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Some properties of I-convergence in cone metric spaces
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Abstract. Let I be an ideal on N, I-sequential compactness, I-sequential countable compactness and
I-completeness in cone metric spaces are discussed. We also construct a bounded sequence in an infinite
discrete metric space which is not I-convergent, which gives a negative answer to an open problem posed
by P. Das [12, Open problem 2.3].

1. Introduction

The notion of statistical convergence, which is an extension of the idea of usual convergence was formerly
given under the name “almost convergence” by Zygmund in the first edition of his celebrated monograph
published in Warsaw in 1935 [43]. The concept of statistical convergence was formally introduced by
Fast [16] and Steinhaus [35] independently, and later was reintroduced by Schoenberg [34], and also
independently by Buck [5]. Although statistical convergence was introduced over nearly the last ninety
years, it has become an active area of research for forty years with the contributions by several authors,
Šalát [33], Fridy [18, 19], Di Maio and Kočinac [13], Çakallı and Khan [8]. Statistical convergence has many
applications in different fields of mathematics, see [6, 10, 13, 21, 28, 36] etc.

The concept of ideal convergence (or I-convergence) of real sequences was introduced by Nuray and
Ruckle in [31] who called it generalized statistical convergence as a generalization of statistical convergence,
and also independently by Kostyrko, Šalát, and Wilczynski in [22]. Over the last 20 years a lot of work has
been done on I-convergence and associated topics, for more details see [11, 12, 24, 30, 39–42] etc.

A choice of a suitable definition of distance between images naturally leads to an environment in which
many possible metrics can be considered simultaneously and cone metric spaces lend themselves to this
requirement. One specific instance of this is in the analysis of the structural similarity (SSIM) index of
images. SSIM is used to improve the measuring of visual distortion between images. In both of these
contexts the difference between two images is calculated using multiple criteria, which leads in a natural
way to consider vector-valued distances. In 1934, Kurepa [23] introduced an abstract metric space, in
which the metric takes values in an ordered vector space. The metric spaces with vector valued are studied
under various names [29, 38]. Huang and Zhang in [25] called such spaces as cone metric spaces. Beg,
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Abbas, and Nazir [4], Beg, Azam, and Arshad [3] replaced the set of an ordered Banach space by a locally
convex Hausdorff topological vector space in the definition of a cone metric and a generalized cone metric
space. The connection between topological vector space valued cone metric spaces and standard metric
spaces and the respective fixed point results were considered by several authors [9, 14, 17, 20]. A lot of
work has been done on the theory of cone metric spaces, see [1, 7, 25, 26, 37] etc. S.K. Pal et al. studied
I and I∗-Cauchy sequences in cone metric spaces [32]. K. Li et al. investigated statistical convergence in
cone metric spaces, they discussed statistically-sequentially compact cone metric spaces and characterized
statistical completeness of cone metric spaces [28].

In this paper, we consider some properties of I-convergence in cone metric spaces which are not
considered in [32]. We prove that: (a) If I is a P-ideal, then the following are equivalent for a cone metric
space (X, d): (1) X is I-sequentially compact; (2) X is I-sequentially countably compact; (3) X is compact;
(4) X is countably compact; (b) A cone metric space (X, d) is I-complete if and only if for each decreasing
sequence {Fn} of non-empty I-closed sets of X, if there is a sequence {bn} converging to 0 in E+ such that bn
is an upper bound of the set {Fn} for each n ∈N, then

⋂
∞

n=1 Fn contains exactly one point. Let ℓ∞ and C(I) be
the set of all bounded sequences and the set of all bounded I-convergent sequences of (X, d), respectively.
We show that: If (X, d) is a totally bounded complete cone metric space and I is an admissible ideal onN,
then C(I) = ℓ∞ if and only if I is maximal. We also construct a bounded sequence in an infinite discrete
metric space which is not I-convergent, which gives a negative answer to [12, Open problem 2.3].

2. Preliminaries

Throughout the paper,N denotes the set of all positive integers. Readers may consult [15] for notation
and terminology not given here.

Definition 2.1. ([2]) Let E be a real Banach space and P a subset of E. We call P a cone and (E,P) a cone space
if

(C1) P is non-empty, closed, and P , {0};
(C2) 0 ≤ a, b ∈ R and x, y ∈ P⇒ ax + by ∈ P;
(C3) x ∈ P and −x ∈ P⇒ x = 0.

A partial ordering ≤ with respect to P is defined by x ≤ y ⇔ y − x ∈ P, and x < y ⇔ x ≤ y and x , y.
x≪ y indicates that y−x ∈ intP, where intP denotes the interior of P (with the topology of the Banach space
E). The relation ≪ is transitive and antisymmetric but not in general reflective. In this paper, we always
assume that intP , ∅, and denote E+ = {c ∈ E : 0≪ c}, i.e., E+ = intP.

Let c ∈ E+ and e ∈ E. If {an} is a non-negative sequence inR such that it converges to 0, it is clear that the
sequence {c − ane} in E converges to c. So there is n ∈ N such that c − ane ∈ E+, i.e., 0 ≪ c − ane. It follows
that ane≪ c for some n ∈N.

Definition 2.2. ([25]) Let (E,P) be a cone space, X a non-empty set and d : X × X → E a mapping that
satisfies the following conditions:

(CM1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0⇔ x = y;
(CM2) d(x, y) = d(y, x) for all x, y ∈ X;
(CM3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X,E,P, d) (or shortly, (X, d)) a cone metric space.

It is obvious that every metric space is a cone metric space. Every cone metric space (X, d) is a topological
space [37]. In fact, for any c ∈ E+, let B(x, c) = {y ∈ X : d(x, y)≪ c} (a c-ball in a cone metric space). Then

B = {B(x, c) : x ∈ X, c ∈ E+}

is a base of a topology τd = {U ⊆ X : ∀x ∈ U,∃B ∈ B such that x ∈ B ⊆ U} on X. It can be shown that the
topology τd is Hausdorff and first-countable [37]. A subset A of X is said to be upper bounded [37] if there
exists c ∈ E+ such that d(x, y) ≤ c for all x, y ∈ A; the c is called an upper bound of A. It is clear that a subset A
of X is upper bounded if and only if there are c ∈ E+ and x0 ∈ X such that A ⊆ B(x0, c).
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Definition 2.3. ([32]) Let (X, d) be a cone space and {xn} a sequence in X.
(1) If x ∈ X and for each c ∈ E+, there is n0 ∈N such that d(xn, x)≪ c for all n > n0, then {xn} is said to be

convergent and {xn} converges to x.
(2) If for each c ∈ E+, there is n0 ∈ N such that d(xn, xm)≪ c for all n,m > n0, then {xn} is called a Cauchy

sequence in X.
(3) (X, d) is said to be complete if every Cauchy sequence in X is convergent in X.

Let I be a family of non-empty subsets on N, I is said to be an ideal if (i) A,B ∈ I implies A ∪ B ∈ I,
(ii) A ∈ I, B ⊆ A implies B ∈ I. An ideal I is said to be non-trivial ifN < I and I , {∅}. The family of sets
F (I) = {N − A : A ∈ I} is a filter called the associated filter of I. A non-trivial ideal I is called admissible
if I ⊇ {{x} : x ∈ N}. An admissible ideal I is said to satisfy the condition (AP) (or is called a P-ideal or
sometimes AP-ideal) if for every countable family of mutually disjoint sets {A1,A2, ...} from I there exists a
countable family of sets {B1,B2, ...} such that A j∆B j is finite for each j ∈ N and

⋃
∞

k=1 Bk ∈ I [12]. It is clear
that B j ∈ I for each j ∈N. In the following, if no otherwise specified, we always considerI is an admissible
ideal on the setN.

Let X be a topological space. A sequence {xn} in X is said to be I-convergent to a point x ∈ X if for every

neighborhood U of x, we have the set {n ∈N : xn < U} ∈ I, which is denoted by xn
I
→ x or x = I-lim xn [22].

Especially, if I is the class I f of all finite subsets ofN, then I f is an admissible ideal and I f -convergence
coincides with the usual convergence of sequences; if Id is the class of all A ⊆ N with d(A) = 0, where
d(A) denotes the asymptotic density of a set A, then Id is an admissible ideal and Id-convergence coincides
with the statistical convergence. A set P ⊆ X is said to be an I-closed set of X if whenever a sequence

{xn} in P with xn
I
→ x in X, the I-limit point x ∈ P [30]. By means of I-convergence, for each F ⊆ X, put

[F]Is = {x ∈ X : there is a sequence {xn} in F such that I- lim
n→∞

xn = x}, which is called the Is-hull of the set F
in X. Thus a set F is an I-closed subset in X if and only if F = [F]Is .

Definition 2.4. ([25]) Let (X, d) be a cone space, {xn} be a sequence in X and x ∈ X.
(1) If for every c ∈ E+ the set {n ∈ N : d(xn, x) ≪ c} ∈ F (I), then {xn} is said to be I-convergent to x and

we write I- lim
n→∞

xn = x.

(2) The sequence {xn} is said to be I-Cauchy if for every c ∈ E+ there exists n0 ∈ N such that {n ∈ N :
d(xn, xn0 )≪ c} ∈ F (I).

Lemma 2.5. ([27, Theorem 8 (i)]) If I is a P-ideal and (X, τ) a first-countable space, then for an arbitrary sequence
{xn} in X, I- lim

n→∞
xn = x implies I∗- lim

n→∞
xn = x, i.e., there is K ∈ F (I) such that {xn}n∈K converges to x.

3. Main results

Definition 3.1. Let (X, d) be a cone metric space, and F ⊆ X. Put

FI−d = {x ∈ X : x ∈ [F \ {x}]Is }.

The set FI−d is called the I-sequential derived set of F in X. Every point in FI−d is called an I-sequential
accumulation point of F.

A point x ∈ X is called an I-sequential accumulation point of a sequence {xn} in a cone metric space (X, d),
if there is a subsequence {xnk } of the sequence {xn} such that I- lim

k→∞
xnk = x.

Definition 3.2. Let (X, d) be a cone metric space.
(1) A subset F of X is said to be I-sequentially countably compact if any infinite subset of F has at least one

I-sequential accumulation point in F.
(2) A subset F of X is said to be I-sequentially compact if for any sequence {xn} in F there is a subsequence

{xnk } of {xn} such that {xnk } is I-convergent to x ∈ F.
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Definition 3.3. ([37]) Let A be an open cover of a cone metric space (X, d). An element c ∈ E+ is called a
Lebesgue element for the coverA if a subset B of X has an upper bound c, then B ⊆ A for some A ∈ A.

Lemma 3.4. Let I be a P-ideal, then every open cover of an I-sequentially compact cone metric space has a Lebesgue
element.

Proof. Let (X, d) be an I-sequentially compact cone metric space, and A = {Aα}α∈Λ an open cover of (X, d).
Without loss of generality, we may assume that X < A. Suppose thatA does not have a Lebesgue element.
Fix c ∈ E+. Then, for each n ∈ N, there is a non-empty subset Bn of X such that c

n is an upper bound of Bn
and Bn ⊈ Aα for each α ∈ Λ. Choosing xn ∈ Bn for each n ∈N. Since X is I-sequentially compact, there is a
subsequence {xnk } of the sequence {xn} such that {xnk } I-converges to x ∈ X. Since I is a P-ideal, by Lemma
2.5, there exists a subsequence xnkm

of the sequence xnk such that xnkm
converges to x. Note thatA is an open

cover of X, there exists α0 ∈ Λ such that x ∈ Aα0 . Find c1 ∈ E+ such that B(x, c1) ⊆ Aα0 . Hence there is m0 ∈N
such that d(x, xnkm0

)≪ c1
2 and c1

nkm0
≪

c1
2 . If y ∈ Bnkm0

, then

d(x, y) ≤ d(x, xnkm0
) + d(xnkm0

, y)≪
c1

2
+

c1

nkm0

≪
c1

2
+

c1

2
= c1.

It follows that Bnkm0
⊆ B(x, c1) ⊆ Aα0 , which is a contradiction. ThusA has a Lebesgue element.

Now we can prove our first main result.

Theorem 3.5. Let I be a P-ideal, then the following are equivalent for a cone metric space (X, d):
(1) X is I-sequentially compact;
(2) X is I-sequentially countably compact;
(3) X is compact;
(4) X is countably compact.

Proof. (3)⇒ (4) is clear. Since every cone metric space is first-countable, (4)⇒ (2) holds. We will show that
(2)⇒ (1) and (1)⇒ (3).

(2) ⇒ (1). Let {xn} be a sequence in X. Put A = {xn : n ∈ N}. We may assume that A is an infinite set.
Since X is I-sequentially countably compact, there exists x ∈ AI−d. Thus there is a subsequence {xnk } of the
sequence {xn} such that I- lim

k→∞
xnk = x, which shows that X is I-sequentially compact.

(1)⇒ (3). Assume that (X, d) is an I-sequentially compact cone metric space.
Claim: For each c ∈ E+, the open covering {B(x, c)}x∈X of X has a finite covering.
If this fails to be true, there exists c ∈ E+ such that X cannot be covered by finitely many c-balls. Therefore,

we can construct a sequence {xn} in X as follows: First, fix a point x1 ∈ X, and take a point x2 ∈ X \ B(x1, c)
by X , B(x1, c). In general, given {xi}i≤n in X, choose a point xn+1 ∈ X \

⋃
i≤n B(xi, c) because X ,

⋃
i≤n B(xi, c).

Then d(xn+1, xi) ≮ c for each i ≤ n, thus {xn : n ∈ N} is a closed discrete subspace of X. It follows that the
sequence {xn : n ∈N} does not contain any I-convergent subsequence, which is a contradiction.

We will prove that X is compact. Assume thatU is an open cover of X. By Lemma 3.4, there is δ ∈ E+

such that δ is a Lebesgue element for the open coverU. Put c = δ3 . There exists a finite subset F of X such
that X =

⋃
x∈F B(x, c). For each x ∈ F, since 2c is an upper bound of the set B(x, c), there is Ux ∈ U such that

B(x, c) ⊆ Ux. Hence, {Ux}x∈F is a finite subcover ofU. Therefore, X is compact.

Proposition 3.6. Let (X, d) be an I-sequentially compact cone metric space and F ⊆ X. If F is I-closed, then F is
I-sequentially compact.

Proof. Let {xn} be an arbitrary sequence in F. Since X is I-sequentially compact, there is a subsequence
{xnk } of the sequence {xn} such that I- lim

k→∞
xnk = x ∈ X. It follows from F is I-closed that x ∈ F, i.e.,

I- lim
k→∞

xnk = x ∈ F. Thus F is I-sequentially compact in X.
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A cone metric space (X, d) is said to be I-complete if every I-Cauchy sequence in (X, d) is I-convergent.
Using I-closed sets, we have a useful criterion for I-completeness of cone metric spaces.

Theorem 3.7. A cone metric space (X, d) is I-complete if and only if for each decreasing sequence {Fn} of non-empty
I-closed sets of X, if there is a sequence {bn} converging to 0 in E+ such that bn is an upper bound of the set {Fn} for
each n ∈N, then

⋂
∞

n=1 Fn contains exactly one point.

Proof. Assume that the cone metric space (X, d) is I-complete. Let {Fn} be a decreasing sequence of I-closed
non-empty sets such that there is a sequence {bn} converging to 0 in E+ and bn is an upper bound of the set
{Fn} for each n ∈ N. Choosing xn ∈ Fn for each n ∈ N, then the sequence {xn} is Cauchy, and hence {xn} is
I-Cauchy. Since the space (X, d) is I-complete, it follows that the sequence {xn} is I-convergent to some
x ∈ X. Noting that {xn+k : k ∈ N} ⊆ Fn for each n ∈ N, then the sequence {xn+k} is I-convergent to x as
k → ∞. Since {Fn} is I-closed, it follows that x ∈ Fn. Therefore, x ∈

⋂
n∈N Fn. If y ∈

⋂
n∈N Fn, then x, y ∈ Fn

for each n ∈N. Thus 0 ≤ d(x, y)≪ bn, and therefore d(x, y)≪ c for each c ∈ E+. Hence, we have d(x, y) = 0,
which means that x = y, i.e.,

⋂
∞

n=1 Fn contains exactly one point.
Conversely, suppose that {xn} is an I-Cauchy sequence in (X, d). Fix e ∈ E+. For each k ∈N, there exists

nk ∈N such that {n ∈N : d(xn, xnk )≪
e

2k+4 } ∈ F (I). Since the ideal I is non-trivial, every element in F (I) is
infinite. We can assume that nk < nk+1 and d(xnk+1 , xnk ) ≤

e
2k+4 for each k ∈N.

For each k ∈N, let bk =
e

2k and

Fk = [B(xnk ,
e

2k+2
)]Is = [{y ∈ X : d(xk, y)≪

e
2k+2
}]Is .

Then lim
k→∞

bk = 0 and bk is an upper bound of Fk. If y ∈ Fk+1, then d(y, xnk+1 ) ≤ e
2k+3 and d(xnk+1 , xnk ) ≤

e
2k+4 , thus

d(y, xnk ) ≤ d(y, xnk+1 ) + d(xnk+1 , xnk ) ≤
e

2k+2
.

Hence y ∈ Fk. It follows that Fk+1 ⊆ Fk. By hypothesis, there is x ∈
⋂
∞

n=1 Fn.
We will show that I- lim

n→∞
xn = x. For any c ∈ E+, since lim

n→∞
e

2n = 0 in E+, there exists k ∈ N such that
e

2n ≪ c for each n ≥ k. Since x ∈ Fk, we have d(x, xnk ) ≤
e

2k+2 . Therefore, for each n > nk, if d(xn, xnk )≪
e

2k+4 ,

d(xn, x) ≤ d(xn, xnk ) + d(xnk , x) ≤
e

2k+4
+

e
2k+2

≪ c.

It follows that
{n ∈N : d(xn, xnk )≪

e
2k+4
} ⊆ {n ∈N : d(xn, x)≪ c}.

Since {n ∈N : d(xn, xnk )≪
e

2k+4 } ∈ F (I), we can conclude that {n ∈N : d(xn, x)≪ c} ∈ F (I). So the sequence
{xn} I-converges to x. Hence (X, d) is I-complete.

Corollary 3.8. Let I be a P-ideal, then every compact cone metric space is I-complete.

Proof. Let (X, d) be a compact cone metric space. Assume that {Fn} is a decreasing sequence of I-closed
non-empty subsets of X, and there is a sequence {bn} converging to 0 in E+ such that bn is an upper bound of
the set {Fn} for each n ∈ N. By Proposition 3.6 and Theorem 3.5, {Fn} is compact for each n ∈ N. Therefore,⋂
∞

n=1 Fn , ∅. Since bn is an upper bound of the set {Fn} for each n ∈N and {bn} converges to 0 in E+, we can
deduce that

⋂
∞

n=1 Fn is a single-point set. According to Theorem 3.7, (X, d) is I-complete.

Using Zorn’s lemma, we can show that in the family of all admissible ideals ofN, there exists a maximal
ideal (with respect to inclusion).

Lemma 3.9. ([12]) Let I0 be an admissible ideal onN. Then I0 is maximal if and only if

(A ∈ I0) ∨ (N \ A ∈ I0)

holds for each A ⊆N.
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Let ℓ∞ be the set of all bounded sequences of real numbers, and C(I) the set of all bounded I-convergent
real sequences. P. Das proved the following result:

Theorem 3.10. ([12]) Let I be an admissible ideal inN. Then C(I) = ℓ∞ if and only if I is a maximal ideal inN.

Thus P. Das posed the following open problem:

Question 3.11. ([12, Open problem 2.3]) Can the above result be extended to an arbitrary metric space or uniform
space?

Let (X, d) be a cone metric space. A subset A of X is said to be a c-net in X if X =
⋃

z∈A B(z, c), where
B(z, c) = {y ∈ X : d(z, y) ≪ c} for a fixed element c of E+ [37]. (X, d) is called totally bounded if it has a finite
c-net in X for each c ∈ E+ [37]. A subspace (A, dA) of (X, d) is said to be totally bounded if it is totally bounded
as a cone metric space in its own right. A sequence {xn} ⊆ X is said to be bounded if the set {xn : n ∈ N}
is upper bounded. Also, let ℓ∞ and C(I) be the set of all bounded sequences and the set of all bounded
I-convergent sequences of (X, d), respectively. The proof of the following lemma is similar to [15, Theorem
4.3.2], so we omit it.

Lemma 3.12. If (X, d) is a totally bounded cone metric space, then for every subset M of X the space (M, d) is totally
bounded.

We will prove the third main result in the following.

Theorem 3.13. Let (X, d) be a totally bounded complete cone metric space. Then C(I) = ℓ∞ if and only if I is a
maximal ideal.

Proof. Let {xn} ∈ ℓ∞. We will show that {xn} is I-convergent. Since {xn} ∈ ℓ∞, there are x0 ∈ X and
ϵ0 > 0 such that {xn : n ∈ N} ⊆ B(x0, ϵ0). Since X is totally bounded, there exist y1

1, y
1
2, . . . , y

1
k1

such that

B(x0, ϵ0) ⊆ X =
⋃i=k1

i=1 B(y1
i , ϵ0/2). Put A1

i = {n : xn ∈ B(y1
i , ϵ0/2)} for every i ∈ {1, . . . , k1}. Then

⋃i=k1
i=1 A1

i = N.

Since I is a nontrivial ideal, there is A1
i1
< I for some i1 ∈ {1, . . . , k1}. Set J1 = B(y0, ϵ0) ∩ B(y1

i1
, ϵ0/2) and

D1 = {n : xn ∈ J1} ⊇ A1
i1

. Since A1
i1
< I, D1 < I.

Proceeding as above we can construct by induction a sequence of closed sets J1 ⊇ J2 ⊇ . . . , Jn =

Jn−1 ∩ B(yn
in
, ϵ0/2n) with Dk = {n : xn ∈ Jk} < I and ϵ0/2n−1 is an upper bound of Jn for each n ∈ N. Since the

cone metric space (X, d) is complete, by [32, Lemma 2],
⋂
∞

n=1 Jn , ∅. Let ξ ∈
⋂
∞

n=1 Jn. For every ϵ > 0, put
M(ϵ) = {n : d(xn, ξ)≪ ϵ}. For sufficiently large n we have Jn ⊆ B(ξ, ϵ). Since Dn < I, we have M(ϵ) < I. Note
that I is maximal, by Lemma 3.9 we haveN \M(ϵ) ∈ I. Hence M(ϵ) = {n : d(xn, ξ)≪ ϵ} ∈ F (I). Therefore,
I-lim xn = ξ.

Conversely, if C(I) = ℓ∞, then the ideal I is maximal. In fact, assume that I is not maximal, by Lemma
3.9, there is a infinite set M = {m1 < m2 < . . .} such that M < I andN \M < I. Take two different elements
a, b ∈ X. Define the sequence {xn} by

xn =

{
a, i f n ∈M;
b, i f n ∈N \M.

Then {xn} ∈ ℓ∞. However, for each c ∈ X, since the cone metric space (X, d) is Hausdorff, there is ϵc ∈ E+

such that {a, b} ⊈ B(c, ϵc). Then the set {n : d(xn, c)≪ ϵc} is equal to ∅ or M orN \M and neither of these sets
belong to F (I). Hence I-lim xn does not exist. Therefore, the ideal I is maximal.

However, the following example shows that the condition totally bounded cannot be omitted in Theorem
3.13.

Example 3.14. Let (X, d) be an infinite discrete metric space. Then there is a bounded sequence which is not
I-convergent.



L. Zhong, Z. Tang / Filomat 38:16 (2024), 5819–5826 5825

Proof. Since (X, d) is a discrete metric space, every sequence in X is bounded. Choose a sequence {xn} in
X with xn , xm for each n , m. For every x ∈ X, there is at most one xi ∈ {xn : n ∈ N} such that x = xi.
Therefore, {n : xn , x} =N orN \ {i}. Note that the ideal I is non-trivial, then {n : xn , x} < I. This implies
that the sequence {xn}n∈N is not I-convergent to x.

Example 3.14 also shows that Theorem 3.10 cannot be extended to an arbitrary metric space nor uniform
space, which gives a negative answer to Question 3.11.
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[39] H. Zhang, S. G. Zhang, Some applications of the theory of Katĕtov order to ideal convergence, Topol. Appl. 301 (2021), Article ID107545.
[40] X. Zhou, S. Lin, L. Liu, On topological spaces defined by I-convergence, Bull. Iran. Math. Soc. 46 (2020), 675–692.



L. Zhong, Z. Tang / Filomat 38:16 (2024), 5819–5826 5826

[41] X. Zhou, S. Lin, On I-Covering Images of Metric Spaces, Filomat 36 (2022), 6621–6629.
[42] X. Zhou, S. Lin, H. Zhang, On Isn-sequential spaces and the images of metric spaces, Topol. Appl. 327 (2023), Article ID108439.
[43] A. Zygmund, Trigonometric Series, Vol. I, II. Third edition. With a foreword by Robert A. Fefferman. Cambridge Mathematical

Library. Cambridge University Press, Cambridge, 2002.


