Filomat 38:16 (2024), 5669–5679 https://doi.org/10.2298/FIL2416669E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Extension of the notion of P-symmetric operators using the Aluthge transform I

Mohamed Ech-chad^{a,*}, Mohamed Morjane^a, Youssef Bouhafsi^b

^aLaboratory of Analysis, Geometry and Applications, Department of Mathematics, Faculty of Science, Ibn Tofail University, P.O. Box 133, Kénitra, Morocco.

^bLaboratory LIMA, Department of Mathematics, Faculty of Science, Chauaib Doukkali University, P.O. Box 20, El Jadida, Morocco.

Abstract. The class of \tilde{P} -symmetric operators is introduced. Certain properties of this class of operators are obtained. Among other things, it is shown that (1) This class includes the quasinormal operators, isometries, co-isometries, partial isometries with a square normal, the cyclic subnormal operators and all P-symmetric operators (2) If A is an *iw*-hyponormal operator then A is P-symmetric if and only if \tilde{A} is P-symmetric. Conditions under which a \tilde{P} -symmetric operator becomes normal are given.

Introduction

Let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space *H*. Given $A, B \in \mathcal{L}(H)$, the generalized derivation δ_{AB} as an operator on $\mathcal{L}(H)$ is defined by

$$\delta_{A,B}(X) = AX - XB.$$

The operator δ_{AB} was initially systematically studied in [15]. The properties of such operators have been studied extensively ([16], [18]). When A = B, we simply write δ_A for $\delta_{A,A}$, and is called the inner derivation induced by A.

Let T = U|T| be the polar decomposition of T, where U is partial isometry and |T| is a positive square root of T^*T , that is $|T| = (T^*T)^{\frac{1}{2}}$, with the condition ker(T) = ker(|T|) = ker(U), where ker(T) denotes the kernel of T. Aluthge [1] introduced the the operator $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ which is called the Aluthge transform of T.

Recently some investigation in the operator theory have been related to relationship between operators and their Aluthge transform, see for example ([2],[12]).

An operator $A \in \mathcal{L}(H)$ is called P-symmetric if AT = TA implies $A^*T = TA^*$ for every $T \in C_1(H)$, where $C_1(H)$ is the ideal of trace class operators and S^* denote the adjoint of $S \in \mathcal{L}(H)$. S. Bouali and J. Charles ([6], [7]) introduced the class of P-symmetric operators, and they gave some basic properties of those operators. In this paper, we would like to explore this class of operators. We initiate the study of a more general class

²⁰²⁰ Mathematics Subject Classification. Primary 47B47, 47B10; Secondary 47B15, 47B20, 47B25.

Keywords. P-symmetric, \tilde{P} -symmetric, Aluthge transform, Fuglede-Putnam property, quasinormal, isometry, subnormal, Log-hyponormal, ω -hyponormal.

Received: 16 August 2023; Revised: 30 October 2023; Accepted: 12 November 2023

Communicated by Snežana Č. Živković-Zlatanović

^{*} Corresponding author: Mohamed Ech-chad

Email addresses: m.echchad@yahoo.fr (Mohamed Ech-chad), mohamed.morjane@uit.ac.ma (Mohamed Morjane),

ybouhafsi@yahoo.fr (Youssef Bouhafsi)

of operators A that have the following property: AT = TA implies $\tilde{A}T = T\tilde{A}$ for all $T \in C_1(H)$, where \tilde{S} denote the Aluthge transform of $S \in \mathcal{L}(H)$. We call such operators \tilde{P} -symmetric. In the first part We use different arguments to establish a characterization and some basic properties of \tilde{P} -symmetric operators. In the second part we give some properties concerning this class, of the same type as those established for the *P*-symmetric operators. We conclude this section with some notations.

Let $\mathcal{K}(\mathcal{H})$ and $C_1(\mathcal{H})$ be respectively the ideal of compact operators and the ideal of trace class operators on \mathcal{H} . The trace function is defined on $C_1(\mathcal{H})$ by

$$tr(T) = \sum_{n} < Te_n, e_n >,$$

where (e_n) is any complete orthonormal system in \mathcal{H} . For *X* a linear operator acting on Banach space *E*, we denote by X^* , ker(*X*), ker^{\perp}(*X*), *R*(*X*) and *X*|*M* respectively the adjoint, the kernel, the orthogonal complement of the kernel, the range of *X* and the restriction of *X* to an invariant subspace *M*. Also we denote by $\sigma(X)$, $\overline{R(X)}$ and $\overline{R(X)}^{w^*}$ respectively The spectrum of *X*, the closure of the range of *X* respect to the norm topology and the ultra-weak topology. Given \mathcal{B} be a Banach and \mathcal{S} be a subspace of \mathcal{B} . By \mathcal{B}' we denote the dual of \mathcal{S} , the set

$$\mathcal{S}^{\circ} = \{ \Phi \in \mathcal{L}'(\mathcal{H}) : \Phi(x) = 0 \quad \forall x \in \mathcal{S} \}.$$

denotes the annihilator of S. For g and ω two vectors in H, we define $q \otimes \omega \in \mathcal{L}(H)$ as follows :

$$q \otimes \omega(x) = \langle x, \omega \rangle q$$
 for all $x \in H$.

Recall that an operator $T \in \mathcal{L}(H)$ is said to be hyponormal if $T^*T \ge TT^*$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators [11]. An operator T is said to be p-hyponormal if $(T^*T)^p \ge (TT^*)^p$ for $p \in]0, 1]$ and an operator T is said to be log-hyponormal if T is invertible and $\log |T| \ge \log |T^*|$. p-hyponormal and log-hyponormal operators are defined as extension of hyponormal operator. An operator T is called w-hyponormal if $|\tilde{T}| \ge |T| \ge |\tilde{T}^*|$. The classes of log- and w-hyponormal operators were introduced, and their properties were studied in [2]. In particular, it was shown in [2] that the class of w-hyponormal operators contains both p-and log-hyponormal operators.

1. *P*-symmetric operators

Definition 1.1 ([6]). Let $A \in L(H)$. The operator A is said to be P-symmetric if it satisfies the following property: AT = TA implies $A^*T = TA^*$ for every $T \in C_1(H)$.

Theorem 1.2. ([6]) An operator A in $\mathcal{L}(H)$ is P-symmetric if and only if $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{A^*})}^{w^*}$, *i.e.* $\overline{\mathcal{R}(\delta_A)}^{w^*}$ is a self adjoint subspace of $\mathcal{L}(H)$.

Definition 1.3. Let $A \in \mathcal{L}(H)$. We say that A is \tilde{P} -symmetric if AT = TA implies $\tilde{A}T = T\tilde{A}$ for all $T \in C_1(H)$. We denote the class of \tilde{P} -symmetric operators by $\tilde{\mathcal{P}}(H)$.

- **Example 1.4.** 1. Recall that an operator A is called quasinormal if $A(A^*A) = (A^*A)A$. It was shown in [4, *Proposition 1.10] that* $\tilde{A} = A$ *if and only if A is quasinormal. It follows that if A is quasinormal then A is* \tilde{P} -symmetric.
 - 2. If A is normal then A is P-symmetric.

Next we wish to extend the \tilde{P} -symmetry for a large class of operators.

Definition 1.5. A vector $e_{\circ} \in H$ is cyclic for $A \in \mathcal{L}(H)$, if H is the smallest invariant subspace for A that contains e_{0} . The operator A is said to be cyclic if it has a cyclic vector.

Definition 1.6. An operator $A \in \mathcal{L}(H)$ is called subnormal, if there exists a Hilbert space K and a normal operator $N \in \mathcal{L}(K)$, such that H is a subspace of K and A = N|H. The Operator N is called a normal extension of A.

Theorem 1.7. Let $A \in \mathcal{L}(H)$ be a cyclic subnormal operator. Then A is \tilde{P} -symmetric.

Proof. Let A = U|A| and $T = V|T| \in C_1(H)$ be the polar decompositions of A and T respectively. Since AT = TA and A is cyclic subnormal, then T is subnormal by [19, Theorem 3]. Also, since T is compact, it follows that T is normal, and so Fuglede's theorem [9, Theorem I] ensures that $AT^* = T^*A$. Hence we obtain from [10, Corollary 3, p64] that

$$AT = UV|AT| = (UV)(|A||T|)$$
 and $TA = VU|TA| = (VU)|T||A|$

are the polar decompositions of AT and TA respectively. Then we have

$$\widetilde{AT} = (|A||T|)^{\frac{1}{2}} UV(|A||T|)^{\frac{1}{2}}$$
 and $\widetilde{TA} = (|T||A|)^{\frac{1}{2}} VU(|T||A|)^{\frac{1}{2}}$

are the Aluthge transform of AT and TA respectively. On the other hand, by [10, Theorem 2, p64] we get

(1) |A||T| = |T||A|, (2) U|T| = |T|U, (3) |A|V = V|A|.

Let $\{P_n\}$ be a sequence of polynomials with no constant term such that $P_n(t) \rightarrow t^{\frac{1}{2}}$ uniformly on a certain compact set as $n \rightarrow \infty$. Thus, it results from (2) and (3) that

$$UP_n(|T|) = P_n(|T|) U$$
 and $VP_n(|A|) = P_n(|A|) V$.

Hence $U|T|^{\frac{1}{2}} = |T|^{\frac{1}{2}}U$ and $V|A|^{\frac{1}{2}} = |A|^{\frac{1}{2}}V$. Furthermore, by using the assumption AT = TA with T is normal and the result (1) there holds

$$\begin{split} \widehat{AT} &= \widehat{TA} \\ |A|^{\frac{1}{2}}|T|^{\frac{1}{2}}UV|A|^{\frac{1}{2}}|T|^{\frac{1}{2}} &= |T|^{\frac{1}{2}}|A|^{\frac{1}{2}}VU|T|^{\frac{1}{2}}|A|^{\frac{1}{2}} \\ |A|^{\frac{1}{2}}U|T|^{\frac{1}{2}}|A|^{\frac{1}{2}}V|T|^{\frac{1}{2}} &= |T|^{\frac{1}{2}}V|A|^{\frac{1}{2}}|T|^{\frac{1}{2}}U|A|^{\frac{1}{2}} \\ |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}|T|^{\frac{1}{2}}V|T|^{\frac{1}{2}} &= |T|^{\frac{1}{2}}V|T|^{\frac{1}{2}}|A|^{\frac{1}{2}}U|A|^{\frac{1}{2}} \\ \widehat{AT} &= \widetilde{TA} \\ \widetilde{AT} &= T\widetilde{A} \end{split}$$

This completes the proof. \Box

Corollary 1.8. Let $A \in \mathcal{L}(H)$. Suppose that f(A) is a cyclic subnormal operator, where f is a nonconstant analytic function on an open set containing $\sigma(A)$. Then A is \tilde{P} -symmetric.

Proof. Since Af(A) = f(A)A, the result follows form [19, Theorem 3] and Theorem 1.7.

Lemma 1.9. If $A \in \mathcal{L}(H)$ is a partial isometry, then A = A|A| is the polar decomposition of A and $\tilde{A} = A^*A^2$ is the Aluthge transform of A.

Proof. If *A* is a partial isometry, then we have A^*A is a projection. It follows that $(A^*A)^2 = A^*A$, and so $|A| = A^*A$. We get A = A|A| is the polar decomposition of *A*, then the Aluthge transform of *A* is given by

$$\tilde{A} = |A|^{\frac{1}{2}} A|A|^{\frac{1}{2}} = (A^*A)A(A^*A) = A^*A^2.$$

Theorem 1.10. If $A \in \mathcal{L}(H)$ is an isometry or co-isometry, then A is \tilde{P} -symmetric.

Proof. If *A* is isometric, then *A* is quasinormal and so *A* is trivially \tilde{P} -symmetric. If *A* is a co-isometry, it is well known that *A* is partial isometry, then it follows from Lemma 1.9 that the Aluthge transform of *A* is given by $\tilde{A} = A^*A^2$. So, if $T \in C_1(H)$ such that AT = TA, then we have $\tilde{A}T = A^*TA^2$ and $T\tilde{A} = TA^*A^2$. On the other hand, *A* is a contraction and *T* is a compact with $ATA^* = T$, hence by [17, Theorem 2.2] we obtain $A^*TA = T$ and $A^*T = TA^*$. This implies that $\tilde{A}T = T\tilde{A}$.

Lemma 1.11. [18] If $A \in \mathcal{L}(H)$, then

$$\mathcal{R}(\delta_A)^0 \simeq \mathcal{R}(\delta_A)^0 \cap \mathcal{K}(H)^0 \oplus \{A\}' \cap C_1(H)$$

Theorem 1.12. Let $A \in \mathcal{L}(H)$ such that ker $A \neq \{0\}$ and $\{0\} \neq \text{ker } A^* \notin \text{ker } \tilde{A}^*$ where \tilde{A}^* is the adjoint operator of the Aluthge transform of A, then A is not \tilde{P} -symmetric.

Proof. From the hypothesis, there exists two nonzero elements f and g in H such that A(f) = 0, $A^*(g) = 0$ and $\tilde{A}^*(g) \neq 0$ and since ker $(A) = \text{ker}(|A|) = \text{ker}(|A|^{\frac{1}{2}})$ we get $\tilde{A}(f) = 0$. Note that $\tilde{A}^*(g) = \omega \neq 0$. If $X = ||f||^{-2}(\omega \otimes f)$ and $Y \in \mathcal{L}(H)$, then

$$\left\langle \left(\tilde{A}X - X\tilde{A} \right) f, g \right\rangle = \left\langle \tilde{A}X(f), g \right\rangle - \left\langle X\tilde{A}(f), g \right\rangle$$
$$= \left\langle X(f), w \right\rangle - \left\langle 0, g \right\rangle$$
$$= \|\omega\|^2$$

and

$$< (AY - YA)f, g > = < Yf, A^*g > - < 0, g > = 0$$

Suppose that $A \tilde{P}$ -symmetric, it follows from Lemma 1.11 that $\overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*} \subset \overline{\mathcal{R}(\delta_A)}^{w^*}$. Then $\tilde{A}X - X\tilde{A} \in \overline{\mathcal{R}(\delta_A)}^{w^*}$ and there exists a net $(Y_{\alpha})_{\alpha}$ in $\mathcal{L}(H)$ such that for all x and y in H, we have :

$$<(AY_{\alpha}-Y_{\alpha}A)x,y>\longrightarrow<(\tilde{A}X-X\tilde{A})x,y>$$

So that

$$0 = < (AY_{\alpha} - Y_{\alpha}A) f, g > \longrightarrow \left< \left(\tilde{A}X - X\tilde{A} \right) f, g \right> = \|\omega\|^2$$

It follows that $\omega = 0$. \Box

Example 1.13. Let $(e_n)_{n\geq 1}$ be an orthonormal basis of H. Let us consider $H_0 = Vect\{e_1, e_2, e_3\}$ and define

$$A_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \in \mathcal{L}(H_0).$$

Then an easy calculation shows that A_0 is a partial isometry. It follows from Lemma 1.9 that the Aluthge transform of A_0 is given by

$$\tilde{A_0} = A_0^* A_0^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let $A = A_0 \oplus I$ with respect the decomposition $H = H_0 \oplus H_0^{\perp}$, since $\tilde{A} = \tilde{A}_0 \oplus I$ then it is easy to see that

$$Ae_3 = 0$$
, $A^*(e_2 - \sqrt{3}e_3) = 0$ and $\tilde{A}^*(e_2 - \sqrt{3}e_3) \neq 0$.

So by Theorem 1.12 the operator A is not \tilde{P} -symmetric.

Theorem 1.14. $\mathcal{P}(H)$ is strictly included in $\tilde{\mathcal{P}}(H)$.

Proof. Let A = U|A| be a *P*-symmetric operator, and let $T = V|T| \in C_1(H)$ be such that AT = TA. Then we have $A^*T = TA^*$, it follows from [10, Theorem 2, p64] that

(1)
$$|A||T| = |T||A|$$
, (2) $U|T| = |T|U$, (3) $|A|V = V|A|$, (4) $UV = VU$

Let $\{P_n\}$ be a sequence of polynomials with no constant term such that $P_n(t) \rightarrow t^{\frac{1}{2}}$ uniformly on a certain compact set as $n \rightarrow \infty$, and so by (1) and (3) we get

$$P_n(|A|)|T| = P_n(|A|)|T|$$
 and $P_n(|A|)V = VP_n(|A|)$,

then $|A|^{\frac{1}{2}}|T| = |T||A|^{\frac{1}{2}}$ and $|A|^{\frac{1}{2}}V = V|A|^{\frac{1}{2}}$. Hence we have

$$V|A|^{\frac{1}{2}}|T| = V|T||A|^{\frac{1}{2}} \implies |A|^{\frac{1}{2}}T = T|A|^{\frac{1}{2}}$$

On the other hand by (2) and (4), one obtains

$$UT = UV|T| = VU|T| = TU,$$

which gives

$$U|A|^{\frac{1}{2}}T = UT|A|^{\frac{1}{2}} = TU|A|^{\frac{1}{2}}.$$

Therefore

$$\tilde{A}T = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}T = |A|^{\frac{1}{2}}TU|A|^{\frac{1}{2}} = T|A|^{\frac{1}{2}}U|A|^{\frac{1}{2}} = T\tilde{A}$$

Consequently, the operator A is \tilde{P} -symmetric.

We Now show that the inclusion is proper. Let $(e_n)_{n\geq 1}$ be an orthonormal basis of H, we define the operator $S \in \mathcal{L}(H)$ as follows

$$Se_k = \begin{cases} 0 & \text{if } k = 1\\ e_{k+1} & \text{if } k \ge 2 \end{cases}$$

A simple calculation shows that *S* is quasinormal operator, then *S* is trivially \tilde{P} -symmetric. However, it results from [6, Theorem 1.6] that *S* is not *P*-symmetric. \Box

Theorem 1.15. Let $A \in \mathcal{L}(H)$ be a partial isometry. If A^2 is normal, then A is \tilde{P} -symmetric.

Proof. It follows from Lemma 1.9 that $\tilde{A} = A^*A^2$ is the Aluthge transform of A. So if $T \in C_1(H)$ such that AT = TA, then we get $A^2T = TA^2$, that is $A^2A^*AT = TA^2A^*A$. Since $A^2A = AA^2$, it follows from Fuglede's theorem that $A^2A^* = A^*A^2 = \tilde{A}$, hence we get $(\tilde{A}T - T\tilde{A})A = 0$, thus $\tilde{A}T - T\tilde{A}$ vanish on $\overline{R(A)}$. Furthermore, if $x \in \ker(A^*) \subset \ker(A^2)$, then by using $AA^2A^* = AA^*A^2 = A^2$ and $A^2T = TA^2$ we obtain $Tx \in \ker(A^2) = \ker(\tilde{A})$. Consequently, $\tilde{A}T - T\tilde{A}$ vanish also on $\ker(A^*)$. We conclude $\tilde{A}T = T\tilde{A}$, then A is \tilde{P} -symmetric. \Box

Example 1.16. Let $H_0 = H \oplus H$ and define the operator $A = \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix} \in \mathcal{L}(H_0)$. Then a straightforward computation

shows that A is a partial isometry and A^2 is normal. So by the Theorem 1.15, A is \tilde{P} -symmetric but not P-symmetric (See Example 3.1 in [8]).

Remark 1.17. *S.* Bouali and all proved in [8, Proposition 3.1] that every nonzero nilpotent operator is not *P*-symmetric. Then if A is nilpotent of order 2, it results by Theorem 4 in [12] that $\tilde{A} = 0$ and hence A is trivially \tilde{P} -symmetric. But the following example proves that if $A \in \mathcal{L}(H)$ is a nilpotent operator of order $n \ge 3$, then A is not \tilde{P} -symmetric.

Example 1.18. Let $H_0 = H \oplus H \oplus H$, and define the operator $A = \begin{pmatrix} 0 & B & 0 \\ 0 & 0 & B \\ 0 & 0 & 0 \end{pmatrix}$ such that $B^2 \neq 0$. If we consider

$$T = \begin{pmatrix} 0 & C & 0 \\ 0 & 0 & C \\ 0 & 0 & 0 \end{pmatrix} \in C_1(H_0) , \ C \neq 0 \ and \ BC = CB.$$

A simple calculation shows that $A^3 = 0$ and AT = TA. On the other hand if B = V|B| is the polar decomposition of B then a computation shows that A = U|A| is the polar decomposition of A where

$$U = \left(\begin{array}{ccc} 0 & V & 0 \\ 0 & 0 & V \\ 0 & 0 & 0 \end{array}\right) \quad and \quad |A| = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & |B| & 0 \\ 0 & 0 & |B| \end{array}\right).$$

Then the Aluthge transform of A is given by

$$\tilde{A} = |A|^{\frac{1}{2}} U|A|^{\frac{1}{2}} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & \tilde{B} \\ 0 & 0 & 0 \end{array}\right),$$

with $\tilde{B} \neq 0$ since $A^2 \neq 0$ and by using [12, Theorem 4] again. Therefore if we take B = I, it follows that $\tilde{B} = I$, $\begin{pmatrix} 0 & 0 & -C \end{pmatrix}$

 $\tilde{A}T - T\tilde{A} = \begin{pmatrix} 0 & 0 & -C \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0 \text{ and so } A \text{ is not } \tilde{P}\text{-symmetric.}$

Proposition 1.19. Let $A \in C_1(H)$ be a partial isometry. If A is nilpotent of order $n \ge 3$ then A is not \tilde{P} -symmetric.

Proof. Suppose *A* is \tilde{P} -symmetric such that $A \in C_1(H)$, then we have $\tilde{A}A = A\tilde{A}$. Since *A* is a partial isometry, it follows from Lemma 1.9 that $A^*A^3 = AA^*A^2$. Hence, we obtain $A^*A^3A^{n-3} = A^2A^{n-3}$, from this we get $A^{n-1} = 0$, which is absurd. \Box

Proposition 1.20. Let $A \in \mathcal{L}(H)$ be such that AT = TA implies |A|T = T|A| for every $T \in C_1(H)$. Then A is \tilde{P} -symmetric.

Proof. Let $T \in C_1(H)$, such that AT = TA. So by hypothesis $T|A|^{\frac{1}{2}} = |A|^{\frac{1}{2}}T$ and since $|A|^{\frac{1}{2}}A = \tilde{A}|A|^{\frac{1}{2}}$, we have $|A|^{\frac{1}{2}}AT = |A|^{\frac{1}{2}}TA$ which implies that $(\tilde{A}T - T\tilde{A})|A|^{\frac{1}{2}} = 0$. It follows that $\tilde{A}T - T\tilde{A}$ vanish on $\overline{R(|A|)}$. On the other hand, if $x \in \ker(|A|) = \ker(|A|^{\frac{1}{2}})$ we get $|A|^{\frac{1}{2}}Tx = T|A|^{\frac{1}{2}}x = 0$, hence $\tilde{A}Tx = 0$. It results that $\tilde{A}T - T\tilde{A}$ vanish on $\ker(|A|)$. Consequently

$$\tilde{A}T - T\tilde{A} = 0$$
 on $H = R(|A|) \oplus \ker(|A|)$.

Thus, *A* is \tilde{P} -symmetric. \Box

Corollary 1.21. If $A = U|A| \in \mathcal{L}(H)$ such that U is a normal operator. If UT = TU for every $T \in \{A\}' \cap C_1(H)$ then A is \tilde{P} -symmetric.

Proof. Let $T \in C_1(H)$ such that AT = TA, then by hypothesis we get U(|A|T - T|A|) = 0, and by taking adjoints $|A|T^* - T^*|A|$ vanish on $\overline{R(U^*)}$. Let $x \in \ker(U) = \ker(|A|) = \ker(U^*)$, then from UT = TU we see that $T^*x \in \ker(U^*) = \ker(|A|)$. Hence $|A|T^* - T^*|A|$ vanish also on $\ker(U)$ which means

 $|A|T - T|A| = -(|A|T^* - T^*|A|)^* = 0$ on $H = \overline{R(U^*)} \oplus \ker(U)$.

which is equivalent to $|A|^{\frac{1}{2}}T - T|A|^{\frac{1}{2}} = 0$ and *A* is \tilde{P} -symmetric by proposition 1.20. \Box

Lemma 1.22. Let $A, B \in \mathcal{L}(H)$ and $S = A \oplus B$. Then the Aluthge transform of S is given by $\tilde{S} = \tilde{A} \oplus \tilde{B}$.

Proof. Let A = U|A|, B = V|B| and S = P|S| are the polar decompositions of A, B and S respectively, where P and |S| are defined on $H \oplus H$ by $P = U \oplus V$ and $|S| = |A| \oplus |B|$. It follows that

 $\tilde{S} = |S|^{\frac{1}{2}} P|S|^{\frac{1}{2}} = (|A|^{\frac{1}{2}} \oplus |B|^{\frac{1}{2}})(U \oplus V)(|A|^{\frac{1}{2}} \oplus |B|^{\frac{1}{2}}) = \tilde{A} \oplus \tilde{B}.$

Theorem 1.23. Let $A \in \mathcal{L}(H)$. If A is \tilde{P} -symmetric and $H_0 \subset H$ is a reducing subspace for A, then $A_0 = A|H_0$ is \tilde{P} -symmetric.

Proof. We have $A = A_0 \oplus A_1$ with respect the decomposition $H = H_0 \oplus H_0^{\perp}$. Suppose that $A_0T_0 = T_0A_0$ for $T_0 \in C_1(H_0)$. If $T = \begin{pmatrix} T_0 & 0 \\ 0 & 0 \end{pmatrix}$ then AT = TA and $T \in C_1(H)$. Since A is \tilde{P} -symmetric we get $\tilde{A}T = T\tilde{A}$, and $(\tilde{A}_0 \oplus \tilde{A}_1)T = T(\tilde{A}_0 \oplus \tilde{A}_1)$, hence $\tilde{A}_0T = T\tilde{A}_0$. \Box

Theorem 1.24. Let $A, B \in \mathcal{L}(H)$. If A and B are \tilde{P} -symmetric operators with disjoint spectra, then $A \oplus B$ is \tilde{P} -symmetric.

Proof. Let
$$T = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix} \in C_1(H \oplus H)$$
. Then $(A \oplus B)T = T(A \oplus B)$ implies that $AT_1 = T_1A, BT_4 = T_4B, AT_2 = T_2B$ and $BT_3 = T_3A$.

Since $\sigma(A) \cap \sigma(B) = \emptyset$, then $\delta_{A,B}$ and $\delta_{B,A}$ are invertible [15, Corollary 3.3]; consequently we have $T_2 = T_3 = 0$. Or *A* and *B* are \tilde{P} -symmetric then we get $\tilde{A}T_1 = T_1\tilde{A}$ and $\tilde{B}T_4 = T_4\tilde{B}$. This implies that $(\tilde{A} \oplus \tilde{B})T = T(\tilde{A} \oplus \tilde{B})$ and $\tilde{S}T = T\tilde{S}$ by Lemma 1.22. \Box

Theorem 1.25. Let $A = \int \lambda dE(\lambda)$ be a normal operator and B a \tilde{P} -symmetric operator. If $E(\sigma(A) \cap \sigma(B)) = 0$, then $A \oplus B$ is \tilde{P} -symmetric.

Proof. Let
$$T = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix} \in C_1(H \oplus H)$$
. Then $(A \oplus B)T = T(A \oplus B)$ implies that $AT_1 = T_1A, BT_4 = T_4B, AT_2 = T_2B$ and $BT_3 = T_3A$.

It follows from [16, Lemma 5] that $T_2 = T_3 = 0$. Since A is normal ($\tilde{A} = A$) and B is \tilde{P} -symmetric, we deduce that $\tilde{A}T_1 = T_1\tilde{A}$ and $\tilde{B}T_4 = T_4\tilde{B}$, hence ($\tilde{A} \oplus \tilde{B}$) $T = T(\tilde{A} \oplus \tilde{B})$. \Box

Remark 1.26. By virtue of the Theorem 1.14 our results generalize Bouali and Charles's [6] results to \tilde{P} -symmetric operators.

Definition 1.27 ([2]). Let $T \in \mathcal{L}(H)$, we say that T is w-hyponormal, if

$$|\tilde{T}| \ge |T| \ge \left|\tilde{T}^*\right|.$$

T is said iw-hyponormal if *T* is invertible and w-hyponormal. Recall that an operator *T* is called w_* -hyponormal, if *T* is w-hyponormal and satisfying the condition $\ker(T) \subseteq \ker(T^*)$. So Clearly, every iw-hyponormal operator is w_* -hyponormal.

Lemma 1.28 ([13]). Let $A \in \mathcal{L}(H)$. Then the following assertions are equivalent:

- 1. AT = TA implies $A^*T = TA^*$ for all $T \in C_1(H)$. i.e. A is P-symmetric.
- 2. If AT = TA, then $\overline{R(T)}$ and $(\ker T)^{\perp}$ are reducing subspaces for A, and $A|\overline{R(T)}$, $A|(\ker T)^{\perp}$ are unitarily equivalent normal operators.

Theorem 1.29. Let $A \in \mathcal{L}(H)$ be a iw-hyponormal operator. If \tilde{A} is P-symmetric then A is P-symmetric.

Proof. Let $T \in C_1(H)$ such that AT = TA. Since A invertible, the Lemma 2.1 and the Theorem 2.2 from [2] ensures that |A| is invertible. So since $|A|^{\frac{1}{2}}A = \tilde{A}|A|^{\frac{1}{2}}$ we have $A|A|^{\frac{-1}{2}} = |A|^{\frac{-1}{2}}\tilde{A}$. Then from AT = TA we get $|A|^{\frac{1}{2}}AT|A|^{\frac{-1}{2}} = |A|^{\frac{1}{2}}TA|A|^{\frac{-1}{2}}$ which equivalent to $\tilde{A}X = X\tilde{A}$ with $X = |A|^{\frac{1}{2}}T|A|^{\frac{-1}{2}} \in C_1(H)$. So if \tilde{A} is

P-symmetric, we get from Lemma 1.28 that $\overline{R(X)}$ and $(\ker(X))^{\perp}$ are reducing spaces for \tilde{A} , and $\tilde{A}|\overline{R(X)}$ and $\tilde{A}|(\ker(X))^{\perp}$ are unitarily equivalent normal operators. Therefore

$$\tilde{A} = M \oplus R$$
 on $H_1 = H = (\ker(X))^{\perp} \oplus \ker(X)$

and

 $\tilde{A} = N \oplus S$ on $H_2 = H = \overline{R(X)} \oplus R(X)^{\perp}$

where N and M are normal operators. So since A is w_* -hyponormal, it follows by [14, Lemma 4.5] that

 $A = M \oplus R'$ on H_1 and $A = N \oplus S'$ on H_2

The operator *A* is invertible and so are *N*, *S'*, *M* and *R'*. Then we can write *T* and *X* on *H*₁ into *H*₂ as $X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } T = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}. \text{ Clearly } |A|^{-1} = |M|^{-1} \oplus |R'|^{-1} \text{ on } H_1 \text{ and } |A| = |N| \oplus |S'| \text{ on } H_2. \text{ It follows}$ from $X = |A|^{\frac{1}{2}}T|A|^{-\frac{1}{2}}$ that

$$\begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} |N|^{\frac{1}{2}}T_1|M|^{\frac{-1}{2}} & |N|^{\frac{1}{2}}T_2|R'|^{\frac{-1}{2}} \\ |S'|^{\frac{1}{2}}T_3|M|^{\frac{-1}{2}} & |S'|^{\frac{1}{2}}T_4|R'|^{\frac{-1}{2}} \end{pmatrix}$$

Hence $T_2 = T_3 = T_4 = 0$, so $T = T_1 \oplus 0$. Since AT = TA, then $NT_1 = T_1M$, and by applying Fuglede-Putnam's theorem we obtain $N^*T_1 = T_1M^*$, which gives $A^*T = TA^*$. This completes the proof.

Theorem 1.30. Let $A \in \mathcal{L}(H)$. If one of the following assertions

1. A w_* -hyponormal operator such that \tilde{A} is P-symmetric.

2. $f(\tilde{A})$ is cyclic subnormal for some nonconstant analytic function f on an open set containing $\sigma(A)$.

is verified, then A is \tilde{P} -symmetric if and only if A is P-symmetric.

Proof. By Theorem 1.14, it suffices to show the property: *A* is *P*-symmetric implies that *A* is *P*-symmetric.

1. Suppose that A is \tilde{P} -symmetric and let $T \in C_1(H)$ such that AT = TA, so we have also $\tilde{A}T = T\tilde{A}$, and since \tilde{A} is P-symmetric, the Lemma 1.28 ensures that $\overline{R(T)}$ and $(kerT)^{\perp}$ are reducing spaces for \tilde{A} , and $\tilde{A}|\overline{R(T)}$ and $\tilde{A}|(kerT)^{\perp}$ are unitarily equivalent normal operators. Therefore

$$\tilde{A} = M \oplus R$$
 on $H_1 = H = (\ker T)^{\perp} \oplus \ker T$

and

$$\tilde{A} = N \oplus S$$
 on $H_2 = H = R(T) \oplus R(T)^{\perp}$

where N and M are normal operators. It follows by hypothesis and [14, Lemma 4.5] that

 $A = M \oplus R'$ on H_1 and $A = N \oplus S'$ on H_2

So we can write T on H_1 into H_2 as $T = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$ and since AT = TA then $NT_1 = T_1M$, so by Fuglede-Putnam's theorem $N^*T_1 = T_1M^*$ which give $A^*T = TA^*$.

2. Assume that *A* is \tilde{P} -symmetric and let $T \in C_1(H)$ such that AT = TA, so we have $\tilde{A}T = T\tilde{A}$, then $f(\tilde{A})T = Tf(\tilde{A})$. Hence *T* is subnormal by [19, Theorem 3] then hyponormal. Since *T* is compact, it follows that *T* is normal. So from AT = TA and Fuglede's theorem [9, Theorem I] we deduce that $A^*T = TA^*$. Consequently, *A* is *P*-symmetric.

Corollary 1.31. Let $A \in C_1(H)$ such that $f(\tilde{A})$ is cyclic subnormal for some nonconstant analytic function f on an open set containing $\sigma(A)$. Then A is \tilde{P} -symmetric if and only if A is normal.

Proof. If *A* is normal, *A* is trivially \tilde{P} -symmetric. But if *A* is \tilde{P} -symmetric, we get that *A* is normal by replacing *T* by *A* in the proof of part 2 in the Theorem 1.30. \Box

5676

2. Ultraweak closures of derivation ranges

Theorem 2.1. If $A \in \mathcal{L}(H)$, then the following statements are equivalent:

1.
$$\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*};$$

2. (a) *A* is \tilde{P} -symmetric and
(b) $\tilde{A}T = T\tilde{A}$ implies $AT = TA$ for all $T \in C_1(H)$.

Proof. Note that $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*}$ if and only if

 $\mathcal{R}(\delta_A)^0 \cap \mathcal{L}(H)'^{w^*} \simeq \mathcal{R}(\delta_{\tilde{A}})^0 \cap \mathcal{L}(H)'^{w^*}.$

Using Lemma 1.11, we have

$$\mathcal{R}(\delta_A)^0 \cap \mathcal{L}(H)'^{w^*} \simeq \{A\}' \cap C_1(H).$$

It follows that $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*}$ if and only if $\{A\}' \cap C_1(H) = \{\tilde{A}\}' \cap C_1(H)$. This gives the result. \Box

Corollary 2.2. Let $A \in \mathcal{L}(H)$. If A satisfy the following conditions

1. A is P-symmetric and 2. $\tilde{A}T = T\tilde{A}$ implies AT = TA for all $T \in C_1(H)$,

then $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{A^*})}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{A}})}^{w^*}$ and \tilde{A} is P-symmetric.

Proof. it is an immediate consequence of Theorem 1.2, Theorem 1.14 and Theorem 2.1. \Box

Proposition 2.3. Let $A = U|A| \in \mathcal{L}(H)$ such that $\ker(A) \subset \ker(A^*)$ and $\tilde{A}T = T\tilde{A}$ implies |A|T = T|A| for every $T \in C_1(H)$. Then A is \tilde{P} -symmetric if and only if $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*}$.

Proof. By Theorem 2.1, it suffices to show the property that $\tilde{A}T = T\tilde{A}$ implies AT = TA for all $T \in C_1(H)$. So if $\tilde{A}T = T\tilde{A}$ for $T \in C_1(H)$ then by virtue of hypothesis and since $\tilde{A}|A|^{\frac{1}{2}} = |A|^{\frac{1}{2}}A$ we have $\tilde{A}T|A|^{\frac{1}{2}} = T\tilde{A}|A|^{\frac{1}{2}}$, which implies that $|A|^{\frac{1}{2}}(AT - TA) = 0$ and hence $(T^*A^* - A^*T^*)|A|^{\frac{1}{2}} = 0$. Therefore $T^*A^* - A^*T^*$ vanish on $\overline{R(|A|)}$. On the other hand, if $x \in \ker(|A|) = \ker(A) \subset \ker(A^*)$, we get by hypothesis $|A|T^*x = T^*|A|x = 0$ hence $A^*T^*x = 0$ and as result $T^*A^* - A^*T^*$ vanish on $\ker(|A|)$. Then we obtain

$$AT - TA = (T^*A^* - A^*T^*)^* = 0 \text{ on } H = R(|A|) \oplus \ker(|A|).$$

Proposition 2.4. Let $A \in \mathcal{L}(H)$ such that $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*}$, $H_0 \subset H$ is a reducing subspace for A and $A_0 = A_{|H_0}$. Then $\overline{\mathcal{R}(\delta_{A_0})}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}_0})}^{w^*}$ and A_0 is \tilde{P} -symmetric.

Proof. It is an consequence of Theorem 2.1 and Theorem 1.23. \Box

Proposition 2.5. Let $A, B \in \mathcal{L}(H)$ and $S = A \oplus B$. If one of the following conditions

1.
$$\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{A}})}^{w^*}$$
 and $\overline{\mathcal{R}(\delta_B)}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{B}})}^{w^*}$ with $\sigma(A) \cap \sigma(B) = \emptyset$.
2. $A = \int \lambda dE(\lambda)$ is normal and $\overline{\mathcal{R}(\delta_B)}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{B}})}^{w^*}$ such that $E(\sigma(A) \cap \sigma(B)) = 0$.

is verified, then $\overline{\mathcal{R}(\delta_S)}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{S}})}^{w^*}$ *and S is* \tilde{P} *-symmetric.*

Proof. 1. It is an consequence of Theorem 2.1 and Theorem 1.24.

2. It is an consequence of Theorem 2.1 and Theorem 1.25. □

Theorem 2.6. Let $A \in \mathcal{L}(H)$ be an invertible *P*-symmetric operator. Then $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{A^*})}^{w^*} = \overline{\mathcal{R}(\delta_{\tilde{A}})}^{w^*}$ and \tilde{A} is *P*-symmetric.

Proof. On the light of the Corollary 2.2, it suffices to show the property that $\tilde{A}T = T\tilde{A}$ implies AT = TA for all $T \in C_1(H)$. Let A = U|A| be the polar decomposition of A, since A is invertible, the Lemma 2.1 and the Theorem 2.2 from [2] ensures that |A| is invertible. So from $\tilde{A}|A|^{\frac{1}{2}} = |A|^{\frac{1}{2}}A$ we get $|A|^{\frac{-1}{2}}\tilde{A} = A|A|^{\frac{-1}{2}}$. Hence if $T \in C_1(H)$ such that $\tilde{A}T = T\tilde{A}$, we have :

$$|A|^{\frac{-1}{2}}\tilde{A}T|A|^{\frac{1}{2}} = |A|^{\frac{-1}{2}}T\tilde{A}|A|^{\frac{1}{2}} \implies A|A|^{\frac{-1}{2}}T|A|^{\frac{1}{2}} = |A|^{\frac{-1}{2}}T|A|^{\frac{1}{2}}A.$$

Let $X = |A|^{\frac{-1}{2}}T|A|^{\frac{1}{2}} \in C_1(H)$. Then AX = XA, hence by hypothesis and Lemma 1.28, R(X) and $(\ker X)^{\perp}$ are reducing spaces for A, and $A|_{\overline{R(X)}}$ and $A|_{(\ker X)^{\perp}}$ are normal operators. Therefore

$$A = M \oplus R$$
 on $H_1 = H = (\ker X)^{\perp} \oplus \ker X$

and

$$A = N \oplus S$$
 on $H_2 = H = R(X) \oplus R(X)^{\perp}$

where *N* and *M* are normal operators, and note that $\tilde{N} = N$ and $\tilde{M} = M$. The operator *A* is invertible and so are *N*, *S*, *M* and *R*. Also, we can write *X* and *T* on *H*₁ into *H*₂ as

$$X = \begin{pmatrix} X_1 & 0\\ 0 & 0 \end{pmatrix} \text{ and } T = \begin{pmatrix} T_1 & T_2\\ T_3 & T_4 \end{pmatrix}$$

Clearly $|A| = |M| \oplus |R|$ on H_1 and $|A|^{-1} = |N|^{-1} \oplus |S|^{-1}$ on H_2 . It follows from $X = |A|^{\frac{-1}{2}}T|A|^{\frac{1}{2}}$ that

$$\begin{pmatrix} X_1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} |N|^{\frac{1}{2}}T_1|M|^{\frac{1}{2}} & |N|^{\frac{1}{2}}T_2|R|^{\frac{1}{2}}\\ |S|^{\frac{1}{2}}T_3|M|^{\frac{1}{2}} & |S|^{\frac{1}{2}}T_4|R|^{\frac{1}{2}} \end{pmatrix}$$

Hence $T_2 = T_3 = T_4 = 0$ so $T = T_1 \oplus 0$. On the other hand, since $\tilde{A} = N \oplus \tilde{S}$ on H_2 and $\tilde{A} = M \oplus \tilde{R}$ on H_1 by Lemma 1.22, then from $\tilde{A}T = T\tilde{A}$ we get $NT_1 = T_1M$, therefore AT = TA. So the proof is complete. \Box

Remark 2.7. The invertibility condition of Theorem 2.6 is essential. We confirm this in the following example:

Example 2.8. Let $(e_k)_{k\geq 1}$ be an orthonormal basis of H, and $S \in \mathcal{L}(H)$ the unilateral shift operator, that is $Se_k = e_{k+1}$ for all $k \geq 1$. Put $A = S^*$, So A is a co-isometry since S is an isometry. Hence A is P-symmetric operator (see [8]), however A is not invertible. It results from Lemma 1.9 that $\tilde{A} = A^*A^2 = |A|A$. A simple calculation shows that:

$$|A|e_k = \begin{cases} 0 & \text{if } k = 1 \\ e_k & \text{if } k \ge 2 \end{cases} \implies \tilde{A}e_k = \begin{cases} 0 & \text{if } 1 \le k \le 2 \\ e_{k-1} & \text{if } k \ge 3 \end{cases} \implies \left(\tilde{A}\right)^* e_k = \begin{cases} 0 & \text{if } k = 1 \\ e_{k+1} & \text{if } k \ge 2 \end{cases}$$

It follows from [6, Theorem 1.6] that \tilde{A} is not P-symmetric.

Corollary 2.9. Let $A \in \mathcal{L}(H)$ be iw-hyponormal operator, then A is P-symmetric if and only if \tilde{A} is P-symmetric. *Proof.* it is an immediate consequence of Theorem 1.29 and Theorem 2.6. \Box

Proposition 2.10. Let $A \in \mathcal{L}(H)$ be invertible such that $||A^{-1}||||A|| = 1$. Then $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{A^*})}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{A}})}^{w^*}$. *Proof.* It follows from [3] that A is P-symmetric, and $\overline{\mathcal{R}(\delta_A)}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{A}^*})}^{w^*} = \overline{\mathcal{R}(\delta_{\bar{A}})}^{w^*}$ by Theorem 2.6. \Box

Acknowledgment:

The authors wish to thank the referee for his careful reading of the paper and for helpful suggestions.

References

- [1] A. Aluthge, On *p*-hyponormal operators for 0 . Integral Equations and Operator Theory volume**13**(1990), 307-315.
- A. Aluthge and D. Wang, w-Hyponormal operators. Integr equ oper theory 36 (2000), 1-10. [2]
- S.K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1978), 113-114. [3]
- [4] I. Bong Jung, E. Ko, C. Pearcy, Aluthge transforms of operators. Integr. equ. oper. theory 37 (2000), 437-448.
- [5] S. Bouali and Y. Bouhafsi, On the range of the elementary operator $X \mapsto AXA X$, Math. Proc. Roy. Irish Acad. 108 (2008), 1-6.
- [6] S. Bouali and J. Charles, Extension de la notion d'opérateurs d-symétriques I, Acta Sci. Math. (Szeged), 58 (1993), 517-525.
- [7] S. Bouali and J. Charles, Extension de la notion d'opérateurs d-symétriques II. Linear Algebra And Its Applications 225 (1995), 175-185.
- [8] S. Bouali, M. Ech-Chad, A. Zouaki and Y. Bouhafsi, A note on P-symmetric operators, Int. J. Pure. Appl. Math., 110 (2016), 71-82.
- [9] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. 36(1950), 35-40. [10] T. Furuta, Invitation to Linear Operators, From Matrices to Bounded Linear Operators on a Hilbert Space, Taylor and Francis, London, 2001.
- [11] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. math., 1 (1998), 389-403.
- [12] S. R. Garcia, Aluthge Transforms of Complex Symmetric Operators, Integr. equ. oper. theory 60 (2008), 357-367.
- [13] S. Mecheri, On minimizing $||S (AX XB)||_p^p$, Serdica Math. J., **26** (2000), 119-126. [14] M.H.M. Rashid, Quasinormality and Fuglede-Putnam Theorem for w-Hyponormal Operators, Thai J. Math., **15(01)**) (2017), 167-182.
- [15] M. Rosenblum, On the operator equation BX XA = Q, Duke Math. J., 23 (1956), 263-269.
- [16] J. G. Stampfli, On self-adjoint derivation ranges, Pacific J. Math., 82 (1979), 257-277.
- [17] A. Turnšek, Orthogonality in Cp classes, Monatsh. Math., 132 (2001), 349-354.
- [18] J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279.
 [19] T. Yoshino, Subnormal operators with a cyclic vector, Tohoku Math. J., 21 (1969), 47-55.