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Abstract. The transmission TrG(u) of a vertex u of a connected graph G is the sum of distances from u to all
other vertices. G is a stepwise transmission irregular (STI) graph if |TrG(u) − TrG(v)| = 1 holds for any edge
uv ∈ E(G). In this paper, generalized STI graphs are introduced as the graphs G such that for some k ≥ 1
we have |TrG(u) − TrG(v)| = k for any edge uv of G. It is proved that generalized STI graphs are bipartite
and that as soon as the minimum degree is at least 2, they are 2-edge connected. Among the trees, the only
generalized STI graphs are stars. The diameter of STI graphs is bounded and extremal cases discussed. The
Cartesian product operation is used to obtain highly connected generalized STI graphs. Several families of
generalized STI graphs are constructed.

1. Introduction

The shortest-path distance dG(u, v) between vertices u and v of a graph G is the minimum number of
edges on a u, v-path. The transmission TrG(u) of a vertex u is the sum of distances between u and all the
other vertices in G. Two early papers in which the transmission was considered are [22, 24], where the
interest was on maximal transmission in several classes of graphs and on the behaviour of the transmission
under removing a vertex. Transmission plays an important role in the investigation of distance-based
graph invariants such as the Wiener index [18] and the Mostar index [3]. In particular, several measures
on transmission irregularity were posed in [3]. The fact that the transmission is a fundamental concept in
metric graph theory and wider is demonstrated by the fact that it is also known by other names such as the
total distance of a vertex [11, 17] and the status of a vertex [2, 23].

Interesting graph families have recently been defined based on the transmission. Transmission irregular
graphs are the graphs in which any two different vertices G have different transmissions. Although (or
perhaps because) almost no graph is transmission irregular [5], the search for such graphs has become of
interest to several groups of researchers, some of the selected papers on this topic are [7, 10, 12, 26, 27]. If
we further require that the vertex transmissions of a graph form a sequence of consecutive integers, then
we speak of an interval transmission irregular graph [8].
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Stepwise transmission irregular graphs, STI graphs for short, are the graphs in which for every edge the
transmissions of its endpoints differ by 1. STI graphs were introduced in [13]. The research was continued
in [9] where a conjecture from [13] was confirmed that all graphs from a certain family are STI. Moreover,
a computational support was provided for another conjecture from [13] asserting that each STI graph has
girth 4. In general, however, the conjecture remains open. STI graphs which are extremal with respect
to different metric invariants such as the diameter, the Wiener index, and the eccentricity index, were
characterized in [6].

In this paper we extend STI graphs to generalized STI graphs as follows. If k is an arbitrary positive
integer, then we say that a graph is a k-STI graph if for every edge the transmissions of its endpoints differ
by k. If G is a k-STI graph for some k, then we say that G is a generalized STI graph. A 2-STI graph and a 3-STI
graph are shown in Fig. 1, where next to each vertex its transmission is written.
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Figure 1: A 2-STI graph (left) and a 3-STI graph (right)

We proceed as follows. After this paragraph, some definition and a useful result needed are stated. In
the next section several properties of generalized STI are established. Among other results we prove that
generalized STI graphs are bipartite, and that as soon a generalized STI graph has δ(G) ≥ 2, it is 2-edge
connected. We also bound the diameter of generalized STI graphs and deduce that among trees the only
generalized STI graphs are stars. In Section 3 we prove that if G and H have order n, then G□H is an
(nk)-STI graph if and only if G and H are k-STI graphs. Finally, In Section 4, several families of generalized
STI graphs are constructed.

The graphs considered here are simple and connected. Let G = (V(G),E(G)) be a graph. The degree of a
vertex v and the minimum degree of G are respectively denoted by deg(v) and δ(G).

A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for each pair of vertices u, v ∈ V(H). The
eccentricity eccG(u) of a vertex u ∈ V(G) is the maximum distance from u to other vertices of G. The diameter
diam(G) of G is the maximum eccentricity of vertices in G. For an edge e = uv ∈ E(G), let Nu(e) denote the
set of vertices of G that are closer to u than to v. Similarly Nv(e) is defined. Let further nu(e) = |Nu(e)| and
nv(e) = |Nv(e)|. If the edge e lies in different graphs and we consider it as an edge of a graph G, then we will
specify this notation to nu(e|G) and nv(e|G). As already said, TrG(u) =

∑
x∈V(G) dG(u, x). For an edge e = uv

we will further use the notation I(e) = |TrG(u) − TrG(v)| and call I(e) the transmission imbalance of the edge e.
Finally, for a positive integer k we will use the notation [k] = {1, . . . , k}.

The following useful result goes back to [14].

Theorem 1.1. If G is a bipartite graph and e = uv ∈ E(G), then TrG(u) − TrG(v) = nv(e) − nu(e).

2. Properties of k-STI graphs

Consider the complete bipartite graph Kp,q, where p ≥ q ≥ 1. Then the transmissions of the vertices from
the two bipartition sets are q + 2p and p + 2q, respectively. Hence, if p > q, then Kp,q is a (p − q)-STI graph.
For a given k ≥ 1, the graphs Kn+k,n, n ≥ 1, thus form an infinite family of k-STI graphs.

Our first result collects the structural properties of k-STI graphs. To this end, recall that vertices u and v
are twins if for every w ∈ V(G)\ {u, v}we have uw ∈ E(G) if and only if vw ∈ E(G). Note that in our definition
of twin vertices we put no condition whether u and v are adjacent. We say that G is twin-free, if it contains
no twins.
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Theorem 2.1. If k ≥ 1 and G is a k-STI graph of order n, then the following hold.

(i) G is a bipartite, twin-free graph.
(ii) n ≡ k (mod 2).

(iii) If δ(G) ≥ 2, then G is 2-edge connected.
(iv) If k ∈ [2], then G is either 2-connected or G ∈ {P3,K1,3}.

Proof. (i) Suppose on the contrary that G contains an odd cycle v0v1 . . . v2pv0. As G is a k-STI graph, we
have TrG(v0) − TrG(v2) ≡ 0 (mod 2k), . . ., TrG(v2p−2) − TrG(v2p) ≡ 0 (mod 2k). Therefore, TrG(v0) − TrG(v2p) ≡
0 (mod 2k). Since v0v2p ∈ E(G), this is not possible, which in turn implies that G is bipartite. It is
straightforward to see that if u and v are twins, then TrG(u) = TrG(v), thus G must also be twin-free.

(ii) Let e = uv ∈ E(G), and assume without loss of generality that TrG(u) = TrG(v) + k. As just proved in
(i), G is bipartite, hence Theorem 1.1 yields that TrG(u) − TrG(v) = k = nu(e) − nv(e). Using once more that G
is bipartite we also have nu(e) + nv(e) = n. It follows that n + k = 2nu(e) which means that n ≡ k (mod 2).

(iii) Suppose on the contrary that e = uv is a bridge of G. Let G − e = G1 ∪ G2, where u ∈ V(G1) and
v ∈ V(G2). We may assume without loss of generality that n1 = |V(G1)| ≥ n2 = |V(G2)|. By (i) we know that
G is bipartite, hence using Theorem 1.1 we have

k = I(uv) = nu(e) − nv(e) = n1 − n2 .

Since δ(G) ≥ 2 and so also degG(v) ≥ 2, there exists a vertex w ∈ V(G2) such that e′ = vw ∈ E(G2). Then

I(vw) = nv(e′) − nw(e′) ≥ (n1 + 1) − (n2 − 1) = k + 2 ,

a contradiction.
(iv) In [13, Proposition 5] it was proved that all 1-STI graphs but the path P3 are 2-connected. Hence it

remains to consider the case k = 2. It is straightforward to check that K1,3 is the only 2-STI graph of order
at most 4. Assume in the rest that G is a 2-STI graph of order n ≥ 5. If G has a pendant edge uv, then
|TrG(u) − TrG(v)| = n − 2, but this is not possible since G is 2-STI and n ≥ 5. Thus δ(G) ≥ 2.

Suppose now that G contains a cut vertex v. Let G1 be a component of G − v with the minimum order
n1 = |V(G1)|. Notice that n ≥ 2n1 + 1. As δ(G) ≥ 2, we have n1 ≥ 2, and let w, z ∈ V(G1) such that
vw, zw ∈ E(G). By (i) G is bipartite and hence z is not adjacent to v. Thus

TrG(z) − TrG(w) ≥ (n − n1 + 1) − (n1 − 1) = n − 2n1 + 2 ≥ 3 .

This contradiction proves that G is 2-connected.
The assertions (i) and (ii) of Proposition 2.1 respectively extend [13, Proposition 1] and [13, Proposition

2] which assert that STI graphs are bipartite graphs of odd order. The two examples of Fig. 1 imply that
the assertion (iii) cannot be extended in general to ℓ-edge connectedness for ℓ ≥ 3, while the graphs Kk+1,1
demonstrate that the assumption δ ≥ 2 cannot be avoided. Finally, (iv) also does not extend to k ≥ 3. For
instance, consider the graph obtained from two disjoint 4-cycles by identifying a vertex from each of them.
This graph is a 3-STI graph with a cut vertex. For further such examples see Proposition 4.1.

We next show:

Theorem 2.2. If G is a k-STI graph (k ≥ 1) of order n, then k ≤ n − 2. Moreover, the equality holds if and only if
G � K1,k+1.

Proof. Let e = uv be an edge of G. Since G is bipartite by Theorem 2.1(i), we may assume without loss
of generality (having Theorem 1.1 in mind) that nu(e) > nv(e), so that nu(e) − nv(e) = k holds. Since
nu(e) + nv(e) = n, we infer that n = k + 2nv(e) ≥ k + 2 with equality holding if and only if nv(e) = 1. This
implies that v is a pendant vertex. If w is another vertex adjacent to u, then |TrG(u) − TrG(w)| = k = n − 2.
Thus w is also a leaf. We conclude that all vertices adjacent to u are pendant which in turn implies that
G � K1,k+1.

Corollary 2.3. If k ≥ 1, then a tree T is a k-STI graph if and only if T � K1,k+1.
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Proof. If e = uv ∈ E(T), where v is a leaf of T, then I(uv) = nu(e) − nv(e) = |V(T)| − 2. The result now follows
from Theorem 2.2.

To conclude the section we bound the diameter of k-STI graphs as follows.

Theorem 2.4. If G is an k-STI graph of order n ≥ 5, then

2 ≤ diam(G) ≤
n + k

2
− 1 .

Moreover, the left equality holds if and only if G � K n+k
2 ,

n−k
2

.

Proof. Since G is bipartite and nG) ≥ 5, we have diam(G) ≥ 2. Moreover, diam(G) = 2 if and only if G is a
complete bipartite graph Kp,q, p > q. But then p + q = n and p − q = k which yields that G � K n+k

2 ,
n−k

2
. This

proves the lower bound and the equality case.
To prove the upper bound, we claim that G contains an edge 1 = xy such that nx(1) ≥ diam(G) + 1.

Let P be a diametral path in G with v and w its endpoints. Let v′ be the neighbor of v on P and let w′ be
the neighbor of w on P. We may assume that v′ , w′, for otherwise diam(G) = 2 and the upper bound
clearly holds. Let e = vv′ and f = ww′. If deg(v) = 1, then nv′ (e) ≥ diam(G) + 1 because n ≥ 5 and therefore
G is not a path. Similarly, nw′ (e) ≥ diam(G) + 1 holds if deg(w) = 1. Hence assume that deg(v) ≥ 2 and
deg(w) ≥ 2. Let w′′ be a neighbor of w, w′′ , w′. Note that all the vertices of P but v lie in Nv′ (e). Hence, if
also w′′ ∈ Nv′ (e), then nv′ (e) ≥ diam(G) + 1. Assume hence that w′′ < Nv′ (e). Then dG(v′,w′′) = diam(G) and
dG(v,w′′) = diam(G)−1. Let Q be a shortest v,w′′-path. If v′ lies on Q, then Q contains another vertex which
is not on P and lies in Nv′ (e), hence nw′ (e) ≥ diam(G) + 1 as required. Assume next that the neighbor v′′ of
v on Q is different from v′. Moreover, all the vertices on Q lie in Nv(e). Now, since G is not a cycle, there
exists a vertex z < V(P) ∪ V(Q). As G is bipartite, either z ∈ Nv(e) or z ∈ Nv(e). In either case, the existence
of a required edge is proved.

Assume now without loss of generality that nv(e) ≥ diam(G) + 1. Since G is an k-STI graph, we have
|nv(e) − nv′ (e)| = k and nv + nv′ = n. Thus diam(G) ≤ nv(e) − 1 ≤ n+k

2 − 1.
In the case k = 1, an infinite family of graphs was constructed for which the upper bound in Theorem 2.4

is attained in [6, Lemma 3.1]. It would be of interest to construct such families for each k ≥ 2 (or prove they
do not exist). A sporadic example for k = 3 is the graph obtained from two 4-cycles by identifying a vertex
from one by a vertex from the other.

3. Graph operations and k-STI graphs

Using Theorem 2.1 one can show that many local or global graph operations do not preserve the property
of being generalized STI. For instance, by Theorem 2.1(i), the line graph L(G) of a generalized STI graph G
is not such except L(P4) = P3. Similarly, by checking the small cases and by applying Theorem 2.1(i), the
complement of a generalized STI graph G is never a generalized STI graph.

In the previous section we observed that the graphs Kn+k,n, n ≥ 1, are k-STI graphs. To obtained
more involved highly connected generalized STI graphs, the Cartesian product can be used. Recall that the
Cartesian product of two graphs G and H, denoted G□H, is the graph with vertex set V(G□H) = V(G)×V(H)
and vertices (u, v) and (x, y) are adjacent in G□H if either u = x and vy ∈ E(H) or v = y and ux ∈ E(G),
see [15] for more information on this graph operation.

Theorem 3.1. Let G and H be graphs both of order n and let k ≥ 1. Then G□H is an (nk)-STI graph if and only if
G and H are k-STI graphs.

Proof. From [4] we recall that if x ∈ V(G) and u ∈ V(H), then

TrG□H((x,u)) = TrG(x)n + TrH(u)n . (1)
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Assume first that G□H is an nk-STI graph. If xy ∈ E(G) and u ∈ V(H), then (x,u)(y,u) ∈ E(G□H) and
thus (1) yields

nk = |TrG□H((x,u)) − TrG□H((x, v))|
= |TrG(x)n + TrH(u)n − TrG(y)n − TrH(u)n|
= n|TrG(x) − TrG(y)| ,

and hence |TrG(x)−TrG(y)| = k. It follows that G is a k-STI graph. Analogously we see that H is k-STI graph.
Conversely, assume that G and H are k-STI graphs. If (x,u) and (x, v) are adjacent vertices in G□H, then

applying (1) once more we have

|TrG□H(x,u) − TrG□H(x, v)| = |TrG(x)n + TrH(u)n − TrG(x)n − TrH(v)n
= n|TrH(u) − TrH(v)| = nk .

Analogously we get the same conclusion for the edges of G□H whose endvertices differ in the first
coordinate. We conclude that G□H is an nk-STI graph.

If G and H are graphs on at least two vertices, then the following formula applies to the connectivity
κ(G□H) of G□H:

κ(G□H) = min{κ(G)|V(H)|, κ(H)|V(G)|, δ(G) + δ(H)} .

The formula was announced in 1978 in [21]. However, neither its proof was provided nor did it appear
afterwards. After several partial results, the formula was proved in 2008 by Špacapan in [25]. An appealing
consequence of the formula is that κ(G□H) ≥ κ(G) + κ(H) holds for any connected graphs G and H, cf. [15,
Exercise 25.4]. Another consequence of the formula is that if G is a connected graph of order at least 2
and G□ ,p denotes the Cartesian product of p copies of G, then for any p ≥ 2 we have κ(G□ ,p) = δ(G□ ,p) =
p δ(G) [16]. These two consequences together with Theorem 3.1 guarantee the existence of numerous highly
connected generalized STI graphs.

4. Some families of generalized STI graphs

In this section, some families of generalized STI graphs are constructed.
For a graph G and a vertex u ∈ V(G), let rG(u) denote the graph obtained from r disjoint copies of G by

identifying a copy of u in each of the copies. In Fig. 2 the graph rC2q(u) is schematically presented, where u
is an arbitrary, fixed vertex of the even cycle C2q.

u

Figure 2: The graph rC2q(u)

A graph G is transmission regular if all its vertices have the same transmission, cf. [1, 19, 20]. Now we
have:
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Proposition 4.1. Let G be a bipartite, transmision regular graph of order n, let u ∈ V(G), and let r ≥ 2. Then the
graph rG(u) is a ((r − 1)(n − 1))-STI graph.

Proof. let e = vw be an arbitrary edge of G, and consider it in a copy G′ of G in rG(u). As G is bipartite, we
may without loss of generality assume that dG′ (v,u) < dG′ (w,u). Moreover, since G is transmission regular
it follows that nv(e|G′) = nw(e|G′). Hence

IrG(u)(vw) = |nv(e|G′) − nw(e|G′)| + (n − 1)(r − 1) = (n − 1)(r − 1)

and we are done.
If p, q ≥ 2, then let Γp,q be the graph with the vertex set V(Γp,q) = {vi,wi, j : i ∈ [2q], j ∈ [p]} and the edge

set

E(Γp,q) ={viwi, j, viwi−1, j : 2 ≤ i ≤ 2q − 1, j ∈ [p]} ∪ {viwi, j : i ∈ {1, 2q}, j ∈ [p]}
∪ {v1w2q, j, v2qw2q−1, j : j ∈ [p]} .

To put it more informally, Γp,q is obtained from 2q copies of K2,p by attaching them in circular manner, see
Fig. 3.

w1,1

w1,2

w1,p

v1

Figure 3: The graph Γp,q

Proposition 4.2. If p, q ≥ 2, then Γp,q is a (2p − 2)-STI graph.

Proof. By the symmetry of the graph Γp,q we infer that I(viwi, j) is independent of the section of i and j. Hence
it suffices to compute I(v1w1,1). Setting e = v1w1,1 we have

Nv1 (e) = {v1} ∪ {w1, j : 2 ≤ j ≤ p} ∪ {vi : q + 2 ≤ i ≤ 2q}
∪ {wi, j : q + 1 ≤ i ≤ 2q, j ∈ [p]} .

Therefore, nv1 (e) = 1+(p−1)+(q−1)+(pq) = pq+p+q−1 and nw1,1 (e) = 2q(p+1)−(pq+p+q−1) = q(p+1)−p+1.
By Theorem 1.1 we conclude that

|I(v1w1,1)| = |nv1 − nw1,1 |

= |(pq + p + q − 1) − (pq + q − p + 1)|
= 2p − 2 ,

hence the assertion.
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If p, q ≥ 2, then let Hp,q be the graph with the vertex set

V(Hp,q) = {vi : i ∈ [2q]} ∪ {w2r−1, j : r ∈ [q], j ∈ [p]} ∪ {w2r, j : r ∈ [q], j ∈ [2]}

and the edge set A ∪ B ∪ C, where

A = {v1w2q, j : j ∈ [2]} ,
B = {v2r−1w2r−1, j : r ∈ [q], j ∈ [p]} ∪ {v2r−1w2r−2, j : 2 ≤ r ≤ q, j ∈ [2]} ,
C = {v2rw2r, j : r ∈ [q], j ∈ [2]} ∪ {v2rw2r−1, j : r ∈ [q], j ∈ [p]} .

Informatively, Hp,q has a cyclic structure where K2,p and K2,2 alternate, see Fig. 4.

v1

v2v2q

w1,1w2q,1

w1,pw2q,2

w2,1

w2,2

Figure 4: The graph Hp,q

Proposition 4.3. If p ≥ 2 and q ≥ 3 is odd, then Hp,q is a p-STI graph.

Proof. For the rest of the proof set n = |V(Hp,q)| = q(p+ 4), Considering the symmetry of Hp,q, it is enough to
determine the transmission imbalance for the edges e1 = v1w1,1 and f1 = v1w2q,1. For the edge e1 = v1w1,1
we have

Nw1,1 (e1) ={w1,1} ∪ {vi : 2 ≤ i ≤ q + 1} ∪ {wr, j : r even, 2 ≤ r ≤ q, j ∈ 2}
∪ {wr, j : r odd, 3 ≤ r ≤ q, j ∈ p} .

Therefore nw1,1 (e1) = (q + 1) + 2( q−1
2 ) + p( q−1

2 ) and hence

I(e1) = |n − 2nw1,1 (e)| = |q(p + 4) − 2(q + 1 + (p + 2)(
q − 1

2
))| = p .

For the edge f1 = v1w2q,1 we have

Nv1 ( f1) ={w2q,2} ∪ {vi : i ∈ [q]} ∪ {wr, j : r even, 2 ≤ r ≤ q − 1, j ∈ [2]}
∪ {wr, j : r odd, r ∈ [q], j ∈ [p]} .

Thus nv1 ( f1) = 1 + q + 2 q−1
2 + p q+1

2 = 2q − 1 + p q+1
2 and we obtain that

I( f1) = |n − 2nv1 ( f1)| = |q(p + 4) − 2(2q − 1 + p
q + 1

2
)| = p .

We conclude that Hp,q is a p-STI graph.
We add that if q is even, then the transmission imbalances of the edges of Hp,q are 2p − 2 and 2.
The last class of graphs we present is defined as follows. If r ≥ 2 and n ≥ 5, then let Gn,r be the graph

with the vertex set {v1, v2, . . . , vn} and the edge set {vivi+1 : i ∈ [n − r − 1]} ∪ {v1v j, vn−rv j : n − r + 1 ≤ j ≤ n},
see Fig. 5.
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vn−r

vn−r+1

v1

vn

Figure 5: The graph Gn,r

Proposition 4.4. If n ≥ 5, r ≥ 2, and n ≡ r − 1 (mod 2), then Gn,r is a (r − 1)-STI graph.

Proof. Let viv j be an edge of G = Gn,r, where vi is closer to one of two vertices v1 and vn−r than to v j, that
is, min{dG(vi, v1), dG(vi, vn−r)} < min{dG(v j, v1), dG(v j, vn−r)}. Note that the cycle C : v1v2 · · · vn−rvtv1, where
n − r + 1 ≤ t ≤ vn, is an even cycle and then nvi (viv j|C) = nviv j (v j|C). Moreover the other vertices not on the
cycle C are closer to vi than to v j. Thus

I(viv j) = |nvi − nv j | =

∣∣∣∣∣(n − r + 1
2

+ r − 1
)
−

n − r + 1
2

∣∣∣∣∣ = r − 1

and we are done.
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