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Abstract. This paper presents an iterative algorithm for approximating a solution to a split equality varia-
tional problem involving a finite family of pseudomonotone mappings in Hilbert spaces. We demonstrate
the strong convergence of the sequence produced by the algorithm to a solution of the problem in Hilbert
spaces, under the assumption that the mappings are uniformly continuous. Additionally, we apply our
main findings to solve split variational inequality and split equality zero point problems for a finite family
of pseudomonotone mappings in Hilbert spaces, expanding on existing literature.

1. Introduction

The split equality problem was first introduced by Moudafi [7] and has garnered significant attention due
to its applications in various fields such as decomposition methods for partial differential equations, game
theory, medical image reconstruction, and radiation therapy treatment planning. The concept of variational
inequalities has been utilized as an analytical tool in a wide range of disciplines including engineering,
physics, optimization theory, and economics. Stampacchia [11] and Fichera [2] introduced the variational
inequality in 1964, in potential theory and mechanics, respectively, as a means to study differential equations
in infinite-dimensional spaces with practical applications. The variational inequality problem combines key
concepts in applied mathematics such as systems of nonlinear equations, necessary optimality conditions for
optimization problems, complementarity problems, obstacle problems, and network equilibrium problems.

Pseudomonotone mappings, introduced by Karamardian [4], generalize the concept of monotone op-
erators and have been extensively studied for over 40 years. They have found numerous applications
in variational inequalities and economics. Various authors have explored pseudomonotone variational
inequality and split equality variational inequality problems in Hilbert space using different iterative algo-
rithms and classes of mappings. For instance, Shehu, Dong, and Jiang [10] introduced a single projection
method for pseudomonotone variational inequalities in Hilbert space in 2019. Reich, Thong, Dong, Li,
and Dong [9] proposed new algorithms and convergence theorems for solving variational inequalities with
non-Lipschitz mapping in 2021.

Several authors have also studied the split equality problem for variational inequality problems, known
as the split equality variational inequality problem. For example, Wega and Zegeye [12] developed an
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algorithm for approximating solutions to split equality monotone inclusion problems and obtained strong
convergence results in 2020. Izuchukwu, Ezeora, and Martinez-Moreno [3] proposed a new modified
contraction method for solving a certain class of split monotone variational inclusion problems in real
Hilbert spaces in 2020. More recently, Kwelegano, Zegeye, and Boikanyo [5] introduced an iterative
method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings in
2021.

Motivated by the research works of [3, 5, 12], the goal of this paper is to study iterative algorithms
for approximating a common solution to split equality monotone inclusion problems for a finite family of
pseudomonotone mappings in Hilbert spaces. To facilitate this study, we provide some necessary notions
and definitions. Throughout this research, we use (VIP) to denote variational inequality problems, (SEP)
for split equality problems, (SEVIP) for split equality variational inequality problems, H for a Hilbert space,
and C for a closed, non-empty, and convex subset of a Hilbert space.

Definition 1.1. Let T : C→ H be a mapping.

i) T is called an L-Lipschitz mapping with Lipschitz constant L > 0 if ||Tx − Ty|| ≤ L||x − y|| for all x, y ∈ C. If
0 ≤ L < 1, then T is a contraction. If L = 1, then T is nonexpansive.

ii) T is called a monotone mapping if ⟨Tx − Ty, y − x⟩ ≥ 0 for all x, y ∈ C.
iii) T is called a pseudomonotone mapping if ⟨Tx, y − x⟩ ≥ 0 implies ⟨Ty, y − x⟩ ≥ 0 for all x, y ∈ C.

We note that pseudomonotone mappings are more general than monotone mappings.

Definition 1.2. Let A : C→ H be a mapping.
The variational inequality problem is formulated to find a point x∗ in C such that for all x ∈ C,

⟨Ax∗, x − x∗⟩ ≥ 0. (1)

The solution set of (1) is denoted by VI(C,A).

2. Preliminaries

In this section we recall some known results which are used in our subsequent analysis. The projection
mapping Pc : H→ C is defined by

∥Pcx − x∥ = in fy∈c∥x − y∥, (2)

and hence, Pc satisfies: ∥Pcx − Pcy∥2 ≤ ⟨Pcx − Pcy, x − y⟩, for all x, y ∈ H.

Definition 2.1. The mapping T : C :→ H is called sequentially weakly continuous if for each sequence {xn}, we have
{xn} converges weakly to p implies {Txn} converges to Tp.

Lemma 2.2. For all x, y ∈ H, it is known that the following inequalities hold.

i) 2⟨x, y⟩ = ||x||2 + ||y||2 − ||x − y||2.
ii) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩.

Lemma 2.3. Let x ∈ H. Then

Pcx ∈ C if and only if ⟨y − Pcx, x − Pcx⟩ ≤ 0, for every y ∈ C. (3)

This result implies that for all x ∈ H

||PCx − z||2 ≤ ||x − z||2 − ||x − Pcx||2z ∈ C. (4)
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Lemma 2.4 ([6]). Let {ak} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence ak j of {ak} such that ak j < ak j+1 for all j ≥ 0. Define an integer sequence {mk}k≥k0 as

mk = max{k0 ≤ l ≤ k : al < al+1}.

Then, mk →∞ as k→∞ and for all k ≥ k0

max{amk , ak} ≤ amk+1.

Lemma 2.5 ([13]). Let {αn} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnγn for n ≥ n0 where {αn} ⊆ (0, 1) and {γn} ⊆ R, satisfies

∞∑
n=1

αn = ∞, and lim sup
n→∞

γn ≤ 0. Then lim
n→∞

an = 0.

Lemma 2.6 ([8]). Let H be a real Hilbert space, for all xi ∈ H and αi ∈ [0, 1] for i = 1, 2, 3, ...n, such that
α1 + α2 + α3 + ... + αn = 1, the following holds:

∥α0x0 + α1x1 + ... + αnxn∥
2 =

n∑
i=0

αi∥xi∥
2
−

∑
0≤i, j≤n

αiα j∥xi − x j∥
2.

Lemma 2.7. Let r(x), be a real valued function on H and defined K := {x ∈ C : r(x) ≤ 0}. If K, is nonempty and r is
L-Lipshitz continuous with L > 0, then

||PKx − x|| ≥
1
L

max{r(x), 0}, for x ∈ C.

3. Main results

In this section, we shall make use of the following assumptions:
Assumption 1:

A1: Let T1,T2 : H1 → H1 and S2,S2 : H2 → H2 be sequentially weakly continuous and uniformly
continuous pseudomonotone mappings on bounded subset of H1 and H2, respectively.

A2: Let Ω := {(p, q) ∈ H1 ×H2 : p ∈ VI(C,T1) ∩ VI(C,T2), q ∈ VI(D,S1) ∩ VI(D,S2) and Ap = Bq} , ∅, where
A : H1 → H3 and B : H2 → H3 are bounded linear mappings with adjoints A∗ and B∗, respectively.

A3: Let ι ∈ (0, 1), µ > 0 and δ ∈ [δ, δ̄] ⊂ (0, 1
µ )

A4: Let {αn} ⊂ (0, ϵ) for some constant real number ϵ > 0 be a real sequence such that,

limn→∞αn = 0, and
∞∑

n=1

αn = ∞.

A5: Let 11 : H1 → H1 and 12 : H2 → H2 be contraction mappings with constants α1, α2 ∈ (0, 1
√

2
),

respectively and we denote α = max{α1, α2}.
A6 : Let the sequence γn satisfies

0 < ξ ≤ γn ≤
||Axn − Btn||

2

||A∗(Axn − Btn)||2 + ||B∗(Btn − Axn)||2
, f or n ∈ Υ

otherwise, γn = γ > 0, such that the indexes

Υ = {n ∈ N : Axn − Btn , 0}.
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Algorithm 1. For arbitrary (x0, t0) ∈ H1 ×H2, define an iterative algorithm by

Step 1. Computezi,n = PC(xn − δTixn) and di(xn) = xn − zi,n, for i = 1, 2,
ui,n = PD(tn − δSitn) and di(tn) = tn − ui,n, for i = 1, 2.

(5)

Step 2. Computeyi,n = xn − Υi,nd(xn), for i = 1, 2.
vi,n = tn − Υ

′

i,nd(tn), for i = 1, 2.,
(6)

where, Υi,n = ι ji,n such that ji,n is the smallest nonnegative integer ji satisfying

⟨Tixn − Ti(xn − ι
ji di(xn)), di(xn)⟩ ≤ µ∥di(xn)∥2,

and Υ′n = ι
j′i,n such that j′i,n is the smallest nonnegative integer j′i satisfying

⟨Sitn − Si(tn − ι
j′i di(tn)), di(tn)⟩ ≤ µ∥di(tn)∥2.

Step 3. Compute
an = PC(xn − γnA∗(Axn − Btn),
bn = PC(tn − γnB∗(Btn − Axn),
wn = θnan + βnp1,n + ηnp2,n,

rn = θnbn + βnq1,n + ηnq2,n

(7)

where Ci,n = {x ∈ H : hi,n = ⟨yi,n − Tiyi,n, x − yi,n⟩ ≤ 0},
Di,n = {x ∈ H : ei,n = ⟨vi,n−Sivi,n, x−vi,n⟩ ≤ 0} and {θn}, {βn}, {ηn} ⊂ [ρ, 1) forρ > 0 such that βn+θn+ηn = 1
for all n ≥ 0 and pi,n = PCi,n xn, qi,n = PDi,n tn for i = 1, 2.

Step 4. Computexn+1 = αn11(xn) + (1 − αn)wn,

tn+1 = αn12(tn) + (1 − αn)rn.

Step 5. Set n := n + 1 and go to Step 1.

Lemma 3.1. Suppose that the assumption A1−A2 hold, and {xn}, {tn}, {yi,n}, {zi,n}, {ui,n}, {vi,n} are sequences, generated
by Algorithm 1 for i = 1, 2. Then, the search rules in step 2 are well defined.

Proof. Since ι ∈ (0, 1), Ti and Si are uniformly continuous on H1 and H2, respectively, we have

⟨Tixn − Ti(xn − ι
ji di(xn)), di(xn)⟩ → 0 as ji →∞,

and

⟨Sitn − Si(tn − ι
j′i di(tn)), di(tn)⟩ → 0 as j′i →∞.

Moreover, since ∥di(xn)∥ > 0 and ∥di(tn)∥ > 0 there exist a non-negative integers ji,n and j′i,n, satisfying the
inequalities in Step 2.
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Lemma 3.2. Suppose that the assumption A1−A3 hold. If {xn}, {tn}, {yi,n}, {zi,n}, {ui,n}, {vi,n} are sequences generated
by Algorithm 1, then

⟨Tixn, di(xn)⟩ ≥
1
δ
∥di(xn)∥2

and

⟨Sitn, di(tn)⟩ ≥
1
δ
∥di(tn)∥2.

Proof. From equations (5), for n ≥ 0 and i = 1, 2, we have,

||xn − PC(xn − δTixn)||2 ≤ ⟨xn − (xn − δTixn), xn − PC(xn − δTixn)⟩
= δ⟨Tixn), xn − PC(xn − δTixn)⟩,

which implies ⟨Tixn, di(xn)⟩ ≥ 1
δ∥di(xn)∥2.

Similarly, we get ⟨Sitn, di(tn)⟩ ≥ 1
δ∥di(tn)∥2.

Lemma 3.3. Suppose the assumptions A1 − A3 holds. Let (p, q) ∈ Ω, let hi,n(xn) = ⟨Tiyi,n, xn − yi,n⟩, and let
ei,n(tn) = ⟨Sivi,n, xn − vi,n⟩. Then,

hi,n(p) ≤ 0, ei,n(q) ≤ 0, hi,n(xn) ≥ Υn(
1
δ
− µ)∥di(xn)∥2,

and ei,n(tn) ≥ Υ′n(
1
δ
− µ)∥di(tn)∥2.

In particular, if di(xn) , 0 and di(tn) , 0, then hi,n(xn) > 0 and ei,n(tn) > 0.

Proof. For the fact that (p, q) ∈ Ω, we have

⟨Tip, yi,n − p⟩ ≥ 0.

This inequality and the fact that Ti is pseudomonotone mapping, we obtain

hn(p) = ⟨Tiyn, yi,n − p⟩ ≥ 0,

which gives us,
hi,n(p) = ⟨Tiyi,n, p − yi,n⟩ ≤ 0.

Similarly, we obtain ei,n(q) ≤ 0. In addition, from Step 2, of Algorithm 1, we have,

hi,n(xn) = ⟨Tiyi,n, xn − yi,n⟩ = ⟨Tiyi,n, xn − (xn − Υndi(xn)⟩ = ⟨Tiyi,n, di(xn)⟩.

Furthermore, from the inequalities in Step 2, we have,

⟨Tixn − Tiyi,n, d(xn)⟩ ≤ µ∥d(xn)∥2,

which implies

⟨Tiyi,n, di(xn)⟩ ≥ ⟨Tixn, di(xn)⟩ − µ∥d(xn)∥2 (8)

From Lemma 3.2 and inequality above, we obtain

⟨Tiyi,n, d(xn)⟩ ≥ (
1
δ
− µ)∥d(xn)∥2 (9)
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By combining (8) and (9), we obtain,

hi,n(xn) ≥ Υn(
1
δ
− µ)∥di(xn)∥2.

Similarly, we obtain,

ei,n(xn) ≥ Υ′n(
1
δ
− µ)∥di(tn)∥2,

for i = 1, 2.

Lemma 3.4. Suppose that the assumption A1−A2 hold, and {xn}, {tn}, {yi,n}, {zi,n}, {ui,n}, {vi,n} are sequences, generated
by Algorithm 1 for i = 1, 2. Let {(xnk , tnk )} be a subsequence of {(xn, tn)} such that

(xnk , ynk )⇀ (p, q), lim
k→∞
||xnk − zi,nk || = 0 and lim

k→∞
||tnk − ui,nk || = 0.

Then (p, q) ∈ [VI(C,T1) ∩ VI(C,T2)] × [VI(D,S1) ∩ VI(D,S2)].

Proof. For the fact that zi,nk = PC(xnk − δTixnk ), from (3), we get

⟨xnk − δTixnk − zi,nk , x − xnk⟩ ≤ 0 ∀x ∈ C,

which implies

⟨xnk − zi,nk , x − zi,nk⟩ ≤ δ⟨Tixnk , x − zi,nk⟩ ∀x ∈ C,

and hence

⟨xnk − zi,nk , x − zi,nk⟩ + ⟨Tixnk , zi,nk − xnk⟩ ≤ δ⟨Tixnk , x − xnk⟩ ∀x ∈ C.

Since lim
k→∞
||xnk − zi,nk || = 0 and the fact that Ti is bounded, we obtain

lim inf
k→∞

⟨Tixnk , x − xnk⟩ ≥ 0,∀x ∈ C. (10)

Moreover, let {ξk} be a sequence of decreasing numbers such that ξk → 0 as k → ∞ and w be an arbitrary
element of C. Using inequality (10), we can find a large enough Nk such that

⟨Tixnk ,w − xnk⟩ + ξk ≥ 0,∀k ≥ Nk. (11)

From (11) and the fact that Tixnk , 0, we get

⟨Tixnk , ξkdk + w − xnk⟩ ≥ 0,∀k ≥ Nk, (12)

for some dk ∈ C satisfying ⟨Tixnk , dk⟩ = 1. In addition, from definition of Ti and inequality (12), we have

⟨Ti(w + ξndkw),w + ξkdkw − xnk⟩ ≥ 0,∀k ≥ Nk,

which implies that

⟨Tiw,w − xnk⟩ ≥ ⟨Tiw − A1(w + ξkdkw),w + ξkdkw − xnk⟩

−ξk⟨Tiw, dk⟩,∀k ≥ Nk. (13)

Since ξk → 0 as k→∞ and Ti is continuous, then from inequality (13), we obtain

⟨Tiw,w − p⟩ = lim inf
k→∞

⟨Tiw,w − xnk⟩ ≥ 0,∀w ∈ C,

and for i = 1, 2. Thus, p ∈ VI(C,T1) ∩ VI(C,T2). Similarly, we get

⟨Siz, z − q⟩ = lim inf
k→∞

⟨Siz, z − tnk⟩ ≥ 0,∀z ∈ D,

and for i = 1, 2. Thus, q ∈ VI(D,S1) ∩ VI(D,S2).
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Theorem 3.5. Suppose the assumptions A1 −A4 hold. Then, the sequence {(xn, tn)}, generated by the Algorithm 1 is
bounded in Hilbert space, C ×D.

Proof. Now, from Lemma 2.6, and (4), we get

∥wn − p∥2 = ∥θnan + βnp1,n + ηnp2,n − p∥2

= ∥θn(an − p) + βn(PC1,n xn − p) + βn(PC2,n xn − p)∥2

≤ θn∥an − p∥2 + βn∥PC1,n xn − p∥2 + ηn∥PC2,n xn − p∥2

≤ θn∥an − p∥2 + βn[∥xn − p∥2 − ||PC1,n xn − xn||
2]

+ηn[∥xn − p∥2 − ||PC2,n xn − xn||
2]. (14)

Similarly, we obtain

∥rn − q∥2 ≤ θn∥bn − q∥2 + βn[∥tn − q∥2 − ||PD1,n tn − tn||
2]

+ηn[∥tn − q∥2 − ||PD2,n tn − tn||
2]. (15)

Thus, by adding inequalities (14) and (15), we get

∥wn − p∥2 + ∥rn − q∥2 ≤ θn[∥an − p∥2 + ∥bn − q∥2]
+βn[∥xn − p∥2 − ||PC1,n xn − xn||

2]

+ηn[∥xn − p∥2 − ||PC2,n xn − xn||
2]

+βn[∥tn − q∥2 − ||PD1,n tn − tn||
2]

+ηn[∥tn − q∥2 − ||PD2,n tn − tn||
2]. (16)

In addition from (7) and (4), we obtain

∥an − p∥2 = ||PC(xn − γnA∗(Axn − Btn) − p||2

≤ ||xn − γnA∗(Axn − Btn||
2
− ||an − (xn − γnA∗(Axn − Btn)||2

≤ ||xn − p||2 + γ2
n||A

∗(Axn − Btn)||2 − γn||Axn − Btn||
2

−||xn − an − γnA∗(Axn − Btn)||2. (17)

Similarly, we get

∥bn − q∥2 ≤ ||tn − q||2 + γ2
n||B

∗(Btn − Axn)||2 − γn||Axn − Btn||
2

−||tn − bn − γnB∗(Btn − Axn)||2. (18)

By adding inequalities (17) and (18), we get

∥an − p∥2 + ∥bn − q∥2 ≤ ||xn − p||2 + ||tn − q||2

+γ2
n[||A∗(Axn − Btn)||2 + ||B∗(Btn − Axn)||2]

−2γn||Axn − Btn||
2
− ||xn − an − γnA∗(Axn − Btn)||2

−||tn − bn − γnB∗(Btn − Axn)||2. (19)

Moreover, (19) and (A6), we obtain

∥an − p∥2 + ∥bn − q∥2 ≤ ||xn − p||2 + ||tn − q||2 − γn||Axn − Btn||
2

−||xn − an − γnA∗(Axn − Btn)||2

−||tn − bn − γnB∗(Btn − Axn)||2. (20)
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Now, by substituting (20) in (16), we get

∥wn − p∥2 + ∥rn − q∥2 ≤ ∥xn − p∥2 + ∥tn − q∥2

−βn[||PC1,n xn − xn||
2 + ||PD1,n tn − tn||

2]

−ηn[||PC2,n xn − xn||
2 + ||PD2,n tn − tn||

2]

−θnγn||Axn − Btn||
2
− θn||xn − an − γnA∗(Axn − Btn)||2

−θn||tn − bn − γnB∗(Btn − Axn)||2. (21)

From (21), Lemma 2.6 and (A5), we get

||xn+1 − p||2 + ||tn+1 − q||2 = ||αn11(xn) + (1 − αn)wn − p||2

+||αn12(tn) + (1 − αn)rn − q||2

≤ αn||11(xn) − p||2 + (1 − αn)||wn − p||2

+αn||12(tn) − q||2 + (1 − αn)|rn − p||2

≤ αn(||11(xn) − 11(p)|| + ||11(p) − p||)2 + (1 − αn)||xn − p||2

+αn(||12(tn) − 12(q)|| + ||12(q) − q||)2 + (1 − αn)||tn − q||2

≤ αn[α2
||xn − p||2 + ||11(xn) − p||2] + (1 − αn)||xn − p||2

+αn[α2
||tn − q||2 + ||12(tn) − q||2] + (1 − αn)||tn − q||2

≤ 2αn(α2
||xn − p||2 + ||11(p) − p||2) + (1 − αn)||xn − p||2

+2αn(α2
||tn − q||2 + ||12(q) − q||2)

+(1 − αn)||tn − q||2. (22)

By setting Rn(p, q) = ||xn − p||2 + ||tn − q||2, from inequality (22), we get

Rn+1(p, q) ≤ (1 − αn(1 − 2α2))Rn(p, q)
+2αn(||11(p) − p||2 + ||12(q) − q||2)

≤ max
{
Rn(p, q),

2
1 − 2α2 (||11(p) − p||2 + ||12(q) − q||2)

}
,

and hence by induction

Rn(p, q) ≤ max
{
R0(p, q),

2(||11(p) − p||2 + ||12(q) − q||2)
1 − 2α2

}
,

which implies that {xn}, {tn} and hence {yi,n}, {vi,n}, {Tixn} and {Sivn} for i = 1, 2 are bounded.

Theorem 3.6. Suppose the assumption (A1) − (A6) hold. Then, the sequence {(xn, tn)}, generated by Algorithm 1
converges strongly to (p, q) = PΩ(11(p), 12(q)).

Proof. Now, let (p, q) = PΩ(11(p), 12(q)). Then, from equation 2, for i = 1, 2, we have,

∥p − pi,n∥
2
≤ ∥p − xn∥

2
− ∥xn − pi,n∥

2.

Similarly, we get

∥q − qi,n∥
2
≤ ∥q − tn∥

2
− ∥tn − qi,n∥

2, (23)

Since for i = 1, 2, Ti is bounded on bounded subset of H1 ,Then their exists Li > 0, such that ∥Tiyn∥ ≤ Li, for
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all n ≥ 0 and i = 1, 2. Thus,

|hi,n(z) − hi,n(w)| = |⟨Tiyi,n, z − yi,n⟩ − ⟨Tiyi,n,w − yi,n⟩|

= |⟨Tiyi,n, z − w⟩
≤ ∥Tiyi,n∥∥z − w∥
≤ Li∥z − w∥,

which gives us that hi,n is Li- Lipschitz continuous on H1. Thus, from Lemma 2.7 and Lemma 3.3, we obtain

∥xn − pi,n∥
2
≥

hi,nxn

2L2
i

≥ Υ2
i,n(

1
δ
− µ)2

∥di(xn)∥4 (24)

Thus, from (23) and (24), for i = 1, 2, we get

∥p − pi,n∥
2
≤ ∥p − xn∥

2
− Υ2

i,n(
1
δ
− µ)2

∥di(xn)∥4. (25)

Similarly, for i = 1, 2, we get

∥q − qi,n∥
2
≤ ∥q − tn∥

2
− Υ′

2

i,n(
1
δ
− µ)2

∥di(tn)∥4.

Now, from Lemma 2.6, (25), (21) and (17), we get

∥wn − p∥2 + ∥rn − q∥2 = ∥θnan + βnp1,n + ηnp2,n − p∥2

+∥θnbn + βnq1,n + ηnq2,n − q∥2

≤ θn∥an − p∥2 + βn∥p1,n − p∥2 + ηn∥p2,n − p∥2

+θn∥bn − q∥2 + βn∥q1,n − q∥2 + ηn∥q2,n − q∥2

≤ θn∥xn − p∥2 + βn∥xn − p∥2ηn∥xn − p∥2 + ηn∥xn − p∥2

+θn∥tn − q∥2 + βn∥tn − q∥2ηn∥tn − q∥2 + ηn∥tn − q∥2

−

(
Υ2

1,n(
1
δ
− µ)2

∥d1(xn)∥4 + Υ2
2,n(

1
δ
− µ)2

∥d2(xn)∥4
)

−

(
Υ′

2

1,n(
1
δ
− µ)2

∥d1(tn)∥4 + Υ′
2

2,n(
1
δ
− µ)2

∥d2(tn)∥4
)

≤ ∥xn − p∥2 + ∥tn − q∥2

−

(
Υ2

1,n(
1
δ
− µ)2

∥d1(xn)∥4 + Υ2
2,n(

1
δ
− µ)2

∥d2(xn)∥4
)

−

(
Υ′

2

1,n(
1
δ
− µ)2

∥d1(tn)∥4

+Υ′
2

2,n(
1
δ
− µ)2

∥d2(tn)∥4
)
. (26)
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By Lemma 2.2, Lemma 2.6 and (26), we obtain

Rn+1(p, q) = ∥αn11(xn) + (1 − αn)w(n) − p∥2 + ∥αn12(tn) + (1 − αn)r(n) − q∥2

≤ ∥αn(11(xn) − 11(p)) + (1 − αn)(wn − p) + αn(11(p) − p)∥2

+∥αn(12(tn) − 12(q)) + (1 − αn)(rn − q) + αn(12(q) − q)∥2

+2αn[⟨11(p) − p, xn+1 − p⟩ + ⟨12(q) − q, tn+1 − q⟩]
≤ ααn∥xn − p∥2 + (1 − αn)∥wn − p∥2 + ααn∥tn − q∥2 + (1 − αn)∥rn − q∥2

+2αn∥11(xn) − p∥∥xn+1 − xn∥ + 2αn∥12(tn) − q∥∥tn+1 − tn∥

+2αn[⟨11(p) − p, xn − p⟩ + ⟨12(q) − q, tn − q⟩]

≤

(
1 − (1 − α)αn

)
Rn(p, q)

+2αn∥11(xn) − p∥∥xn+1 − xn∥ + 2αn∥12(tn) − q∥∥tn+1 − tn∥

+2αn[⟨11(p) − p, xn − p⟩ + ⟨12(q) − q, tn − q⟩]

−(1 − αn)
(
Υ2

1,n(
1
δ
− µ)2

∥d1(xn)∥4 + Υ2
2,n(

1
δ
− µ)2

∥d2(xn)∥4
)

−(1 − αn)
(
Υ′

2

1,n(
1
δ
− µ)2

∥d1(tn)∥4 + Υ′
2

2,n(
1
δ
− µ)2

∥d2(tn)∥4
)
,

which gives us

(1 − αn)
(
Υ2

1,n(
1
δ
− µ)2

∥d1(xn)∥4 + Υ2
2,n(

1
δ
− µ)2

∥d2(xn)∥4
)

+(1 − αn)
(
Υ′

2

1,n(
1
δ
− µ)2

∥d1(tn)∥4 + Υ′
2

2,n(
1
δ
− µ)2

∥d2(tn)∥4
)

≤ Rn(p, q) − Rn+1(p, q)
+2αn∥11(xn) − p∥∥xn+1 − xn∥ + 2αn∥12(tn) − q∥∥tn+1 − tn∥

+2αn[⟨11(p) − p, xn − p⟩ + ⟨12(q) − q, tn − q⟩]. (27)

In addition, from (21), we get

Rn+1(p, q) ≤ Rn(p, q) + 2αn[⟨11(p) − p, xn+1 − p⟩ + ⟨12(q) − q, tn+1 − q⟩]
−βn[||PC1,n xn − xn||

2 + ||PD1,n tn − tn||
2]

−ηn[||PC2,n xn − xn||
2 + ||PD2,n tn − tn||

2]

−θnγn||Axn − Btn||
2
− θn||xn − an − γnA∗(Axn − Btn)||2

−θn||tn − bn − γnB∗(Btn − Axn)||2. (28)

Next, we show that the sequence {Rn(p, q)} converges strongly to zero. For this we consider two cases as
follows:
Case 1: Assume that there exist n0 ∈ N, such that the sequence of real numbers {Rn(p, q)} is decreasing for
all n ≥ n0. Thus, the sequence {Rn(p, q)} convergent and hence from (28) and the fact that αn → 0, we obtain

lim
n→∞
||PC1,n xn − xn||

2 = lim
n→∞
||PC2,n xn − xn||

2 = 0,

lim
n→∞
||PD1,n tn − tn|| = lim

n→∞
||PD2,n tn − tn|| = 0,

lim
n→∞
||Axn − Btn|| = 0,

and

lim
n→∞
||xn − an − γnA∗(Axn − Btn)|| = lim

n→∞
||tn − bn − γnB∗(Btn − Axn)|| = 0,
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which implies that

lim
n→∞
||xn − an|| ≤ ||xn − an − γnA∗(Axn − Btn)||2 + ||γnA∗(Axn − Btn)|| = 0, (29)

and

lim
n→∞
||tn − bn|| ≤ ||tn − bn − γnB∗(Btn − Axn)||2 + ||γnB∗(Btn − Axn)|| = 0,

In addition, from (27), we have

lim
n→∞
Υ2

1,n∥d1(xn)∥4 = lim
n→∞
Υ2

i,n∥d2(xn)∥4 = 0,

and
lim
n→∞
Υ′

2

1,n∥d1(tn)∥4 = lim
n→∞
Υ′

2

2,n∥d2(tn)∥4 = 0.

Then, from this we obtain that

lim
n→∞
Υ1,n∥d1(xn)∥2 = lim

n→∞
Υ2,n∥d2(xn)∥2 = 0,

and

lim
n→∞
Υ′1,n∥d1(tn)∥2 = lim

n→∞
Υ′2,n∥d2(tn)∥2 = 0. (30)

Since the sequence {(xn, tn)} is bounded, there exists a subsequence {(xnk , (xnk )}, of {(xn, tn)} which converges
weakly to (p, q) ∈ H1 ×H2 and

lim sup
n→∞

[⟨11(p) − p, xn − p⟩ + ⟨12(q) − p, tn − q⟩]

= lim
k→∞

[⟨1(p) − p, xnk − p⟩ + 12(q) − q, tnk − q⟩]. (31)

Now, we prove that for i = 1, 2

lim
k→∞
∥xnk − zi,nk∥ = 0, lim

k→∞
∥tnk − ui,nk∥ = 0 (32)

First consider the case, when lim inf
k→∞

Υnk > 0 In this case there is Υ > 0 such that Υnk > Υ > 0, for all k ∈ N.

Thus, we have

∥xnk − znk∥
2 =

1
Υnk

Υnk∥xnk − znk∥
2
≤

1
Υ
Υnk∥xnk − znk∥

2.

From this inequality and (30), we obtain

lim
k→∞
∥xnk − znk∥

2 = 0

and hence
lim
k→∞
∥xnk − znk∥

Second consider, when lim in fk→∞Υi,nk = 0. In this case

lim
k→∞
Υi,nk = 0 and lim

k→∞
∥xnk − zi,nk∥

2 = c > 0 (33)

Consider, y′i,nk
= 1
ιΥi,nk zi,nk + (1 − 1

ι )Υi,nk xi,nk
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Thus, from (33), we have

lim
k→∞
∥y′i,nk

− zi,nk∥ = lim
k→∞

1
ι
Υi,nk∥.xnk − zi,nk∥ = 0 (34)

From inequality in Step 2 and definition of y′i,nk
, we obtain

µ∥xnk − zi,nk∥
2 < ⟨xnk − y′i,nk

+ Tiy′i,nk
− Tixnk , xnk − zi,nk⟩

≤ ⟨xnk − y′i,nk
, xnk − zi,nk⟩ + ⟨Tiy′i,nk

− Tixnk , xnk − zi,nk⟩

≤ ∥xnk − y′i,nk
∥∥xnk − zi,nk∥

+ ∥ + Tiy′i,nk
− Tixnk∥∥xnk − zi,nk∥. (35)

From (34), (35) and the fact that Ti is uniformly continuous, we get limn→∞ ∥xnk − zi,nk∥ = 0, which contradict
(33). In a similar way we can show that limn→∞ ∥tnk − ui,nk∥ = 0 Thus, from this fact the equations (32) hold.
Moreover, since {(xnk , tnk )}, which converges weakly to (p, q), then xnk ⇀ p and tnk ⇀ q. Thus, from (33) and
Lemma 3.4, we get p ∈ VI(C,T1) ∩ VI(C,T2) and q ∈ VI(D,S1) ∩ VI(D,S2).
Next we show that Ap = Bq. But, observe that from Lemma 2.2 (ii) we get

||Ap − Bq||2 = ||Ap − Axnk + Btnk − Bq + Axnk − Btnk ||
2

≤ ||Axnk − Btnk ||
2 + 2⟨Ap − Bq,Ap − Axnk + Btnk − Bq⟩,

→ 0 as k→∞,

and this implies Ap = Bq. That is (p, q) ∈ Ω. From the definition of xn+1 and tn+1, we have ∥xn+1 − wn∥ =
αn∥11(xn) − wn∥ → 0, as n → ∞, and ∥tn+1 − rn∥ = αn∥12(tn) − rn∥ → 0, as n → ∞, since αn → ∞, as n → ∞.
From (27) and (29), we get

∥xn+1 − xn∥ ≤ ∥xn+1 − wn∥ + ∥wn − xn∥

≤ ∥xn+1 − wn∥ + ∥θnan + βnp1,n + ηnp2,n − xn∥

≤ ∥xn+1 − wn∥ + θn∥an − xn∥

+βn∥p1,n − xn∥ + ηn∥p2,n − xn∥ → 0 as n→ 0. (36)

Moreover,

∥xn − wn∥ ≤ θn∥an − xn∥ + βn∥p1,n − xn∥ + ηn∥p2,n − xn∥ → 0, as n→ 0. (37)

Thus, from (36) and (37), we obtain

∥xn+1 − xn∥ = ∥xn+1 − wn + wn − xn∥

≤ ∥xn+1 − wn∥ + ∥wn − xn∥ → 0, as n→ 0. (38)

Similarly we can show that

∥tn+1 − tn∥ → 0, as n→ 0.

From (31) and Lemma 2.3, we have

lim sup
n→∞

[⟨11(p) − p, xn − p⟩ + ⟨12(q) − q, tn − q⟩] ≤ lim
k→∞

[⟨11(p) − q, xnk − p⟩

+⟨12(q) − q, tnk − q⟩]
= ⟨11(p) − p, p − p⟩ + ⟨12(q) − q, q − q⟩
≤ 0. (39)

Now, we show that the sequence {Rn(p, q)} converges strongly to 0. Indeed, from Lemma 2.2 and 26, we
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obtain

Rn+1(p, q) ≤ (1 − (1 − α)2αn)Rn(p, q)

+αn(1 − α)
2

1 − α
[⟨11(p) − p, xn+1 − p⟩

+⟨12(q) − q, tn+1 − q⟩] (40)

Finally, from (40), (38), (39) and Lemma 2.5, we get Rn(p, q)→ 0, as n→∞ and hence xn → p and tn → q as
n→∞.
Case 2: Suppose that there exists a subsequence {Rn j (p, q)} of {Rn(p, q)} such that

Rn j (p, q) < Rn j+1(p, q), for j ≥ 0. (41)

Thus by Lemma 2.4 there exists a non-decreasing sequence {mk}, of the set of positive integer of numbers
such that mk → 0, as k→∞,
∥xmk − p∥2 ≤ ∥xmk+1 − p∥2 and

max{Rmk (p, q),Rk(p, q)} ≤ Rmk+1(p, q) for all k ≥ 1.

Following the method of Case 1, we obtain

lim
k→∞
||PC1,mk

xmk − xmk ||
2 = lim

k→∞
||PC2,mk

xmk − xmk ||
2 = 0,

lim
k→∞
||PD1,mk

tmk − tmk || = lim
k→∞
||PD2,mk

xmk − tmk || = 0,

lim
k→∞
||Axmk − Btmk || = 0,

and

lim
k→∞
||xmk − amk − γmk A

∗(Axmk − Btmk )|| = lim
k→∞
||tmk − bmk − γmk B

∗(Btmk − Axmk )|| = 0,

In addition, by following the method of Case 1, from the inequality (31), for i = 1, 2, we obtain

lim
k→∞
∥xmk − pi,mk∥ = lim

k→∞
∥tnk − qi,mk∥ = 0.

In addition, for i = 1, 2
lim
k→∞
∥xmk − zi,mk∥ = 0 = lim

k→∞
∥tmk − ui,mk∥ = 0,

lim
k→∞
∥xmk − xmk+1∥ = 0 = lim

k→∞
∥tmk − tmk+1∥ = 0,

and

lim sup
k→∞

[⟨11(p) − p, xmk+1 − p⟩ + ⟨12(q) − q, tmk+1 − q⟩] ≤ 0. (42)

Now, from (40), we get

Rmk+1(p, q) ≤ (1 − (1 − α)αmk )Rnk (p, q)

+αmk (1 − α)
2

1 − α
[⟨11(p) − p, xmk+1 − p⟩

+⟨12(q) − q, tmk+1 − q⟩]
≤ (1 − (1 − α)2αn)Rmk+1(p, q)

+αmk (1 − α)
2

1 − α
[⟨11(p) − p, xmk+1 − p⟩

+⟨12(q) − q, tmk+1 − q⟩]
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which implies that

αmk (1 − α)Rmk+1(p, q) ≤ αmk (1 − α)
2

1 − α
[⟨11(p) − p, xmk+1 − p⟩

+⟨12(q) − q, tmk+1 − q⟩]. (43)

Thus, from (41) and (43), we have

Rk(p, q) ≤ Rmk+1(p, q) ≤
2

1 − α
[⟨11(p) − p, xmk+1 − p⟩

+⟨12(q) − q, tmk+1 − q⟩].

Hence using (42), we get

lim sup
k→∞

Rk(p, q) ≤ lim sup
k→∞

2
1 − α

[⟨11(p) − p, xmk+1 − p⟩

+⟨12(q) − q, tmk+1 − q⟩] ≤ 0,

which implies

lim sup
k→∞

Rk(p, q) = 0,

and hence xk → p and tk → q as, k→∞.

We note that the method of proof of Theorem 3.6 provides the following result for split equality variational
inequality problems of a finite family of pseudomonotone mappings in Hilbert spaces.

Algorithm 2. For arbitrary (x0, t0) ∈ H1 ×H2, define an iterative algorithm by

Step 1. Computezi,n = PC(xn − δTixn) and di(xn) = xn − zi,n, for i = 1, 2, · · ·,m
ui,n = PD(tn − δSitn) and di(tn) = tn − ui,n, for i = 1, 2, · · ·,m.

Step 2. Computeyi,n = xn − Υi,nd(xn), for i = 1, 2, · · ·,m
vi,n = tn − Υ

′

i,nd(tn), for i = 1, 2, · · ·,m

where, Υi,n = ι ji,n such that ji,n is the smallest nonnegative integer ji satisfying

⟨Tixn − Ti(xn − ι
ji di(xn)), di(xn)⟩ ≤ µ∥di(xn)∥2,

and Υ′n = ι
j′i,n such that j′i,n is the smallest nonnegative integer j′i satisfying

⟨Sitn − Si(tn − ι
j′i di(tn)), di(tn)⟩ ≤ µ∥di(tn)∥2.

Step 3. Compute
an = PC(xn − γnA∗(Axn − Btn),
bn = PC(tn − γnB∗(Btn − Axn),
wn = θnan + β1,np1,n + β2,np2,n + · · · + βm,npm,n,

rn = θnbn + β1,nq1,n + β2,nq2,n + · · · + βm,nqm,n,

where Ci,n = {x ∈ H : hi,n = ⟨yi,n − Tiyi,n, x − yi,n⟩ ≤ 0},
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Di,n = {x ∈ H : ei,n = ⟨vi,n−Sivi,n, x−vi,n⟩ ≤ 0} and {θn}, {βn}, {ηn} ⊂ [ρ, 1) forρ > 0 such that βn+θn+ηn = 1
for all n ≥ 0 and pi,n = PCi,n xn, qi,n = PDi,n tn for i = 1, 2, · · ·,m.

Step 4. Computexn+1 = αn11(xn) + (1 − αn)wn,

tn+1 = αn12(tn) + (1 − αn)rn.

Step 5. Set n := n + 1 and go to Step 1.

Theorem 3.7. Suppose Assumption (A3) − (A6) hold. Let Ti : H1 → H1 and Si : H2 → H2 sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of H1 and H2, respectively for
i = 1, 2, ...,m such that

Ω := {(p, q) ∈ H1 ×H2 : p ∈ ∩m
i=1VI(C,Ti), q ∈ ∩m

i=1VI(D,Si) and Ap = Bq} , ∅.

Then, the sequence {(xn, tn)} generated by Algorithm 2 converges strongly to an element (p, q) = PΩ(11(p), 12(q)).

Corollary 3.8. Suppose Assumption (A3)−(A6) hold. Let Ti : H1 → H1 and Si : H2 → H2 be uniformly continuous
monotone mappings on bounded subset of H1 and H2, respectively for i = 1, 2, ...,m such that

Ω := {(p, q) ∈ H1 ×H2 : p ∈ ∩m
i=1VI(C,Ti), q ∈ ∩m

i=1VI(D,Si) and Ap = Bq} , ∅.

Then, the sequence {(xn, tn)} generated by Algorithm 2 converges strongly to an element (p, q) = PΩ(11(p), 12(q)).

If in Theorem 3.7, we assume 11(x) = u for all x ∈ C and 12(t) = v for all t ∈ D, we get the following result.

Corollary 3.9. Suppose Assumption (A3), (A4) and (A6) hold. Let Ti : H1 → H1 and Si : H2 → H2 sequentially
weakly continuous and uniformly continuous pseudomonotone mappings on bounded subset of H1 and H2, respectively
for i = 1, 2, ...,m such that

Ω := {(p, q) ∈ H1 ×H2 : p ∈ ∩m
i=1VI(C,Ti), q ∈ ∩m

i=1VI(D,Si) and Ap = Bq} , ∅.

Then, the sequence {(xn, tn)} generated by Algorithm 2 11(x) = u for all x ∈ C and 12(t) = v for all t ∈ D converges
strongly to an element (p, q) = PΩ(u, v).

4. Application

In this section we present some applications of Theorem 3.7.

4.1. Split Variational Inequality Problem

Let H1 and H2 be real Hilbert spaces. Let C ⊂ H1 and D ⊂ H2 be two nonempty, closed and convex
sets; let T : H1 → H1 and S : H2 → H2 be two given mappings and A : H1 → H2 be a bounded linear
mapping. The split variational inequality problem (SVIP) introduced by Censor, Gibali and Reich [1] can
mathematically be formulated as the problem of finding:

x∗ ∈ C such that ⟨T(x∗), x − x∗⟩ ≥ 0 for all x ∈ C,
and

y∗ = Ax∗ ∈ D solves ⟨S(y∗), y − y∗⟩ ≥ 0 for all y ∈ D.

Thus, in Algorithm 2, we assume H2 = H3 and B = I, then split equality variational inequality problem
reduces to split variational inequality problem for pseudomonotone mappings and the method of proof of
Theorem 3.7 provides the following corollary for approximating a solution of split variational inequality
problem for a finite family of pseudomonotone mappings in Hilbert spaces.
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Corollary 4.1. Suppose Assumption (A3) − (A6) hold. Let Ti : H1 → H1 and Si : H2 → H2 sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of H1 and H2, respectively for
i = 1, 2, ...,m such that

Ω := {(p, q) ∈ H1 ×H2 : p ∈ ∩m
i=1VI(C,Ti), q ∈ ∩m

i=1VI(D,Si) and Ap = q} , ∅.

Then, the sequence {(xn, tn)} generated by Algorithm 2 converges strongly to an element (p, q) = PΩ(11(p), 12(q)).

4.2. Split Equality Zero Point Problem

If in Algorithm 2, we assume C = H1 and D = H2, then PC = I1, PD = I2 and hence VI(C,Ti) = T−1
i (0)

and VI(C,Si) = S−1
i (0) where I1 and I2 are identity mappings in H1 and H2, respectively. Thus, split equality

variational inequality problem reduces to split equality zero point problem and the method of proof of
Theorem 3.7 provides the following corollary for approximating a solution of split equality zero point
problem for pseudomonotone mappings in Hilbert spaces.

Corollary 4.2. Suppose Assumption (A3) − (A6) hold. Let Ti : H1 → H1 and Si : H2 → H2 sequentially weakly
continuous and uniformly continuous pseudomonotone mappings on bounded subset of H1 and H2, respectively for
i = 1, 2, ...,m such that

Ω := {(p, q) ∈ H1 ×H2 : p ∈ ∩m
i=1T−1

i (0), q ∈ ∩m
i=1S−1

i (0) and Ap = Bq} , ∅.

Then, the sequence {(xn, tn)} generated by Algorithm 2 converges strongly to an element (p, q) = PΩ(11(p), 12(q)).

5. Numerical Example

In this section, we provide a numerical example to explain the conclusion of our main result. The following
numerical example verifies the conclusion of Theorem 3.6.

Example 5.1. Let H1 = H2 = H3 = R3 be with the standard topology. Let C = {x ∈ R3 : ||x|| ≤ 1} and
D = {x ∈ R3 : ||x|| ≤ 2}. Let T1,T2 : C→ R3 be defined by T1(x) = 3

2 x − ||x||x and T2(x) = x, were x = (x1, x2, x3) ∈
R3. Let S1,S2 : D → R3 be defined by S1(x) = (x1 + 1, x2 − 1, 2x3) and S2(x) = ( x1+1

2 ,
2x2−2

3 ,
x3
4 ), then T1 and

T2 are continuous pseudomonotone and hence they are sequentially weakly continuous and uniformly continuous
pseudomonotone mappings on C with VI(C,T1) ∩ VI(C,T2) = {(0, 0, 0)}. In addition, one can observe that S1 and
S2 are monotone and hence they are sequentially weakly continuous and uniformly continuous pseudomonotone
mappings on D with VI(C,S1) ∩ VI(D,S2) = {(−1, 1, 0)}. Let A,B : R3

→ R3 be defined by A(x) = (2x1, x2, 3x3)
and B(x) = (0, 0, 2x3), were x = (x1, x2, x3) ∈ R3. Thus, A(0, 0, 0) = (0, 0, 0) = B(−1, 1, 0) and hence Ω , ∅. Let
11 : H1 → H1 and 12 : H2 → H2 be defined by 11(x) = x

5 and 12(x) = x
2 , respectively, were x = (x1, x2, x3) ∈ R3.

Now, if we assume αn =
1

10n+105 , l = 0.5, µ = 0.9, θ = 1, βn =
1

n+10000 + 0.02 = θn and ηn = 0.96 − 2
n+10000 for all

n ≥ 0, and take different initial points (x0, t0) = ((0.1, 0.2, 0.3), (1.0, 1.0, 0.0)), (x′0, t
′

0) = ((0.4, 0.3, 0.1), (1.2, 0.6, 0.1))
and (x′′0 , t

′′

0 ) = ((0.3, 0.1, 0.2), (−1.0, 0.5, 0.3), then in all cases, the numerical experiment results using MATLAB
provide that the sequence {(xn, tn)} generated by Algorithm 1 converges strongly to (p, q) = ((0, 0, 0), (−1, 1, 0)). (see,
Figure 5.1, below).
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Figure 1: The graph of ||(xn, tn) − (p, q)|| versus number of iterations with different choices of (x0, t0)
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Figure 2: The graph of ||Axn − Btn|| versus number of iterations with different choices of (x0, t0)

In addition, we have sketched the difference term ||Axn − Btn|| for each initial point. From the sketch we
observe that ||Axn − Btn|| → 0 as n→∞ (see, Figure 5.1, below).

6. Conclusions

In conclusion, this research article has focused on studying iterative algorithms for approximating a
common solution to split equality monotone inclusion problems for a finite family of pseudomonotone
mappings in Hilbert spaces. The significance of the split equality problem and variational inequalities in
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various fields such as decomposition methods for partial differential equations, game theory, and medical
image reconstruction has been highlighted. Building on the works of previous researchers, this study
contributes to the understanding and development of algorithms for solving split equality variational
inequality problems. By introducing necessary notions and definitions, the paper lays the foundation
for further exploration and advancement in this area of applied mathematics. The findings and methods
presented in this article provide valuable insights for future research in the field of variational inequalities
and optimization theory.
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