta} \in M_d$ there exists $\{(k_n, l_n)\}\in I_M$ such that

$$
1 \le \liminf_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \le \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \le c \tag{9}
$$

holds, for all sufficiently large *n*.

Remark 2.10. If $0 \notin M'$, then from Remark 1.2 the set *M* is uniformly *h*-str porous at zero.

Every uniformly *h*-str porous at zero set belongs to **CSPh**(**0**). Moreover, the converse of this fact is also true and we will show this at the end of the paper.

A set $I_M(\tilde{\beta}) \subset I_M$ for $\tilde{\beta} \in M_d$ define by the following rule:

$$
\{(k_n, l_n)\}\in I_M(\tilde{\beta}) \Leftrightarrow \{(k_n, l_n)\}\in I_M \text{ and } \beta_n \leq k_n \text{ for sufficiently large } n \in \mathbb{N}.
$$

Let

$$
C(h(\tilde{\beta})) := \inf_{\{(k_n, l_n)\} \in I_M(\tilde{\beta})} \left(\limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} \right) \text{ and } C(h(M)) := \sup_{\tilde{\beta} \in M_d} \left(C(h(\tilde{\beta})) \right). \tag{10}
$$

Remark 2.11. Let $M \subset \mathbb{R}^+$ and $0 \notin M'$. *M* is *h*-str porous at zero $\Leftrightarrow I_M(\tilde{\beta}) \neq \emptyset$ for every $\tilde{\beta} \in M_d$.

M is completely *h*-str porous at zero $\Leftrightarrow C(h(\tilde{\beta})) < \infty$ for every $\tilde{\beta} \in M_d$. *M* is uniformly *h*-str porous at zero $\Leftrightarrow C(h(M)) < \infty$.

Lemma 2.12. Let $M \subset \mathbb{R}^+$ be a set. If $\tilde{\beta} = {\beta_n} \in M_d$ and $\{(k_n, l_n)\}_{n \in \mathbb{N}} \in I_M$ is a sequence satisfying $\tilde{k} \stackrel{h}{\asymp} \tilde{\beta}$, then $\tilde{k} := \{k_n\}$ and $\tilde{l} := \{l_n\}$ are decreasing sequences.

Proof. It is sufficient to prove that one of the sequence \tilde{k} and \tilde{l} is decreasing. Let us assume that \tilde{k} isn't decreasing. Then, there is a set $E \subseteq \mathbb{N}$, it has infinitely many elements, with

$$
k_{n+1} > k_n \tag{11}
$$

holds for all *n* ∈ *E*. Since (k_n, l_n) ∩ *M* = Ø, then (11) implies that $h(k_{n+1}) \ge h(l_n) > h(k_n)$. By Lemma 2.4, $h(\beta_n) \leq h(k_n)$ holds for all sufficiently large *n*. Also, for this *n*, we can assume that $h(\beta_{n+1}) \leq h(\beta_n)$ because $\tilde{\beta}$ is decreasing. So, we obtain

$$
h(k_{n+1}) \ge h(l_n) > h(k_n) \ge h(\beta_n) > h(\beta_{n+1})
$$
\n(12)

for sufficiently large $n \in E$. From (12) we have

$$
\frac{h(l_n)}{h(k_n)} \leq \frac{h(k_{n+1})}{h(\beta_{n+1})}.
$$

Thus following inequality contradicts to Lemma 2.4

$$
\infty = \lim_{\substack{n\in E\\ n\to\infty}} \frac{h(l_n)}{h(k_n)} \le \limsup_{\substack{n\in E\\ n\to\infty}} \frac{h(k_{n+1})}{h(\beta_{n+1})} \le \limsup_{n\to\infty} \frac{h(k_{n+1})}{h(\beta_{n+1})}.
$$

Proposition 2.13. Let $M \subset \mathbb{R}^+$, $\tilde{\beta} \in M_d$, and $\{(k_n^{(1)}, l_n^{(1)})\}$, $\{(k_n^{(2)}, l_n^{(2)})\} \in I_M$. If $\tilde{k}^1 \stackrel{h}{\asymp} \tilde{\beta}$ and $\tilde{k}^2 \stackrel{h}{\asymp} \tilde{\beta}$, then there exists $N_0 \in \mathbb{N}$ *such that*

$$
(k_n^{(2)}, l_n^{(2)}) = (k_n^{(1)}, l_n^{(1)}) \tag{13}
$$

for every $n \geq N_0$ *where* $\tilde{k}^i := \{k_n^{(i)}\}, i = 1, 2$ *.*

Proof. Let $\tilde{k}^1 \stackrel{h}{\approx} \tilde{\beta}$ and $\tilde{k}^2 \stackrel{h}{\approx} \tilde{\beta}$ hold. Then, from Lemma 2.12, we obtain \tilde{k}^i are decreasing for $i = 1, 2$. We also have $\tilde{\beta} \stackrel{h}{\asymp} \tilde{k}^1$ and $\tilde{\beta} \stackrel{h}{\asymp} \tilde{k}^2$. Also, this implies $\tilde{k}^1 \stackrel{h}{\asymp} \tilde{k}^2$ holds. From Lemma 2.4 there exists $N_0 \in \mathbb{N}$ such that $\tilde{k}^{(1)} \leq \tilde{k}^{(2)}$ and $\tilde{k}^{(2)} \leq \tilde{k}^{(1)}$ for $n \geq N_0$. Hence, $\tilde{k}^{(1)} = \tilde{k}^{(2)}$ for every $n \geq N_0$ and (13) holds for such *n*.

Let's define a set $I_M^d \subseteq I_M$ by the following rule:

 $\{(k_n, l_n)\}\in I^d_M \Leftrightarrow \{(k_n, l_n)\}\$ and $\{k_n\}$ is decreasing.

Remark 2.14. If $\{(k_n, l_n)\}\in I^d_M$ for $M \subseteq \mathbb{R}^+$ then there are $\tilde{\alpha} = \{\alpha_n\}$ and $\tilde{\beta} = \{\beta_n\} \in M_d$ sucht that

$$
\lim_{n \to \infty} \frac{h(\alpha_n)}{h(k_n)} = \lim_{n \to \infty} \frac{h(\beta_n)}{h(l_n)} = 1,
$$
\n(14)

holds.

Definition 2.15. ([8]) Let $\tilde{K} := \{(k_n, l_n)\}, \tilde{E} := \{(a_n, b_n)\} \in I^d_M$. We say $\tilde{K} \leq \tilde{E}$ if there are $n_1 = n_1(\tilde{K}, \tilde{E}) \in \mathbb{N}$ and a function $f : \mathbb{N}_{n_1} \to \mathbb{N}$, where $\mathbb{N}_{n_1} := \{n_1, n_1 + 1, ...\}$, such that

$$
k_n = a_{f(n)} \tag{15}
$$

satisfied for every $n \in \mathbb{N}_{n_1}$.

It is called that $\tilde{E} \in I^d_M$ is universal if $\tilde{K} \leq \tilde{E}$ for every $\tilde{K} \in I^d_M$. If \tilde{K} is a subsequence of \tilde{E} , then $\tilde{K} \leq \tilde{E}$ holds. Let us show that the converse is not true, in general:

Example 2.16. Let $\{m_n\}$ be a strictly decreasing sequence with $\lim_{n\to\infty} \frac{h(m_{n+1})}{h(m_n)}$ *h*(*m*_{*n*})</sub> = 0 and let *M* = {0} ∪ {*m*_{*n*} : *n* ∈ **N**}. Let us take into account a sequence $\tilde{E} = \{(e_k, f_k)\}\$ with $(e_k, f_k) = (m_{n+1}, m_n) \Leftrightarrow n^2 \le k < (n+1)^2$. From Example 2.2, \tilde{X} = { (m_{n+1}, m_n) } ∈ *I_M*. By Lemma 2.1 we have \tilde{E} ∈ *I_M*. So, Definition 2.15 implies that \tilde{E} ≤ \tilde{X} . It is clear that $\tilde{E} \nsubseteq \tilde{X}$.

Definition 2.15 can be reformulated by the following way:

Proposition 2.17. Let $\tilde{K} = \{(k_n, l_n)\}\, \tilde{E} = \{(a_n, b_n)\}\in I^d_M$. Then, $\tilde{K} \leq \tilde{E}$ if and only if there are $n_1 = n_1(\tilde{K}, \tilde{E})$ and $f: \mathbb{N}_{n_1} \to \mathbb{N}$ *such that*

 $l_n := b_{f(n)}$

holds for all $n \in \mathbb{N}_{n_1}$.

Proposition 2.18. Let M ⊂ R be a h-str porous set at zero and 0 ∉ M'. The relation " \leq " is a quasi-ordering (binary *relation with reflexive and transitive) on the set I^d M .*

Proof. It is clear that \leq is reflexive. So, we must prove that \leq is transitive. Let $\tilde{K} \leq \tilde{E}$ and $\tilde{E} \leq \tilde{T}$ for $\tilde{K} = \{(k_n, l_n)\}, \tilde{E} = \{(a_n, b_n)\}, \tilde{T} = \{(t_n, p_n)\}\in I_M^d$. From Definition 2.15 there exist $f_1 : \mathbb{N}_{n_1} \to \mathbb{N}$ and $f_2 : \mathbb{N}_n \to \mathbb{N}$ increasing functions such that

 $k_n = a_{f_1(n)}$ holds for $n \ge n_1$ and $a_n = t_{f_2(n)}$ holds and $n \ge n_2$.

Take $m_0 := \max\{n \in \mathbb{N} : f_1(n) \le n_2\}$. Then, $m_0 < \infty$ because f_1 is increasing and unbounded. Let *n*₃ := max{ m_0, n_1 }. If {*n* ∈ **N** : *f*₁(*n*) ≤ *n*₂} = \emptyset , then *n*₃ = *n*₁. So, *n*₃ < ∞ holds. From construction *f*₁(*n*) ≥ *n*₂ for every $n \in \mathbb{N}_{n_3}$. So, we have

$$
k_n = a_{f_1(n)} = t_{f_2(f_1(n))}
$$

for such *n*. Hence, \tilde{K} ≤ \tilde{E} ∧ \tilde{E} ≤ \tilde{T} holds and it implies \tilde{K} ≤ \tilde{T} . \Box

If we use standard procedure we may obtain an equivalence relation " \equiv " on the set I^d_M as follows:

$$
\tilde{K} \equiv \tilde{T} \Leftrightarrow \tilde{K} \le \tilde{T} \text{ and } \tilde{T} \le \tilde{K}
$$
\n⁽¹⁶⁾

Let $\tilde{U} = \{(u_n, v_n)\} \in I^d_M$ be universal for $M \in \mathbb{R}^+$. Define following quantity

$$
\mathcal{M}(\tilde{U}) := \limsup_{n \to \infty} \frac{h(u_n)}{h(v_{n+1})}.\tag{17}
$$

Let I_M^{sd} be the set of all $\{(k_n, l_n)\}\in I_M^d$ with $\{k_n\}$ is strictly decreasing sequence.

Lemma 2.19. If $\tilde{T} = \{(t_n, p_n)\}\in I^d_M$ is universal for $M \subset \mathbb{R}^+$, then \tilde{T} have a subsequence \tilde{T}' such that $\tilde{T}' = \{t_{n_k}, p_{n_k}\}\$ *is also universal and* $\tilde{T}' \in I^{sd}_M$.

Proof. In construction of such subsequence we use mathematical induction. Since $\{t_n\}$ is decreasing, then there is $n_1 \in \mathbb{N}$ such that $t_{n+1} < t_n$ for $n \ge n_1$. Also, from $\lim_{n \to \infty} t_n = 0$ we have, $t_n < t_{n+1}$ for all $n \ge n_1$. Now, let us set

$$
n_{k+1} := \min\{n \in \mathbb{N}_{n_k} : t_n < t_{n_k}\}, \quad \text{for } k = 1, 2, \dots \tag{18}
$$

For every $n \geq n_1$ there is a unique $k \in \mathbb{N}$ such that

$$
n_k \leq n < n_{k+1},\tag{19}
$$

holds. Moreover, if *n* satisfies (19), then the decrease of $\{t_n\}$, $n \in \mathbb{N}_{n_1}$ implies that

$$
t_{n_k} = t_n. \tag{20}
$$

Now, let us define $f : \mathbb{N}_{n_1} \to \mathbb{N}$ with $f(n) = k$ where k is the unique index satisfying (19). By the above steps we have $\tilde{T} \leq \tilde{T}'$. Proposition 2.18 gives that " \leq " is transitive. Also, we have $\tilde{L} \leq \tilde{T}$ for every $\tilde{L} \in I_M^d$ because \tilde{T} is universal. Then, $\tilde{L} \leq \tilde{T}'$ for every $\tilde{L} \in I^d_M$. So, \tilde{T}' is also universal. From (18) we have $t_{n_k} > t_{n_{k+1}}$ for every $k \in \mathbb{N}$. So, $\{t_{n_k}\}$ is strictly decreasing, i.e., $\tilde{T}' \in I_M^{sd}$

Lemma 2.20. *Let* $M \in \mathbf{CSP_h}(0)$ *. If* $\tilde{T} = \{(t_n, p_n)\} \in I^{\text{sd}}_M$ *is universal, then*

$$
\mathcal{M}(\tilde{T}) = C(h(M)) \tag{21}
$$

where C(*h*(*M*)) *and* M(*T*˜) *are defined by* (10) *and* (17)*, respectively.*

Proof. Let $\tilde{T} \in I_M^{sd}$ be universal. Firstly, we shall prove

$$
\mathcal{M}(\tilde{T}) \ge C(h(M)).\tag{22}
$$

Equation (22) holds if and only if

$$
\mathcal{M}(\tilde{T}) \ge C(h(\tilde{\beta}))\tag{23}
$$

for every $\tilde{\beta} \in M_d$ and $C(h(\tilde{\beta}))$ was defined in (10). Now, let $\tilde{\beta} \in M_d$. By the hypothesis, $M \in \mathbf{CSP}_h(0)$. So, there exists $\{(k_n, l_n)\}\in I_M$ so that $\tilde{\beta}\stackrel{h}{\asymp}\tilde{k}$. By Lemma 2.4 we have

$$
\limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)} < \infty. \tag{24}
$$

Also, for sufficiently large *n*

$$
h(\beta_n) \le h(k_n) \tag{25}
$$

holds. Proposition 2.13 and the definition of $C(h(\tilde{\beta}))$ imply

$$
C(h(\tilde{\beta})) = \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)}.
$$
\n(26)

So, to prove (23) we must show that

$$
\mathcal{M}(\tilde{T}) \ge \limsup_{n \to \infty} \frac{h(k_n)}{h(\beta_n)}.\tag{27}
$$

By Lemma 2.12 we have

$$
\tilde{E} := \{ (k_n, l_n) \} \in I^d_{M'} \tag{28}
$$

(28) implies that $\tilde{E} \leq \tilde{T}$ holds because \tilde{T} is universal. Hence, there are $n_1 \in \mathbb{N}$ and an increasing function $f: \mathbb{N}_{n_1} \to \mathbb{N}$ such that

$$
k_n \ge k_{n+1} \text{ and } k_n = t_{f(n)} \tag{29}
$$

for every $n \ge n_1$. Since $\tilde{T} = \{(t_n, p_n)\} \in I^{sd}_{M'}$ let us assume that $\tilde{t} = \{t_n\}$ is strictly decreasing. Replacing $\tilde{\beta}$ by a suitable subsequence we may assume that \tilde{a} and $\tilde{\beta}$ are also strictly decreasing, f is strictly increasing, and

$$
\beta_1 \le t_1, \lim_{n \to \infty} \frac{h(a_n)}{h(\beta_n)} = \limsup_{n \to \infty} \frac{h(a_n)}{h(\beta_n)}
$$
\n(30)

hold. The intervals $[p_{n+1}, t_n]$, for $n = 1, 2, ...,$ together with the interval $[p_1, \infty)$ are a cover of the set $M_0 = M \setminus \{0\}$, i.e.,

$$
M_0\subseteq [p_1,\infty)\cup\left(\bigcup_{n\in\mathbb{N}}[p_{n+1},t_n]\right).
$$

This cover has pairwise disjoint elements and $h(\beta_1) \leq h(t_1)$, $n \in \mathbb{N}$. So, there is unique $s(n) \in \mathbb{N}$ with

$$
\beta_n \in [p_{s(n)+1}, t_{s(n)}]. \tag{31}
$$

We claim that the equality

$$
s(n) = f(n) \tag{32}
$$

holds for all sufficiently large *n*. By using (25), (29) and (31) we obtain

$$
\beta_n \le t_{f(n)} \text{ and } \beta_n \ge p_{s(n)+1}. \tag{33}
$$

Hence, (33) and following inequality

 $h(p_{s(n)+1}) > h(t_{s(n)+1}) > h(t_{s(n)+2}) > h(t_{s(n)+3}) > ...$

imply that

$$
f(n) \le s(n) \tag{34}
$$

holds. Let us assume that (34) is strict for $n \in E \subseteq \mathbb{N}$, such that *E* is an infinite set. i.e.,

$$
f(n) \le s(n) - 1 \tag{35}
$$

for $n \in E$. Since $\tilde{a} \stackrel{h}{\asymp} \tilde{\beta}$ and $a_n = t_{f(n)}$, there is a constant $c^* \in (0,1)$ such that

$$
c^*h(t_{f(n)}) \le h(\beta_n) \le h(t_{f(n)})
$$
\n(36)

holds for all sufficiently large *n*. From (31), (34) and (36), it follows that

$$
c^*h(t_{f(n)}) \le h(\beta_n) \le h(t_{s(n)}) \le h(t_{f(n)}).
$$
\n(37)

Since $\tilde{t} = \{t_n\}$ is strictly increasing, then $(t_i, p_i) \cap (t_j, p_j) = \emptyset$ if $i \neq j$ and (35) implies that

$$
h(t_{s(n)}) < h(p_{s(n)}) \leq h(t_{s(n)-1}) \leq h(t_{f(n)}) < h(p_{f(n)}).
$$

Together (37) and this inequality

$$
c^*h(t_{f(n)}) \le h(\beta_n) \le h(t_{s(n)}) < h(p_{s(n)}) \le h(t_{s(n)-1}) < h(t_{f(n)})
$$

for $n \in E$. So, we have

$$
\frac{1}{c^*} = \lim_{n \to \infty} \frac{h(t_{f(n)})}{c^* h(t_{f(n)})} \ge \limsup_{\substack{n \to \infty \\ n \in E}} \frac{h(p_{s(n)})}{h(t_{s(n)})}
$$

contrary to the limit relation

$$
\lim_{n\to\infty}\frac{h(p_n)}{h(t_n)}=\infty.
$$

Thus, the set of $n \in \mathbb{N}$ has the condition $f(n) < s(n)$ is finite. So, (32) holds. Now we can prove (27) easily. By (29) ad (32) we have

$$
a_n = t_{f(n)} = t_{s(n)}.
$$

Equation (32) implies that $h(\beta_n) \geq h(l_{s(n)+1})$. Consequently

.

$$
\frac{h(a_n)}{h(\beta_n)} \leq \frac{h(t_{s(n)})}{h(p_{s(n)+1})}
$$

So,

$$
\limsup_{n\to\infty}\frac{h(a_n)}{h(\beta_n)}\leq \limsup_{n\to\infty}\frac{h(t_{s(n)})}{h(p_{s(n)+1})}\leq \limsup_{n\to\infty}\frac{h(t_n)}{h(p_{n+1})}=\mathcal{M}(\tilde{T}).
$$

(27) follows, so (22) is proved.

For to prove

$$
\mathcal{M}(\tilde{T}) \le C(h(M))\tag{38}
$$

let us take a sequence $\tilde{\beta} = {\beta_n} \in M_d$ such that (31) holds for $s(n) = n$ and

$$
\lim_{n \to \infty} \frac{h(p_{n+1})}{h(\beta_n)} = 1. \tag{39}
$$

 $\tilde{\beta}$ can be constructed as in the proof of Proposition 2.7. The set *M* is $\tilde{\beta}$ -str porous at zero because $M \in \mathbf{CSP}_h(0)$. So, there is $\tilde{a} \stackrel{h}{\asymp} \tilde{\beta}$ such that $\{(a_n, b_n)\} \in I^d_M$. The sequence \tilde{a} is decreasing from Lemma 2.12.

Since $\beta_n \in [p_{n+1}, t_n]$, then by using (32) we have

$$
a_n=p_n
$$

for all sufficiently large *n*. From (26) and (39), we have also

$$
C(h(\tilde{\beta})) = \limsup_{n \to \infty} \frac{h(a_n)}{h(\beta_n)}
$$

\n
$$
= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} \frac{h(p_{n+1})}{h(\beta_n)}
$$

\n
$$
= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} \limsup_{n \to \infty} \frac{h(p_{n+1})}{h(\beta_n)}
$$

\n
$$
= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_{n+1})} = \mathcal{M}(\tilde{T}).
$$
\n(40)

Since $C(h(M)) \ge C(h(\tilde{\beta}))$, then (38) follows. \square

From (40) we have following result.

Corollary 2.21. Let $M \in \mathbf{CSP_h(0)}$ for $M \subset \mathbb{R}^+$. If $\tilde{T} = \{(t_n, p_n)\} \in I^{\mathcal{sd}}_M$ is universal, then $M(\tilde{T}) < \infty$.

Remark 2.22. From Lemma 2.20 $\mathcal{M}(\tilde{T}) = C(h(M))$ holds for every universal $\tilde{T} \in I_M^{sd}$. Assume that $\tilde{T} \in I^d_M$ is universal but $\tilde{T} \notin I^{sd}_M$. Describe a set $E \subseteq \mathbb{N}$ by the rule

$$
n \in E \Leftrightarrow n \in \mathbb{N}
$$
 and $(t_{n+1}, p_{n+1}) = (t_n, p_n)$.

Let $\tilde{T}' \in I^{\text{sd}}_M$ be the universal element of I^d_M built from \tilde{T} as in Lemma 2.19. If we use the definition of the set *E* we have

$$
\mathcal{M}(\tilde{T}) = \limsup_{n \to \infty} \frac{h(t_{n+1})}{h(p_n)} = \limsup_{n \to \infty} \frac{h(t_{n+1})}{h(p_n)} \vee \limsup_{n \to \infty} \frac{h(t_{n+1})}{h(p_n)}
$$

$$
= \limsup_{n \to \infty} \frac{h(t_n)}{h(p_n)} \vee \mathcal{M}(\tilde{T}') = 0 \vee \mathcal{M}(\tilde{T}') = \mathcal{M}(\tilde{T}').
$$

So, if \tilde{T} , $\tilde{L} \in I_M^d$ are universal, then $\mathcal{M}(\tilde{T}) = \mathcal{M}(\tilde{L})$.

Now, we are ready to give final theorem.

Theorem 2.23. Let $M ⊆ ℝ⁺$ be h-str porous set at zero and $0 ∈ M'$. Then, following conditions are equivalent. $(i) M \in \mathbf{CSP}_h(0)$.

(ii) I_M^d has a universal element $\tilde{L} = \{(l_n, m_n)\} \in I_M^{sd}$ with

$$
\mathcal{M}(\tilde{L}) < \infty. \tag{41}
$$

(iii) M is uniformly h-str porous at zero.

Let us recall that from Remark 2.22 (*ii*) of Theorem 2.23 can be reformulated by the following way: The set of universal elements $\tilde{T} \in I_M^d$ is nonempty and $\mathcal{M}(\tilde{T}) < \infty$ holds for every universal \tilde{T} .

Proof. Let $M \in \mathbf{CSP_h(0)}$. Firstly, we shall prove that there is a sequence $\tilde{w} = \{w_n\} \in M_d$ such that for every $\tilde{\beta} = \{\beta_k\} \in M_d$ we can find a function $f : \tilde{N} \to \mathbb{N}$ which is increasing and satisfy following:

$$
\{\beta_k\} \stackrel{h}{\asymp} \{w_{f(k)}\}.\tag{42}
$$

Let us define ${M_j}_{j \in \mathbb{N}}$ as follows:

$$
M_1 := M \cap [h(1), \infty),
$$

\n
$$
M_2 := M \cap [h\left(\frac{1}{2}\right), h(1)],
$$

\n
$$
M_3 := M \cap [h\left(\frac{1}{4}\right), h\left(\frac{1}{2}\right)),
$$

\n...
\n
$$
M_j := M \cap [h\left(\frac{1}{2^{j-1}}\right), h\left(\frac{1}{2^{j-2}}\right)], j \in \mathbb{N}.
$$
\n(43)

There is the unique subsequence $\{M_{j_n}\}\$, $n \in \mathbb{N}$ of the sequence $\{M_j\}$, $j \in \mathbb{N}$ such that

$$
M \setminus \{0\} = \bigcup_{n \in \mathbb{N}} M_{j_n}
$$
 and $M_{j_n} \neq \emptyset$

for every $n \in \mathbb{N}$. For simplicity, let us take $E_n := M_{j_n}$, $n \in \mathbb{N}$. Let $\{w_n\}$ be a sequence such that $w_n \in E_n$ for every $n \in \mathbb{N}$. Clearly, $\{w_n\} \in M_d$. For every $\tilde{\beta} = \{\beta_k\} \in M_d$, let $f : \mathbb{N} \to \mathbb{N}$ defined as follows:

$$
f(k) = n \Leftrightarrow \beta_k \in E_n.
$$

$$
M \setminus \{0\} = \bigcup_{n \in \mathbb{N}} E_n
$$
 and $E_j \cap E_i = \emptyset$ if $i \neq j$

imply that *f* is well-defined. Also, (43) gives that

$$
f(k) \ge 2 \Rightarrow h\left(\frac{1}{2}\right)h(\beta_k) \le h(w_{f(k)}) \le h(2)h(\beta_k)
$$

In addition, since $\tilde{\beta}$ and \tilde{w} are decreasing and $\lim_{n\in\mathbb{N}}\beta_n=0$, the function f is increasing and the set $\{k\in\mathbb{N}\}$: $f(k) = 1$ } is finite. So, we can find constants $c_*, c^* > 0$ such that

$$
c^*h(\beta_k) \leq h(w_{f(k)}) \leq c_*h(\beta_k)
$$

for all $k \in \mathbb{N}$. So, (42) holds.

Let $\tilde{w} = \{w_n\}$ ∈ M_d be the sequence constructed above. Since M ∈ $CSP_h(0)$, then M is h - \tilde{w} -str porous at zero. Thus, there is $\tilde{K} := \{(a_n, b_n)\}\in I_M$ such that

$$
\tilde{a} \stackrel{h}{\asymp} \tilde{w}.\tag{44}
$$

holds. Hence, Lemma 2.12 gives that \tilde{a} is decreasing. Namely, $\tilde{K}\in I^{d}_M$. We claim that \tilde{K} is universal. Indeed, as we shown for every $\tilde{\beta} \in M_d$ there is $f:\mathbb{N} \to \mathbb{N}$ such that (42) holds. The relation $\{w_n\} \stackrel{h}{\asymp} \{a_n\}$ gives that

$$
\{w_{f(k)}\} \stackrel{h}{\asymp} \{a_{f(k)}\}.\tag{45}
$$

 $(a_{f(n)}, b_{f(n)})$ is the interior of a connected component of *ExtM* and $\lim_{n\to\infty} f(n) = \infty$. Then, we have

$$
\{(a_{f(k)}, b_{f(k)})\} \in I_M.
$$
 (46)

Also, since *f* is increasing and $\tilde{K} = \{(a_n, b_n)\}\in I^d_M$, (46) implies

$$
\{(a_{f(k)}, b_{f(k)})\} \in I^d_M. \tag{47}
$$

(42) and (45) gives that

$$
\{\beta_k\} \stackrel{h}{\asymp} \{a_{f(k)}\}.\tag{48}
$$

If we use (47), (48) and Remark 2.14, we can show that $\tilde{T} \leq \tilde{K}$ for every $\tilde{T} \in I^d_{M'}$ as required.

By Lemma 2.19 we can find a universal element $\tilde{T} \in I_M^{sd}$. According to Corollary 2.21 we have $\mathcal{M}(\tilde{T}) < \infty$. So, we have $(i) \Rightarrow (ii)$ holds.

(iii) \Rightarrow (i) is obvious. Also, if we use Lemma 2.20, we can easily see that (i)∧(ii) \Rightarrow (iii) is true. So, to complete the proof we must show that (ii)⇒(i). Let us assume that $\tilde{\beta} = {\beta_n} \in M_d$ and let $\tilde{T} = {(t_k, p_k)} \in I^{\text{sd}}_M$ be universal. Like in the proof of Lemma 2.20 we can assume that {*tn*} is strictly decreasing and that *h*(β ₁) ≤ *h*(t ₁). Then, there is a unique $k(n)$ ∈ N, n ∈ N such that

$$
h(p_{k(n)+1}) \le h(\beta_n) \le h(t_{k(n)})\tag{49}
$$

(see (31)). (49) implies

$$
\limsup_{n\to\infty}\frac{h(t_{k(n)})}{h(\beta_n)}\leq \limsup_{n\to\infty}\frac{h(t_{k(n)})}{h(p_{k(n)+1})}\leq \limsup_{n\to\infty}\frac{h(t_k)}{h(p_{k+1})}=\mathcal{M}(\tilde{T})<\infty.
$$

Since $\{(t_{k(n)}, p_{k(n)})\} \in I^d_M$, then *M* is *h*- $\tilde{\beta}$ -str porous at zero from Lemma 2.4. So, (*i*) holds.

References

- [1] M. Altınok, O. Dovgoshey, M. Küçükaslan, *Local one-sided porosity and pretangent spaces*, Analysis 36 (2016), 147–171.
- [2] M. Altınok, M. Küçükaslan, On porosity-convergence of real valued sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 65 (2019), 181–193.
- [3] M. Altınok, M. Küçükaslan, A relation between porosity convergence and pretangent spaces, Publ. Inst. Math. **110(124)** (2021), 41-46.
- [4] M. Altınok, *Porosity Supremum-Infimum and Porosity Convergence*, Konuralp J. Math. **6** (2018), 163–170.
- [5] A. Denjoy, *Sur une propriet*´ *e des s* ´ *eries trigonom* ´ *etriques* ´ , Verlag v.d. G. V. der Wie-en Natuur. Afd. **29** (1920), 220–232.
- [6] A. Denjoy, Leçons sur le calcul des cofficients d'une série trigonométrique, Part II, Métrique et topologie d'ensembles parfaits et de fonctions, Gauthier-Villars, Paris, 1941.
- [7] E. P. Dol*z*ˇenko, *Boundary properties of arbitrary functions*, (Russian), Izv. Akad. Nauk SSSR Ser. Math. **31** (1967), 3–14.
- [8] O. Dovgoshey, V. Bilet, *Investigation of strong right upper porosity at a point*, Real Analysis Exchange 39 (2013/2014), 1-32.
- [9] A. Khintchine, *An investigation of the structure of measurable functions*, (Russian), Mat. Sbornik **31** (1924), 265–285.
- [10] B. S. Thomson, *Real Functions*, Lecture Notes in Mathematics **1170**, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.