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Abstract. In this paper, we introduce the concept of lacunary statistically p-quasi-Cauchyness of a sequence
in a metric space in the sense that a sequence (xk) is lacunary statistically p-quasi-Cauchy if limr→∞

1
hr
|{k ∈ Ir :

d(xk+p, xk) ⩾ ε}| = 0 for each ε > 0 where Ir = (kr−1, kr] and k0 = 1, hr = kr − kr−1 →∞ as r→∞ and θ = (kr) is
an increasing sequence of positive integers. A function f is called lacunary statistically p-ward continuous
on a subset A of X if it preserves lacunary statistically p-quasi-Cauchy sequences, i.e. the sequence ( f (xn)) is
lacunary statistically p-quasi-Cauchy whenever x = (xn) is a lacunary statistically p-quasi-Cauchy sequence
of points in A. It turns out that a function f is uniformly continuous on a totally bounded subset A of X
if there exists a positive integer p such that f preserves lacunary statistically p-quasi-Cauchy sequences of
points in A.

1. Introduction

The concept of continuity and any concept involving continuity play a very important role not only
in pure mathematics but also in other branches of sciences involving mathematics especially in computer
sciences, information theory, biological science, economics, and dynamical systems.

Throughout this paper, N, R, and X will denote the set of positive integers, the set of real numbers,
and a metric space with a metric d, respectively. p will always be a fixed element of N. The boldface
letters such as x, y, z will be used for sequences x = (xn), y = (yn), z = (zn), ... of points in X. A function
f : X −→ X is continuous if and only if it preserves convergent sequences. Using the idea of continuity
of a real function in this manner, many kinds of continuities were introduced and investigated, not all but
some of them we recall in the following: ward continuity ([2]), p-ward continuity ([5]), δ2-ward continuity
([1]), statistical ward continuity, ([10]), [4]), slowly oscillating continuity ([15]), lacunary statistical ward
continuity ([6], [16]), lacunary statistical δ ward continuity ([7]), lacunary statistical δ2 ward continuity
([17]), which enabled some authors to obtain interesting results.

In [11] Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that
a sequence (αk) of points in R is called lacunary statistically convergent, or Sθ-convergent, to an element L
of R if limr→∞

1
hr
|{k ∈ Ir : |αk − L| ⩾ ε}| = 0 for every positive real number ε where Ir = (kr−1, kr] and k0 = 0,

hr = kr − kr−1 → ∞ as r → ∞ and θ = (kr) is an increasing sequence of positive integers (see also [12], [3],
[17], and [16]).

In the sequel, we shall assume that lim in fr qr > 1 where qr =
kr

kr−1
. The set of lacunary statistically

convergent sequences of points in X is denoted by Sθ(X). A sequence (xk) of points in X is called lacunary
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statistically quasi-Cauchy if Sθ − lim∆αk = 0, where ∆αk = d(xk+1, xk) for each positive integer k. The set of
lacunary statistically quasi-Cauchy sequences in X will be denoted by ∆Sθ(X).

The purpose of this paper is to introduce lacunary statistically p-quasi-Cauchy sequences in metric
spaces, and prove concerning theorems.

2. Variations on lacunary statistical ward compactness

The concept of a Cauchy sequence involves far more than that the distance between successive terms is
tending to 0 and lacunary statistically tending to zero, and more generally speaking, than that the distance
between p-successive terms is lacunary statistically tending to zero, by p-successive terms we mean αk+p
and αk. Nevertheless, sequences which satisfy this weaker property are interesting in their own right.

Before giving our main definition we recall basic concepts. A sequence (xn) is called quasi Cauchy if
limn→∞ ∆xn = 0, where ∆xn = d(xn+1, xn) for each n ∈ N ([2]). A sequence (xk) of points in X is slowly
oscillating if limλ→1+ limn maxn+1⩽k⩽[λn] d(xk, xn) = 0, where [λn] denotes the integer part of λn ([9]). A
sequence (xk) is quasi-slowly oscillating if (∆xk) is slowly oscillating. A sequence (xn) is called lacunary
statistically convergent to an element L of X if limr→∞

1
hr
|{k ∈ Ir : d(xk,L) ⩾ ε}| = 0 for each ε > 0 ( [3], and

[11]). Now we introduce the concept of a lacunary statistically p-quasi-Cauchy sequence.

Definition 2.1. A sequence (xk) of points in X is called lacunary statistically p-quasi-Cauchy if Sθ −
limk→∞∆pxk = 0, i.e. limr→∞

1
hr
|{k ∈ Ir : ∆pxk ⩾ ε}| = 0 for each ε > 0, where ∆pxk = d(xk+p, xk) for ev-

ery k ∈N.

We will denote the set of all lacunary statistically p-quasi-Cauchy sequences by ∆θp . We note that a
sequence is lacunary statistically quasi-Cauchy when p = 1, i.e. lacunary statistically 1-quasi-Cauchy
sequences are lacunary statistical quasi-Cauchy sequences. It follows from the inclusion
{k ∈ Ir : d(xk+p, xk) ⩾ ε}
⊆ {k ∈ Ir : d(xk+p, xk+p−1) ⩾ εp } ∪ {k ∈ Ir : d(xk+p−1, xk+p−2) ⩾ εp } ∪ ...
∪{k ∈ Ir : d(xk+2, xk+1) ⩾ εp } ∪ {k ∈ Ir : d(xk+1, xk) ⩾ εp }.

that any lacunary statistically quasi-Cauchy sequence is also lacunary statistically p-quasi-Cauchy, but
the converse is not always true as it can be seen by considering the sequence (xk) defined by (xk) =
(x, y, x, y, ..., x, y, ...) is lacunary statistically 2-quasi Cauchy which is not lacunary statistically quasi Cauchy
if x is different from y. More examples can be seen in [13, Section 1.4] for the real case. It is clear that
any Cauchy sequence is in

⋂
∞

p=1 ∆
θ
p (X), so that each ∆θp (X) is a sequence space containing the space C(X) of

Cauchy sequences. It should also be noted that C(X) is a proper subset of ∆θp (X) for each p ∈N.

Definition 2.2. A subset A of X is called lacunary statistically p-ward compact if any sequence of points in
A has a lacunary statistically p-quasi-Cauchy subsequence.

We note that this definition of lacunary statistically p-ward compactness cannot be obtained by any
summability matrix in the sense of [8].

Since any lacunary statistically quasi-Cauchy sequence is lacunary statistically p-quasi-Cauchy we see
that any lacunary statistically ward compact subset of X is lacunary statistically p-ward compact for any
p ∈N. A finite subset of X is lacunary statistically p-ward compact, the union of finite number of lacunary
statistically p-ward compact subsets of X is lacunary statistically p-ward compact, and the intersection of
any family of lacunary statistically p-ward compact subsets of X is lacunary statistically p-ward compact.
Furthermore any subset of a lacunary statistically p-ward compact set of X is lacunary statistically p-ward
compact and any totally bounded subset of X is lacunary statistically p-ward compact. These observations
above suggest to us the following.

Theorem 2.3. A subset A of X is totally bounded if and only if there exists a p ∈ N such that A is lacunary
statistically p-ward compact.
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Proof. Although the proof that totally boundedness implies lacunary statistically p-ward compactness
follows from the fact that any sequence of points in a totally bounded subset of X has a Cauchy subsequence,
we give a proof not only for completeness but also for anticipating how to see potential equivalent conditions
for total boundedness. Take any sequence (xn) of points in E. Since E can be covered by a finite number of
subsets of X of diameter less than 1, one of these sets, which we denote by A1, must contain xn for infinitely
many values of n. We may choose a positive integer n1 such that xn1 ∈ A1. Then A1 is totally bounded and
hence it can be covered by a finite number of subsets of A1 of diameter less than 1

2 . One of these subsets
of A1, which we denote by A2, contains xn for infinitely many n. Choose a positive integer n2 such that
n2 > n1 and xn2 ∈ A2. Since A2 ⊂ A1, it follows that xn2 ∈ A1 as well. Continuing in this way, we obtain,
for any positive integer k, a subset Ak of Ak−1 with diameter less than 1

k and a term xnk ∈ Ak of the sequence
(xn) , where nk > nk−1. Since all xnk , xnk+1 , xnk+2 ,...,xnk+ j ,... lie in Ak and the diameter of Ak is less than 1

k , it
follows that (xnk ) is a lacunary p-quasi-Cauchy subsequence of the sequence (xn). To prove that lacunary
statistically p-ward compactness implies totally boundedness, suppose that E is not totally bounded. Then
there exists an ε > 0 such that there does not exist a finite ε-net. Take any x1 ∈ E. By the assumption that E is
not totally bounded, the open ball BE(x1, ε) is not equal to E, i.e. BE(x1, ε) , E, so there exists an x2 ∈ E such
that dE(x1, x2) ⩾ ε, i.e. x2 < BE(x1, ε), and x2 ∈ E. Then BE(x1, ε) ∪ BE(x2, ε) , E otherwise BE(x1, ε) ∪ BE(x2, ε)
would be a finite ε-net in E. Let x3 < BE(x1, ε) ∪ BE(x2, ε) i.e. dE(x1, x2) ⩾ ε, dE(x1, x3) ⩾ ε, and dE(x2, x3) ⩾ ε.
Continuing the process in this manner, one can obtain a sequence (xn) of points in E such that

xn < BE(x1, ε) ∪ BE(x2, ε) ∪ ... ∪ BE(xn−1, ε), (n = 2, 3, ...)

i.e. dE(xi, xn) ⩾ ε (i = 1, 2, ...,n − 1) and (n = 1, 2, ...), n , i.

The sequence (xn) constructed in this manner has no lacunary statistically p-quasi-Cauchy subsequence.
Thus this contradiction completes the proof of the theorem.

Corollary 2.4. A subset of X is lacunary statistically p-ward compact if and only if it is lacunary statistically q-ward
compact for any p, q ∈N.

It follows from Theorem 2.3 that lacunary statistically p-ward compactness of a subset of A of X coincides
with either of the following kinds of compactness: p-ward compactness ([5, Theorem 2.3]), statistical ward
compactness ([4]), slowly oscillating compactness ([15]).

Corollary 2.5. Let E be a subset of X. The following statements are equivalent:
(a) E is totally bounded.
(b) E is p-ward compact.
(c) E is slowly oscillating compact.
(d) E is statistically p-ward compact.
(e) E is lacunary statistically p-ward compact.

3. Variations on lacunary statistical ward continuity

In this section, we investigate connections between uniformly continuous functions and lacunary statis-
tically p-ward continuous functions. A function f : X −→ X is continuous if and only if it preserves lacunary
statistically convergent sequences. Using this idea, we introduce lacunary statistical p-ward continuity.

Definition 3.1. A function f is called lacunary statistically p-ward continuous on a subset A of X if it
preserves lacunary statistically p-quasi-Cauchy sequences, i.e. the sequence ( f (xn)) is lacunary statistically
p-quasi-Cauchy whenever (xn) is a lacunary statistically p-quasi-Cauchy sequence of points in A.

We see that this definition of lacunary statistically p-ward continuity can not be obtained by any summa-
bility matrix A (see [8]).

We note that the composite of two lacunary statistically p-ward continuous functions is lacunary statis-
tically p-ward continuous.
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In connection with lacunary statistically p-quasi-Cauchy sequences, slowly oscillating sequences, and
convergent sequences the problem arises to investigate the following types of continuity of a function on
X.

(∆θp ) (xn) ∈ ∆θp ⇒ ( f (xn)) ∈ ∆θp

(∆θp c) (xn) ∈ ∆θp ⇒ ( f (xn)) ∈ c

(∆s) (xn) ∈ ∆s
⇒ ( f (xn)) ∈ ∆s

(c) (xn) ∈ c⇒ ( f (xn)) ∈ c

(d) (xn) ∈ c⇒ ( f (xn)) ∈ ∆θp

We see that (∆θp ) is lacunary statistically p-ward continuity of f , and (c) states the ordinary continuity of
f . It is easy to see that (∆θp c) implies (∆θp ), and (∆θp ) does not imply (∆θp c); ∆θp implies (d), and (d) does not
imply (∆θp ); (∆θp c) implies (c) and (c) does not imply (∆θp c); and (c) implies (d).

Theorem 3.2. If f is lacunary statistically p-ward continuous on a subset E of X for some p ∈N, then it is lacunary
statistically ward continuous on E.

Proof. If p = 1, then it is obvious. So we would suppose that p > 1. Take any lacunary statistically p-ward
continuous function f on E. Let (xk) be any lacunary statistical quasi-Cauchy sequence of points in E. Write

(ξi) = (x1, x1, ..., x1, x2, x2, ..., x2, ..., xn, xn, ..., xn, ...),

where the same term repeats p times. The sequence

(x1, x1, ..., x1, x2, x2, ..., x2, ..., xn, xn, ..., xn, ...)

is also lacunary statistically quasi-Cauchy so it is lacunary statistically p-quasi-Cauchy. By the lacunary
statistically p-ward continuity of f , the sequence

( f (x1), f (x1), ..., f (x1), f (x2), f (x2), ..., f (x2), ..., f (xn), f (xn), ..., f (xn), ...)

is lacunary statistically p-quasi-Cauchy, where the same term repeats p-times. Thus the sequence

( f (x1), f (x1), ..., f (x1), f (x2), f (x2), ..., f (x2), ..., f (xn), f (xn), ..., f (xn), ...)

is also lacunary statistically p quasi-Cauchy. It is easy to see that Sθ − limd( f (xn+1), f (xn))) = 0, which
completes the proof of the theorem.

Corollary 3.3. f is lacunary statistically p-ward continuous on a subset E of X, then it is continuous on E in the
ordinary sense.

Proof. The proof follows immediately, so is omitted.

Theorem 3.4. Lacunary statistical p-ward continuous image of any lacunary statistically p-ward compact subset of
X is lacunary statistically p-ward compact.

Proof. Let f be a lacunary statistically p-ward continuous function, and A be a lacunary statistically p-ward
compact subset of X. Take any sequence β = (βn) of terms in f (E). Write βn = f (xn) where xn ∈ E for
each n ∈ N, α = (xn). Lacunary statistically p-ward compactness of A implies that there is a lacunary
statistically p-quasi-Cauchy subsequence ξ = (ξk) = (xnk ) of α. Since f is lacunary statistically p-ward
continuous, (tk) = f (ξ) = ( f (ξk)) is lacunary statistically p-quasi-Cauchy. Thus (tk) is a lacunary statistically
p-quasi-Cauchy subsequence of the sequence f (α). This completes the proof of the theorem.
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Theorem 3.5. If f is uniformly continuous on a subset E of X, then ( f (xn)) is lacunary statistically p-quasi-Cauchy
whenever (xn) is a p-quasi-Cauchy sequence of points in E.

Proof. Let (xn) be any p-quasi-Cauchy sequence of points in E. Take any ε > 0. Uniform continuity of f
on E implies that there exists a δ > 0, depending on ε, such that d( f (x), f (y)) < ε whenever d(x, y) < δ and
x, y ∈ E. For this δ > 0, there exists an N = N(δ) such that ∆pxn < δ whenever n > N. Hence ∆p f (xn) < ε if
n > N. Thus {k ∈ Ir : ∆p f (xk)| ⩾ ε} ⊆ {1, 2, ...,N}. Therefore

limr→∞
1
hr
|{k ∈ Ir : ∆p f (xk)| ⩾ ε}| ⩽ limr→∞,k(r)⩾N

1
hr
|{k ∈ Ir : ∆p f (xk)| = 0.

It follows from this that ( f (xn)) is a lacunary statistically p-quasi-Cauchy sequence. This completes the
proof of the theorem.

It is well-known that any continuous function on a compact subset E of X is uniformly continuous on
E. We have an analogous theorem for a lacunary statistically p-ward continuous function defined on a
lacunary statistically p-ward compact subset of X.

Theorem 3.6. If a function is lacunary statistically p-ward continuous on a lacunary statistically p-ward compact
subset of X, then it is uniformly continuous on E.

Proof. Suppose that f is not uniformly continuous on E so that there exist an ϵ0 > 0 and sequences (xn)
and (βn) of points in E such that d(xn, βn) < 1/n and d( f (xn); f (βn)) ⩾ ϵ0 for all n ∈ N. Since E is lacunary
statistically p-ward compact, there is a subsequence (xnk ) of (xn) that is lacunary statistically p-quasi-Cauchy.
On the other hand, there is a subsequence (βnkj

) of (βnk ) that is lacunary statistically p-quasi-Cauchy as well.
It is clear that the corresponding sequence (ankj

) is also lacunary statistically p-quasi-Cauchy, since
{ j ∈ Ir : d(xnkj+p

, xnkj
) ⩾ ε} ⊆ { j ∈ Ir : d(xnkj+p

, βnkj+p
) ⩾ ε3 } ∪ { j ∈ Ir : d(βnkj+p

, βnkj
) ⩾ ε3 } ∪ { j ∈ Ir : d(βnkj

, xnkj
) ⩾ ε3 }

for every n ∈ N, and for every ε > 0. Hence it is easy to establish a contradiction. Thus this completes the
proof of the theorem.

Corollary 3.7. If a function defined on a totally bounded subset of X is lacunary statistically p-ward continuous,
then it is uniformly continuous.

We note that when the domain of a function is restricted to a totally bounded subset of X, lacunary
statistically p-ward continuity implies not only ward continuity, but also statistically p-ward continuity.

4. Conclusion

In this paper, we introduce lacunary statistically p-quasi Cauchy sequences, and investigate conditions
for a lacunary statistically p ward continuous function on a metric space to be uniformly continuous, and
prove some other results related to these kinds of continuities and some other kinds of continuities. It
turns out that lacunary statistically p-ward continuity implies uniform continuity on a totally bounded
subset of X. The results in this paper not only involves the related results in [6] as a special case for p = 1,
but also some interesting results which are also new for the special case p = 1. The lacunary statistically
p-quasi Cauchy concept for p > 1 might find more interesting applications than lacunary statistical quasi
Cauchy sequences to the cases when lacunary statistically quasi Cauchy does not apply. For a further study,
we suggest to investigate lacunary statistically p-quasi-Cauchy sequences of fuzzy points, or soft points.
However due to the change in settings, the definitions and methods of proofs will not always be analogous
to those of the present work. We also suggest to investigate lacunary statistically p-quasi-Cauchy double
sequences of points in X (see [14] for the related definitions in the double case). For another further study,
we suggest to investigate lacunary statistically p-quasi-Cauchy sequences in abstract metric spaces.
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