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Abstract. The class of P̃-symmetric operators is introduced. Certain properties of this class of operators
are obtained. Among other things, it is shown that (1) This class includes the quasinormal operators,
isometries, co-isometries, partial isometries with a square normal, the cyclic subnormal operators and all
P-symmetric operators (2) If A is an iw-hyponormal operator then A is P-symmetric if and only if Ã is
P-symmetric. Conditions under which a P̃-symmetric operator becomes normal are given.

Introduction

Let L(H) denote the algebra of all bounded linear operators on a separable infinite dimensional complex
Hilbert space H. Given A,B ∈ L(H), the generalized derivation δAB as an operator on L(H) is defined by

δA,B(X) = AX − XB.

The operator δAB was initially systematically studied in [15]. The properties of such operators have been
studied extensively ([16], [18]). When A = B, we simply write δA for δA,A, and is called the inner derivation
induced by A.
Let T = U|T| be the polar decomposition of T, where U is partial isometry and |T| is a positive square root
of T∗T, that is |T| = (T∗T)

1
2 , with the condition ker(T) = ker(|T|) = ker(U), where ker(T) denotes the kernel of

T. Aluthge [1] introduced the the operator T̃ = |T|
1
2 U|T|

1
2 which is called the Aluthge transform of T.

Recently some investigation in the operator theory have been related to relationship between operators and
their Aluthge transform, see for example ([2],[12]).
An operator A ∈ L(H) is called P-symmetric if AT = TA implies A∗T = TA∗ for every T ∈ C1(H), where
C1(H) is the ideal of trace class operators and S∗ denote the adjoint of S ∈ L(H). S. Bouali and J. Charles ([6],
[7]) introduced the class of P-symmetric operators, and they gave some basic properties of those operators.
In this paper, we would like to explore this class of operators. We initiate the study of a more general class
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of operators A that have the following property: AT = TA implies ÃT = TÃ for all T ∈ C1(H), where S̃
denote the Aluthge transform of S ∈ L(H). We call such operators P̃-symmetric. In the first part We use
different arguments to establish a characterization and some basic properties of P̃-symmetric operators. In
the second part we give some properties concerning this class, of the same type as those established for the
P-symmetric operators. We conclude this section with some notations.
Let K (H) and C1(H) be respectively the ideal of compact operators and the ideal of trace class operators
onH . The trace function is defined on C1(H) by

tr(T) =
∑

n

< Ten, en >,

where (en) is any complete orthonormal system inH . For X a linear operator acting on Banach space E, we
denote by X∗, ker(X), ker⊥(X), R(X) and X|M respectively the adjoint, the kernel, the orthogonal complement
of the kernel, the range of X and the restriction of X to an invariant subspace M. Also we denote by σ(X),

R(X) and R(X)
w∗

respectively The spectrum of X, the closure of the range of X respect to the norm topology
and the ultra-weak topology. Given B be a Banach and S be a subspace of B. By B′ we denote the dual of
S, the set

S
◦ = {Φ ∈ L

′

(H) : Φ(x) = 0 ∀x ∈ S}.

denotes the annihilator of S. For 1 and ω two vectors in H, we define 1 ⊗ ω ∈ L(H) as follows :

1 ⊗ ω(x) = ⟨x, ω⟩1 for all x ∈ H.

Recall that an operator T ∈ L(H) is said to be hyponormal if T∗T ≥ TT∗. Hyponormal operators have been
studied by many authors and it is known that hyponormal operators have many interesting properties
similar to those of normal operators [11]. An operator T is said to be p-hyponormal if (T∗T)p

≥ (TT∗)p for
p ∈]0, 1] and an operator T is said to be log-hyponormal if T is invertible and log |T| ≥ log |T∗|. p-hyponormal
and log-hyponormal operators are defined as extension of hyponormal operator. An operator T is called
w-hyponormal if |T̃| ≥ |T| ≥

∣∣∣T̃∗∣∣∣ . The classes of log- and w-hyponormal operators were introduced, and
their properties were studied in [2]. In particular, it was shown in [2] that the class of w-hyponormal
operators contains both p-and log-hyponormal operators.

1. P̃-symmetric operators

Definition 1.1 ([6]). Let A ∈ L(H). The operator A is said to be P-symmetric if it satisfies the following property:
AT = TA implies A∗T = TA∗ for every T ∈ C1(H).

Theorem 1.2. ( [6] ) An operator A in L(H) is P-symmetric if and only if R (δA)
w∗
= R (δA∗ )

w∗
, i.e. R (δA)

w∗
is a

self adjoint subspace of L(H).

Definition 1.3. Let A ∈ L(H). We say that A is P̃-symmetric if AT = TA implies ÃT = TÃ for all T ∈ C1(H). We
denote the class of P̃-symmetric operators by P̃(H).

Example 1.4. 1. Recall that an operator A is called quasinormal if A(A∗A) = (A∗A)A. It was shown in [4,
Proposition 1.10] that Ã = A if and only if A is quasinormal. It follows that if A is quasinormal then A is
P̃-symmetric.

2. If A is normal then A is P̃-symmetric.

Next we wish to extend the P̃-symmetry for a large class of operators.

Definition 1.5. A vector e◦ ∈ H is cyclic for A ∈ L(H), if H is the smallest invariant subspace for A that contains
e0. The operator A is said to be cyclic if it has a cyclic vector.



M. Ech-chad et al. / Filomat 38:16 (2024), 5669–5679 5671

Definition 1.6. An operator A ∈ L(H) is called subnormal, if there exists a Hilbert space K and a normal operator
N ∈ L (K), such that H is a subspace of K and A = N|H. The Operator N is called a normal extension of A.

Theorem 1.7. Let A ∈ L(H) be a cyclic subnormal operator. Then A is P̃-symmetric.

Proof. Let A = U|A| and T = V|T| ∈ C1(H) be the polar decompositions of A and T respectively. Since
AT = TA and A is cyclic subnormal, then T is subnormal by [19, Theorem 3]. Also, since T is compact, it
follows that T is normal, and so Fuglede’s theorem [9, Theorem I] ensures that AT∗ = T∗A. Hence we obtain
from [10, Corollary 3, p64] that

AT = UV|AT| = (UV)(|A||T|) and TA = VU|TA| = (VU)|T||A|

are the polar decompositions of AT and TA respectively. Then we have

ÃT = (|A||T|)
1
2 UV(|A||T|)

1
2 and T̃A = (|T||A|)

1
2 VU(|T||A|)

1
2

are the Aluthge transform of AT and TA respectively. On the other hand, by [10, Theorem 2, p64] we get

(1) |A||T| = |T||A| , (2) U|T| = |T|U, (3) |A|V = V|A|.

Let {Pn} be a sequence of polynomials with no constant term such that Pn(t) → t
1
2 uniformly on a certain

compact set as n→∞. Thus, it results from (2) and (3) that

UPn (|T|) = Pn (|T|) U and VPn (|A|) = Pn (|A|) V.

Hence U|T|
1
2 = |T|

1
2 U and V|A|

1
2 = |A|

1
2 V. Furthermore, by using the assumption AT = TA with T is normal

and the result (1) there holds

ÃT = T̃A

|A|
1
2 |T|

1
2 UV|A|

1
2 |T|

1
2 = |T|

1
2 |A|

1
2 VU|T|

1
2 |A|

1
2

|A|
1
2 U|T|

1
2 |A|

1
2 V|T|

1
2 = |T|

1
2 V|A|

1
2 |T|

1
2 U|A|

1
2

|A|
1
2 U|A|

1
2 |T|

1
2 V|T|

1
2 = |T|

1
2 V|T|

1
2 |A|

1
2 U|A|

1
2

ÃT̃ = T̃Ã

ÃT = TÃ

This completes the proof.

Corollary 1.8. Let A ∈ L(H). Suppose that f (A) is a cyclic subnormal operator, where f is a nonconstant analytic
function on an open set containing σ(A). Then A is P̃-symmetric.

Proof. Since A f (A) = f (A)A, the result follows form [19, Theorem 3] and Theorem 1.7.

Lemma 1.9. If A ∈ L(H) is a partial isometry, then A = A|A| is the polar decomposition of A and Ã = A∗A2 is the
Aluthge transform of A.

Proof. If A is a partial isometry, then we have A∗A is a projection. It follows that (A∗A)2 = A∗A, and so
|A| = A∗A. We get A = A|A| is the polar decomposition of A, then the Aluthge transform of A is given by

Ã = |A|
1
2 A|A|

1
2 = (A∗A)A(A∗A) = A∗A2.

Theorem 1.10. If A ∈ L(H) is an isometry or co-isometry, then A is P̃-symmetric.
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Proof. If A is isometric, then A is quasinormal and so A is trivially P̃-symmetric. If A is a co-isometry, it is
well known that A is partial isometry, then it follows from Lemma 1.9 that the Aluthge transform of A is
given by Ã = A∗A2. So, if T ∈ C1(H) such that AT = TA, then we have ÃT = A∗TA2 and TÃ = TA∗A2. On
the other hand, A is a contraction and T is a compact with ATA∗ = T, hence by [17, Theorem 2.2] we obtain
A∗TA = T and A∗T = TA∗. This implies that ÃT = TÃ.

Lemma 1.11. [18] If A ∈ L(H), then

R (δA)0
≃ R (δA)0

∩K (H)0
⊕ {A}′ ∩ C1(H)

Theorem 1.12. Let A ∈ L(H) such that ker A , {0} and {0} , ker A∗ 1 ker Ã∗ where Ã∗ is the adjoint operator of
the Aluthge transform of A, then A is not P̃-symmetric.

Proof. From the hypothesis, there exists two nonzero elements f and 1 in H such that A( f ) = 0, A∗(1) = 0 and
Ã∗(1) , 0 and since ker(A) = ker(|A|) = ker(|A|

1
2 ) we get Ã( f ) = 0. Note that Ã∗(1) = ω , 0. If X = ∥ f ∥−2(ω⊗ f )

and Y ∈ L(H), then 〈(
ÃX − XÃ

)
f , 1

〉
=

〈
ÃX( f ), 1

〉
−

〈
XÃ( f ), 1

〉
= ⟨X( f ),w⟩ − ⟨0, 1⟩

= ∥ω∥2

and
< (AY − YA) f , 1 >=< Y f ,A∗1 > − < 0, 1 >= 0

Suppose that A P̃-symmetric, it follows from Lemma 1.11 that R
(
δÃ

)w∗
⊂ R (δA)

w∗
. Then ÃX−XÃ ∈ R (δA)

w∗

and there exists a net (Yα)α in L(H) such that for all x and y in H, we have :

< (AYα − YαA) x, y >−→<
(
ÃX − XÃ

)
x, y >

So that
0 =< (AYα − YαA) f , 1 >−→

〈(
ÃX − XÃ

)
f , 1

〉
= ∥ω∥2

It follows that ω = 0.

Example 1.13. Let (en)n≥1 be an orthonormal basis of H. Let us consider H0 = Vect{e1, e2, e3} and define

A0 =


1 0 0
0

√
3

2 0
0 1

2 0

 ∈ L(H0).

Then an easy calculation shows that A0 is a partial isometry. It follows from Lemma 1.9 that the Aluthge transform
of A0 is given by

Ã0 = A∗0A2
0 =


1 0 0
0

√
3

2 0
0 0 0

 .
Let A = A0 ⊕ I with respect the decomposition H = H0 ⊕H⊥0 , since Ã = Ã0 ⊕ I then it is easy to see that

Ae3 = 0, A∗(e2 −
√

3e3) = 0 and Ã∗(e2 −
√

3e3) , 0.

So by Theorem 1.12 the operator A is not P̃-symmetric.

Theorem 1.14. P(H) is strictly included in P̃(H).
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Proof. Let A = U|A| be a P-symmetric operator, and let T = V|T| ∈ C1(H) be such that AT = TA. Then we
have A∗T = TA∗, it follows from [10, Theorem 2, p64] that

(1) |A||T| = |T||A| , (2) U|T| = |T|U , (3) |A|V = V|A| , (4) UV = VU.

Let {Pn} be a sequence of polynomials with no constant term such that Pn(t) → t
1
2 uniformly on a certain

compact set as n→∞, and so by (1) and (3) we get

Pn (|A|) |T| = Pn (|A|) |T| and Pn (|A|) V = VPn (|A|) ,

then |A|
1
2 |T| = |T||A|

1
2 and |A|

1
2 V = V|A|

1
2 . Hence we have

V|A|
1
2 |T| = V|T||A|

1
2 =⇒ |A|

1
2 T = T|A|

1
2 .

On the other hand by (2) and (4), one obtains

UT = UV|T| = VU|T| = TU,

which gives
U|A|

1
2 T = UT|A|

1
2 = TU|A|

1
2 .

Therefore
ÃT = |A|

1
2 U|A|

1
2 T = |A|

1
2 TU|A|

1
2 = T|A|

1
2 U|A|

1
2 = TÃ.

Consequently, the operator A is P̃-symmetric.
We Now show that the inclusion is proper. Let (en)n≥1 be an orthonormal basis of H, we define the operator
S ∈ L(H) as follows

Sek =

{
0 if k = 1
ek+1 if k ≥ 2

A simple calculation shows that S is quasinormal operator, then S is trivially P̃-symmetric. However, it
results from [6, Theorem 1.6] that S is not P-symmetric.

Theorem 1.15. Let A ∈ L(H) be a partial isometry. If A2 is normal, then A is P̃-symmetric.

Proof. It follows from Lemma 1.9 that Ã = A∗A2 is the Aluthge transform of A. So if T ∈ C1(H) such that
AT = TA, then we get A2T = TA2, that is A2A∗AT = TA2A∗A. Since A2A = AA2, it follows from Fuglede’s
theorem that A2A∗ = A∗A2 = Ã, hence we get (ÃT−TÃ)A = 0, thus ÃT−TÃ vanish on R(A). Furthermore, if
x ∈ ker(A∗) ⊂ ker(A2), then by using AA2A∗ = AA∗A2 = A2 and A2T = TA2 we obtain Tx ∈ ker(A2) = ker(Ã).
Consequently, ÃT − TÃ vanish also on ker(A∗). We conclude ÃT = TÃ, then A is P̃-symmetric.

Example 1.16. Let H0 = H⊕H and define the operator A =
(

0 I
0 0

)
∈ L(H0). Then a straightforward computation

shows that A is a partial isometry and A2 is normal. So by the Theorem 1.15, A is P̃-symmetric but not P-symmetric
(See Example 3.1 in [8]).

Remark 1.17. S. Bouali and all proved in [8, Proposition 3.1] that every nonzero nilpotent operator is not P-
symmetric. Then if A is nilpotent of order 2, it results by Theorem 4 in [12] that Ã = 0 and hence A is trivially
P̃-symmetric. But the following example proves that if A ∈ L(H) is a nilpotent operator of order n ≥ 3, then A is not
P̃-symmetric.

Example 1.18. Let H0 = H ⊕H ⊕H, and define the operator A =

 0 B 0
0 0 B
0 0 0

 such that B2 , 0. If we consider

T =

 0 C 0
0 0 C
0 0 0

 ∈ C1(H0) , C , 0 and BC = CB.
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A simple calculation shows that A3 = 0 and AT = TA. On the other hand if B = V|B| is the polar decomposition of B
then a computation shows that A = U|A| is the polar decomposition of A where

U =

 0 V 0
0 0 V
0 0 0

 and |A| =

 0 0 0
0 |B| 0
0 0 |B|

 .
Then the Aluthge transform of A is given by

Ã = |A|
1
2 U|A|

1
2 =

 0 0 0
0 0 B̃
0 0 0

 ,
with B̃ , 0 since A2 , 0 and by using [12, Theorem 4] again. Therefore if we take B = I, it follows that B̃ = I,

ÃT − TÃ =

 0 0 −C
0 0 0
0 0 0

 , 0 and so A is not P̃-symmetric.

Proposition 1.19. Let A ∈ C1(H) be a partial isometry. If A is nilpotent of order n ≥ 3 then A is not P̃-symmetric.

Proof. Suppose A is P̃-symmetric such that A ∈ C1(H), then we have ÃA = AÃ. Since A is a partial isometry,
it follows from Lemma 1.9 that A∗A3 = AA∗A2. Hence, we obtain A∗A3An−3 = A2An−3, from this we get
An−1 = 0, which is absurd.

Proposition 1.20. Let A ∈ L(H) be such that AT = TA implies |A|T = T|A| for every T ∈ C1(H). Then A is
P̃-symmetric.

Proof. Let T ∈ C1(H), such that AT = TA. So by hypothesis T|A|
1
2 = |A|

1
2 T and since |A|

1
2 A = Ã|A|

1
2 , we

have |A|
1
2 AT = |A|

1
2 TA which implies that

(
ÃT − TÃ

)
|A|

1
2 = 0 . It follows that ÃT − TÃ vanish on R(|A|).

On the other hand, if x ∈ ker(|A|) = ker(|A|
1
2 ) we get |A|

1
2 Tx = T|A|

1
2 x = 0 , hence ÃTx = 0. It results that

ÃT − TÃ vanish on ker(|A|). Consequently

ÃT − TÃ = 0 on H = R(|A|) ⊕ ker(|A|).

Thus, A is P̃-symmetric.

Corollary 1.21. If A = U|A| ∈ L(H) such that U is a normal operator. If UT = TU for every T ∈ {A}′ ∩C1(H) then
A is P̃-symmetric.

Proof. Let T ∈ C1(H) such that AT = TA, then by hypothesis we get U(|A|T − T|A|) = 0, and by taking
adjoints |A|T∗ − T∗|A| vanish on R(U∗). Let x ∈ ker(U) = ker(|A|) = ker(U∗), then from UT = TU we see that
T∗x ∈ ker(U∗) = ker(|A|). Hence |A|T∗ − T∗|A| vanish also on ker(U) which means

|A|T − T|A| = − (|A|T∗ − T∗|A|)∗ = 0 on H = R(U∗) ⊕ ker(U).

which is equivalent to |A|
1
2 T − T|A|

1
2 = 0 and A is P̃-symmetric by proposition 1.20.

Lemma 1.22. Let A,B ∈ L(H) and S = A ⊕ B. Then the Aluthge transform of S is given by S̃ = Ã ⊕ B̃.

Proof. Let A = U|A|, B = V|B| and S = P|S| are the polar decompositions of A, B and S respectively, where P
and |S| are defined on H ⊕H by P = U ⊕ V and |S| = |A| ⊕ |B|. It follows that

S̃ = |S|
1
2 P|S|

1
2 = (|A|

1
2 ⊕ |B|

1
2 )(U ⊕ V)(|A|

1
2 ⊕ |B|

1
2 ) = Ã ⊕ B̃.
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Theorem 1.23. Let A ∈ L(H). If A is P̃-symmetric and H0 ⊂ H is a reducing subspace for A, then A0 = A|H0 is
P̃-symmetric.

Proof. We have A = A0 ⊕ A1 with respect the decomposition H = H0 ⊕ H⊥0 . Suppose that A0T0 = T0A0 for

T0 ∈ C1(H0). If T =
(

T0 0
0 0

)
then AT = TA and T ∈ C1(H). Since A is P̃-symmetric we get ÃT = TÃ, and

(Ã0 ⊕ Ã1)T = T(Ã0 ⊕ Ã1), hence Ã0T = TÃ0.

Theorem 1.24. Let A,B ∈ L(H). If A and B are P̃-symmetric operators with disjoint spectra, then A ⊕ B is
P̃-symmetric.

Proof. Let T =
(

T1 T2
T3 T4

)
∈ C1(H ⊕H). Then (A ⊕ B)T = T(A ⊕ B) implies that

AT1 = T1A,BT4 = T4B,AT2 = T2B and BT3 = T3A.

Since σ(A)∩σ(B) = ∅, then δA,B and δB,A are invertible [15, Corollary 3.3]; consequently we have T2 = T3 = 0.
Or A and B are P̃-symmetric then we get ÃT1 = T1Ã and B̃T4 = T4B̃. This implies that (Ã ⊕ B̃)T = T(Ã ⊕ B̃)
and S̃T = TS̃ by Lemma 1.22.

Theorem 1.25. Let A =
∫
λdE(λ) be a normal operator and B a P̃-symmetric operator. If E(σ(A) ∩ σ(B)) = 0, then

A ⊕ B is P̃-symmetric.

Proof. Let T =
(

T1 T2
T3 T4

)
∈ C1(H ⊕H). Then (A ⊕ B)T = T(A ⊕ B) implies that

AT1 = T1A,BT4 = T4B,AT2 = T2B and BT3 = T3A.

It follows from [16, Lemma 5] that T2 = T3 = 0. Since A is normal (Ã = A) and B is P̃-symmetric, we deduce
that ÃT1 = T1Ã and B̃T4 = T4B̃, hence (Ã ⊕ B̃)T = T(Ã ⊕ B̃).

Remark 1.26. By virtue of the Theorem 1.14 our results generalize Bouali and Charles’s [6] results to P̃−symmetric
operators.

Definition 1.27 ([2]). Let T ∈ L(H), we say that T is w-hyponormal, if

|T̃| ≥ |T| ≥
∣∣∣T̃∗∣∣∣ .

T is said iw-hyponormal if T is invertible and w-hyponormal. Recall that an operator T is called w∗-hyponormal,
if T is w-hyponormal and satisfying the condition ker(T) ⊆ ker(T∗). So Clearly, every iw-hyponormal operator is
w∗-hyponormal.

Lemma 1.28 ([13]). Let A ∈ L(H). Then the following assertions are equivalent:

1. AT = TA implies A∗T = TA∗ for all T ∈ C1(H). i.e. A is P-symmetric.
2. If AT = TA, then R(T) and (ker T)⊥ are reducing subspaces for A, and A|R(T), A|(kerT)⊥ are unitarily

equivalent normal operators.

Theorem 1.29. Let A ∈ L(H) be a iw-hyponormal operator. If Ã is P-symmetric then A is P-symmetric.

Proof. Let T ∈ C1(H) such that AT = TA. Since A invertible, the Lemma 2.1 and the Theorem 2.2 from
[2] ensures that |A| is invertible. So since |A|

1
2 A = Ã|A|

1
2 we have A|A|

−1
2 = |A|

−1
2 Ã. Then from AT = TA

we get |A|
1
2 AT|A|

−1
2 = |A|

1
2 TA|A|

−1
2 which equivalent to ÃX = XÃ with X = |A|

1
2 T|A|

−1
2 ∈ C1(H). So if Ã is
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P-symmetric, we get from Lemma 1.28 that R(X) and (ker(X))⊥ are reducing spaces for Ã, and Ã|R(X) and
Ã
∣∣∣ (ker(X))⊥ are unitarily equivalent normal operators. Therefore

Ã =M ⊕ R on H1 = H = (ker(X))⊥ ⊕ ker(X)

and
Ã = N ⊕ S on H2 = H = R(X) ⊕ R(X)⊥

where N and M are normal operators. So since A is w∗-hyponormal, it follows by [14, Lemma 4.5] that

A =M ⊕ R′ on H1 and A = N ⊕ S′ on H2

The operator A is invertible and so are N, S′, M and R′. Then we can write T and X on H1 into H2 as

X =
(

X1 0
0 0

)
and T =

(
T1 T2
T3 T4

)
. Clearly |A|−1 = |M|−1

⊕ |R′|−1 on H1 and |A| = |N| ⊕ |S′| on H2. It follows

from X = |A|
1
2 T|A|

−1
2 that (

X1 0
0 0

)
=

(
|N|

1
2 T1|M|

−1
2 |N|

1
2 T2|R′|

−1
2

|S′|
1
2 T3|M|

−1
2 |S′|

1
2 T4|R′|

−1
2

)
Hence T2 = T3 = T4 = 0 , so T = T1 ⊕ 0. Since AT = TA, then NT1 = T1M, and by applying Fuglede-
Putnam’s theorem we obtain N∗T1 = T1M∗ , which gives A∗T = TA∗. This completes the proof.

Theorem 1.30. Let A ∈ L(H). If one of the following assertions

1. A w∗-hyponormal operator such that Ã is P-symmetric.
2. f (Ã) is cyclic subnormal for some nonconstant analytic function f on an open set containing σ(A).

is verified, then A is P̃-symmetric if and only if A is P-symmetric.

Proof. By Theorem 1.14, it suffices to show the property: A is P̃-symmetric implies that A is P-symmetric.

1. Suppose that A is P̃-symmetric and let T ∈ C1(H) such that AT = TA, so we have also ÃT = TÃ, and
since Ã is P-symmetric, the Lemma 1.28 ensures that R(T) and (kerT)⊥ are reducing spaces for Ã, and
Ã|R(T) and Ã

∣∣∣ (kerT)⊥ are unitarily equivalent normal operators.
Therefore

Ã =M ⊕ R on H1 = H = (ker T)⊥ ⊕ ker T

and
Ã = N ⊕ S on H2 = H = R(T) ⊕ R(T)⊥

where N and M are normal operators. It follows by hypothesis and [14, Lemma 4.5] that

A =M ⊕ R′ on H1 and A = N ⊕ S′ on H2

So we can write T on H1 into H2 as T =
(

T1 0
0 0

)
and since AT = TA then NT1 = T1M, so by

Fuglede-Putnam’s theorem N∗T1 = T1M∗ which give A∗T = TA∗.
2. Assume that A is P̃-symmetric and let T ∈ C1(H) such that AT = TA, so we have ÃT = TÃ, then

f (Ã)T = T f (Ã). Hence T is subnormal by [19, Theorem 3] then hyponormal. Since T is compact, it
follows that T is normal. So from AT = TA and Fuglede’s theorem [9, Theorem I] we deduce that
A∗T = TA∗. Consequently, A is P-symmetric.

Corollary 1.31. Let A ∈ C1(H) such that f (Ã) is cyclic subnormal for some nonconstant analytic function f on an
open set containing σ(A). Then A is P̃-symmetric if and only if A is normal.

Proof. If A is normal, A is trivially P̃-symmetric. But if A is P̃-symmetric, we get that A is normal by replacing
T by A in the proof of part 2 in the Theorem 1.30.
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2. Ultraweak closures of derivation ranges

Theorem 2.1. If A ∈ L(H), then the following statements are equivalent:

1. R (δA)
w∗
= R

(
δÃ

)w∗
;

2. (a) A is P̃-symmetric and
(b) ÃT = TÃ implies AT = TA for all T ∈ C1(H).

Proof. Note that R (δA)
w∗
= R

(
δÃ

)w∗
if and only if

R (δA)0
∩ L(H)′w

∗

≃ R
(
δÃ

)0
∩ L(H)′w

∗

.

Using Lemma 1.11, we have
R (δA)0

∩ L(H)′w
∗

≃ {A}′ ∩ C1(H).

It follows that R (δA)
w∗
= R

(
δÃ

)w∗
if and only if {A}′ ∩ C1(H) = {Ã}′ ∩ C1(H). This gives the result.

Corollary 2.2. Let A ∈ L(H). If A satisfy the following conditions

1. A is P-symmetric and
2. ÃT = TÃ implies AT = TA for all T ∈ C1(H),

then R (δA)
w∗
= R (δA∗ )

w∗
= R

(
δÃ

)w∗
and Ã is P-symmetric.

Proof. it is an immediate consequence of Theorem 1.2, Theorem 1.14 and Theorem 2.1.

Proposition 2.3. Let A = U|A| ∈ L(H) such that ker(A) ⊂ ker(A∗) and ÃT = TÃ implies |A|T = T|A| for every

T ∈ C1(H). Then A is P̃-symmetric if and only if R (δA)
w∗
= R

(
δÃ

)w∗
.

Proof. By Theorem 2.1, it suffices to show the property that ÃT = TÃ implies AT = TA for all T ∈ C1(H) . So
if ÃT = TÃ for T ∈ C1(H) then by virtue of hypothesis and since Ã|A|

1
2 = |A|

1
2 A we have ÃT|A|

1
2 = TÃ|A|

1
2 ,

which implies that |A|
1
2 (AT − TA) = 0 and hence (T∗A∗ − A∗T∗) |A|

1
2 = 0 . Therefore T∗A∗ − A∗T∗ vanish on

R(|A|). On the other hand, if x ∈ ker(|A|) = ker(A) ⊂ ker(A∗) , we get by hypothesis |A|T∗x = T∗|A|x = 0
hence A∗T∗x = 0 and as result T∗A∗ − A∗T∗ vanish on ker(|A|). Then we obtain

AT − TA = (T∗A∗ − A∗T∗)∗ = 0 on H = R(|A|) ⊕ ker(|A|).

Proposition 2.4. Let A ∈ L(H) such that R (δA)
w∗
= R

(
δÃ

)w∗
, H0 ⊂ H is a reducing subspace for A and A0 = A|H0 .

Then R
(
δA0

)w∗
= R

(
δÃ0

)w∗

and A0 is P̃-symmetric.

Proof. It is an consequence of Theorem 2.1 and Theorem 1.23.

Proposition 2.5. Let A,B ∈ L(H) and S = A ⊕ B. If one of the following conditions

1. R (δA)
w∗
= R

(
δÃ

)w∗
and R (δB)

w∗
= R

(
δB̃

)w∗
with σ(A) ∩ σ(B) = ∅.

2. A =
∫
λdE(λ) is normal and R (δB)

w∗
= R

(
δB̃

)w∗
such that E(σ(A) ∩ σ(B)) = 0.

is verified, then R (δS)
w∗
= R

(
δS̃

)w∗
and S is P̃-symmetric.

Proof. 1. It is an consequence of Theorem 2.1 and Theorem 1.24.
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2. It is an consequence of Theorem 2.1 and Theorem 1.25.

Theorem 2.6. Let A ∈ L(H) be an invertible P-symmetric operator. Then R (δA)
w∗
= R (δA∗ )

w∗
= R

(
δÃ

)w∗
and Ã is

P-symmetric.

Proof. On the light of the Corollary 2.2, it suffices to show the property that ÃT = TÃ implies AT = TA for
all T ∈ C1(H). Let A = U|A| be the polar decomposition of A, since A is invertible, the Lemma 2.1 and the
Theorem 2.2 from [2] ensures that |A| is invertible. So from Ã|A|

1
2 = |A|

1
2 A we get |A|

−1
2 Ã = A|A|

−1
2 . Hence if

T ∈ C1(H) such that ÃT = TÃ, we have :

|A|
−1
2 ÃT|A|

1
2 = |A|

−1
2 TÃ|A|

1
2 =⇒ A|A|

−1
2 T|A|

1
2 = |A|

−1
2 T|A|

1
2 A.

Let X = |A|
−1
2 T|A|

1
2 ∈ C1(H). Then AX = XA, hence by hypothesis and Lemma 1.28, R(X) and (ker X)⊥ are

reducing spaces for A, and A|R(X) and A|(ker X)⊥ are normal operators. Therefore

A =M ⊕ R on H1 = H = (ker X)⊥ ⊕ ker X

and
A = N ⊕ S on H2 = H = R(X) ⊕ R(X)⊥

where N and M are normal operators, and note that Ñ = N and M̃ =M. The operator A is invertible and so
are N, S, M and R. Also, we can write X and T on H1 into H2 as

X =
(

X1 0
0 0

)
and T =

(
T1 T2
T3 T4

)
Clearly |A| = |M| ⊕ |R| on H1 and |A|−1 = |N|−1

⊕ |S|−1 on H2 .It follows from X = |A|
−1
2 T|A|

1
2 that(

X1 0
0 0

)
=

(
|N|

−1
2 T1|M|

1
2 |N|

−1
2 T2|R|

1
2

|S|
−1
2 T3|M|

1
2 |S|

−1
2 T4|R|

1
2

)
Hence T2 = T3 = T4 = 0 so T = T1 ⊕ 0. On the other hand, since Ã = N ⊕ S̃ on H2 and Ã = M ⊕ R̃ on H1 by
Lemma 1.22, then from ÃT = TÃ we get NT1 = T1M, therefore AT = TA. So the proof is complete.

Remark 2.7. The invertibility condition of Theorem 2.6 is essential. We confirm this in the following example:

Example 2.8. Let (ek)k≥1 be an orthonormal basis of H, and S ∈ L(H) the unilateral shift operator, that is Sek = ek+1
for all k ≥ 1. Put A = S∗, So A is a co-isometry since S is an isometry. Hence A is P-symmetric operator ( see [8] ),
however A is not invertible. It results from Lemma 1.9 that Ã = A∗A2 = |A|A. A simple calculation shows that:

|A|ek =

{
0 if k = 1
ek if k ≥ 2 =⇒ Ãek =

{
0 if 1 ≤ k ≤ 2
ek−1 if k ≥ 3 =⇒

(
Ã
)∗

ek =

{
0 if k = 1
ek+1 if k ≥ 2 .

It follows from [6, Theorem 1.6] that Ã is not P-symmetric.

Corollary 2.9. Let A ∈ L(H) be iw-hyponormal operator, then A is P-symmetric if and only if Ã is P-symmetric.

Proof. it is an immediate consequence of Theorem 1.29 and Theorem 2.6.

Proposition 2.10. Let A ∈ L(H) be invertible such that ∥A−1
∥∥A∥ = 1. Then R (δA)

w∗
= R (δA∗ )

w∗
= R

(
δÃ

)w∗
.

Proof. It follows from [3] that A is P-symmetric, and R (δA)
w∗
= R (δA∗ )

w∗
= R

(
δÃ

)w∗
by Theorem 2.6.
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