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Bernstein type gradient estimation for weighted local heat equation

Sujit Bhattacharyyaa, Suraj Ghosha, Shyamal Kumar Huia,∗

aDepartment of Mathematics, The University of Burdwan, Burdwan, 713104, West Bengal, India

Abstract. In this article we derive Bernstein type gradient estimation for local weighted heat equation on
static weighted Riemannian manifold and evolving weighted Riemannian manifold along local Ricci flow
and extended local Ricci flow. We showed that along local Ricci flow and extended local Ricci flow we
can derive Bernstein type estimation for weighted heat equation without any assumption on the bound of
Bakry-Émery Ricci curvature.

1. Introduction

Gradient estimation is method in analysis on partial differntial equations where one can derive bounds
for |∇u|, where u is a solution to some partial differntial equation, ∇ being the gradient operator. Depending
on the type of the partial differntial equation, different types of gradient estimations can be derived. After
Li and Yau’s [15] work this method becomes popular. In recent days, there are several studies going
on finding gradient estimation for positive solution of nonlinear heat type equations over Riemannian
manifolds. One can follow works of Abolarinwa et al. [1] where they derived gradient estimates for
nonlinear weighted parabolic equation. In [7], Chen and Zhao studied Li-Yau and Souplet-Zhang type
gradient estimation for parabolic equations involving V-Laplacian. Dung and Khanh [9] derived gradient
estimation for semilinear parabolic equations. Abolarinwa [2, 3] also studied gradient estimation for elliptic
equations, Harnack estimation and derived Liouville type theorem. Results related to first eigenvalue of
weighted p-Laplacian under cotton flow was studied by Saha et al. [17]. Some recent developments can
also be found in Hui et al. [11–14], these includes Hamilton and Souplet-Zhang type estimation, gradient
estimation on system of equations, nonlinear elliptic equations, Li-Yau type gradient estimation along
geometric flow etc. Results related to Hessian estimates can be found in the work of Wang et al. [19]. It
should be mentioned here that majority of those studies are for heat equations with nonlinear potential
terms. Our study is different than the classical study of gradient estimation. We study gradient estimation
for local heat equation along local Ricci flow and extended local Ricci flow. The idea of ‘local heat equation’
was originated after the development of local Ricci flow. Let (Mn, 1) be an n-dimensional Riemannian
manifold with 1 being the Riemannian metric. The local Ricci flow is defined by

∂1

∂t
= −2χ2Ric, (1)
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where Ric denotes the Ricci tensor. Here χ : M → R is a function with compact support in a smooth
bounded domainΩ ⊂M. Following this idea a new type of heat equation is formed viz. local heat equation
which is defined as ∂u∂t = χ2∆u

u(x, 0) = u0, ∀x ∈M,
(2)

where χ is defined as earlier. Next observe that u(x, t) = u0(x) for all x ∈ M \ supp(χ). One can see [8,
Chapter 14] for a complete study. Next we mention some interesting areas in which this type of heat
equations plays a significant role.

1.1. Thermal diffusivity
Heat equation of the form (2) are important in various different field of science, especially in Thermog-

raphy. In this field one can find thermal diffusivity constant α for different metals. Thermal diffusivity
constant is the ration of conducted heat and stored heat in a material, mostly metals. In mathematical notation

α =
κ
ρcp
,

where κ is the material conductivity, ρ is material density and cp is the specific heat of the material. The
function χ2 is treated as the thermal diffusivity constant α. To make a quick review of this constant one
can follow [18] and the references therein. There are different types of methods available to determine α in
practical scenario.

1.2. Cable theory
In Neuroscience, the propagation of action potential in nerve cells is an effective area of modern research.

In Cable theory one can make quantitative studies of flow of currents in axons. One can see [16] and the
references therein for a detailed study. The partial differential equation that is used in this field is

(τ∂t − λ
2∂2

xx)V = V,

we just refer the reader to [16] for the notations and implications of the above equation. Just to mention in
our case λ2 is nothing but χ2.

Thus the local heat equation has a great significance in modern day science. Hence motivated by the
above mentioned work, in this article we derive the Bernstein type estimate for weighted local heat type
equation ∂u∂t = χ2∆ f u

u(x, 0) = u0, ∀x ∈M,
(3)

on a weighted Riemannian manifold M equipped with the weighted volume measure e− f dµ. Here f ∈ C∞(M)
and ∆ f denotes the weighted Laplacian defined by

∆ f u = ∆u − ⟨∇ f ,∇u⟩, (4)

where ∆ is the Laplace-Beltrami operator. Some recent developments on gradient estimation related to
weighted Laplacian can be found in [11–14]. Next we have some fundamental results and definitions that
will be required to initiate the estimation.

Definition 1.1 ([6] Bakry-Émery Ricci tensor). For any m ≥ n > 0 and m,n ∈ Z and any f ∈ C∞(M), the
(m − n)-Bakry-Émery Ricci tensor is defined by

Ricm−n
f := Ric +Hess f −

∇ f ⊗ ∇ f
m − n

.
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Remark 1.2. The case m = n happens ⇐⇒ f is a constant map. The case when m → ∞ will produce the
∞-Bakry-Émery Ricci tensor is defined by

Ric∞f = Ric +Hess f .

Alternatively written as Ric f .

Lemma 1.3 (Weighted Bochner formula). For any u ∈ C3(M) we have

1
2
∆ f |∇u|2 = |Hess u|2 + ⟨∇u,∇∆ f u⟩ + Ric f (∇u,∇u).

We are giving the proof of the above lemma just to enrich the reader.

Proof. From Bochner’s formula we have

1
2
∆|∇u|2 = |Hess u|2 + ⟨∇u,∇∆u⟩ + Ric(∇u,∇u)

=⇒
1
2
∆ f |∇u|2 = |Hess u|2 + ⟨∇u,∇∆ f u⟩ + Ric(∇u,∇u) −

1
2
⟨∇ f ,∇|∇u|2⟩ + ⟨∇u,∇⟨∇ f ,∇u⟩⟩

= |Hess u|2 + ⟨∇u,∇∆ f u⟩ + Ric(∇u,∇u) −Hess u(∇ f ,∇u)
+Hess u(∇ f ,∇u) +Hess f (∇u,∇u).

The second and the last term gives the∞-Bakry-Émery Ricci tensor. This completes the proof.

2. Main Results

2.1. Bernstein type estimate on static manifold

In this subsection we derive Bernstein type estimate on a static weighted Riemannian manifold (Mn, 1, e− f dµ)
with Ricm−n

f ≥ −K(m − 1)1, where K ≥ 0 is a real number.

Theorem 2.1 (Bernstein type estimate for weighted local heat equation). If u is a solution to the heat equa-
tion (3) on (Mn, 1, e− f dµ) with Ricm−n

f ≥ −K(m − 1)1 then

|∇u|2 ≤
B
χ2t

, on Ω × [0,T], (5)

where Ω is a bounded domain of M, T > 0 is a real number and B < ∞ is a constant depends only on
K, m, T, max

Ω
u0, max

Ω
χ2, max

Ω
(−χ∆ fχ) and max

Ω
|∇χ|2.

Proof. It is east to check that

∂
∂t

(u2) = χ2∆ f (u2) − 2χ2
|∇u|2. (6)

From weighted Bochner formula (Lemma 1.3) we get

∂t|∇u|2 = 2⟨∇u,∇(χ2∆ f u)⟩

= χ2∆ f |∇u|2 − 2χ2
|Hess u|2 − 2χ2Ric f (∇u,∇u) + 4χ⟨∇u,∇χ⟩∆ f u.

Using the above equation we derive

∂t(χ2
|∇u|2) = χ4

(
∆ f |∇u|2 − 2|Hess u|2 − 2Ric f (∇u,∇u)

)
+ 4χ3

⟨∇u,∇χ⟩∆ f u. (7)
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Similarly we infer

∆ f (χ2
|∇u|2) = χ2∆ f |∇u|2 + 2|∇u|2(χ∆ fχ + |∇χ|

2) + 4χ⟨∇χ,∇|∇u|2⟩

= χ2∆ f |∇u|2 + 2|∇u|2(χ∆ fχ + |∇χ|
2) + 8χ⟨∇χ ∇u,Hess u⟩. (8)

Combining (7) and (8) gives

(∂t − χ
2∆ f )(χ2

|∇u|2) = χ4
(
∆ f |∇u|2 − 2|Hess u|2 − 2Ric f (∇u,∇u)

)
+ 4χ3

⟨∇u,∇χ⟩∆ f u − χ4∆ f |∇u|2

−2χ2
|∇u|2(χ∆ fχ + χ|∇χ|

2). (9)

Simplifying we get

(∂t − χ
2∆ f )(χ2

|∇u|2) = −2χ4
|Hess u|2 − 2χ4Ric f (∇u,∇u) + 4χ3

⟨∇u,∇χ⟩ − 2χ2
|∇u|2(χ∆ fχ + |∇χ|

2)

−8χ2
⟨∇χ∇u,Hess u⟩. (10)

For m > n by Cauchy-Schwarz and Young’s inequality we find that

4χ3
⟨∇u,∇χ⟩∆ f u ≤ 16mχ2

|∇u|2|∇χ|2 + χ4
|Hess u|2 +

2χ4

m − n
⟨∇ f ,∇u⟩2, (11)

where we used 1
m (∆ f u)2

≤ |Hess u|2 + 1
m−n ⟨∇ f ,∇u⟩2 (For an explicit proof one can see [13]). We also used the

fact that the quantity χ4

m−n ⟨∇ f ,∇u⟩2 ≥ 0. In similar way we deduce

−8χ2
⟨∇χ∇u,Hess u⟩ ≤ 16χ2

|∇χ|2|∇u|2 + χ4
|Hess u|2. (12)

Using (11) and (12) in (10) we get

(∂t − χ
2∆ f )(χ2

|∇u|2) ≤ 2χ2
|∇u|2(−χ∆ fχ + (7 + 8m)|∇χ|2) − 2χ4Ricm−n

f (∇u,∇u). (13)

Applying the bound of Ricm−n
f in the above equation and assuming that the functions −χ∆ fχ, |∇χ|2 and χ2

are all bounded above by a constant C1 < ∞we infer

(∂t − χ
2∆ f )(χ2t|∇u|2) = t(∂t − χ

2∆ f )(χ2
|∇u|2) + χ2

|∇u|2

≤ 2χ2
|∇u|2(C2t +

1
2

), (14)

where C2 := (1 + (7 + 8m) + K(m − 1))C1. Using the idea of (6) in (14) we deduce

(∂t − χ
2∆ f )

(
χ2t|∇u|2 + (C2T +

1
2

)u2
)
≤ 0. (15)

Since χ2t|∇u|2 = 0 on (Ω × {0}) ∪ (∂Ω × [0,T]) and u = u0 on ∂Ω × [0,T] so by maximum principle we find
that

χ2t|∇u|2 ≤ χ2t|∇u|2 + (C2T +
1
2

)u2
≤ (C2T +

1
2

)max
Ω

u0. (16)

Set B = C2T + 1
2 we get (5). This completes the proof.



S. Bhattacharyya et al. / Filomat 38:17 (2024), 6125–6134 6129

2.2. Bernstein type estimate on evolving manifold

In this subsection we derive Bernstein type estimate on weighted Riemannian manifold (Mn, 1(t), e− f dµ),
where 1(t) is an one parameter family of Riemannian metrics evolving along an abstract geometric flow

∂
∂t
1i j(t) = 2hi j(t), (17)

where hi j = H(ei, e j)(t) for some orthonormal frame {ei : i = 1, 2, · · · ,n} on M and hi j(t) ≥ 0,∀t ∈ (0,T) where
T is the maximum time of existence of the flow (17). We assume that such T exist for (17). Observe that we
have taken the flow in backward sense, one can consider ∂∂t1i j = −2hi j and derive similar results.

Lemma 2.2. If u is a smooth solution of (3) along the flow (17) then the quantity χ2
|∇u|2 satisfies

(∂t − χ
2∆ f )(χ2

|∇u|2) = −2χ2h(∇u,∇u) − 2χ4
|Hess u|2 − 2χ4Ric f (∇u,∇u) + 4χ3

⟨∇u,∇χ⟩∆ f u

−2χ2
|∇u|2(χ∆ fχ + |∇χ|

2) − 8χ3
⟨∇u∇χ,Hess u⟩. (18)

Proof. Using weighted Bochner formula (Lemma 1.3) we find that

∂t|∇u|2 = ∂t(1i j
∇iu∇ ju)

= −2h(∇u,∇u) + ⟨∇u,∇ut⟩

= −2h(∇u,∇u) + ⟨∇u,∇(χ2∆ f u)⟩

= −2h(∇u,∇u) − 2χ2
|Hess u|2 − 2χ2Ric f (∇u,∇u) + 4χ⟨∇u,∇χ⟩∆ f u + χ2∆ f |∇u|2.

Consequently we get

∂t(χ2
|∇u|2) = −2χ2h(∇u,∇u) − 2χ4

|Hess u|2 − 2χ4Ric f (∇u,∇u) + 4χ3
⟨∇u,∇χ⟩∆ f u + χ4∆ f |∇u|2. (19)

From (8) we already have

∆ f (χ2
|∇u|2) = χ2∆ f |∇u|2 + 2|∇u|2(χ∆ fχ + |∇χ|

2) + 8χ⟨∇χ ∇u,Hess u⟩. (20)

Combining (19) and (20) gives (18).

For the next theorem we state that by means of ‘independent of Ricci curvature restriction’ means there is
no assumption on bounds for Ric f , Ricm−n

f or Ric.

Theorem 2.3 (Bernstein type estimate along local Ricci flow). If u is a solution to the local heat equation (3)
along the local Ricci flow

∂
∂t
1i j = −2χ2Ri j, (21)

with |∇ f | ≤ K1 and Hess f ≥ −K21, for some K1,K2 ≥ 0, then we can find a constant, independent of Ricci curvature
restriction, B̃ < ∞ such that

|∇u|2 ≤
B̃
χ2t
, (22)

where B̃ < ∞ is a constant depends only on m, T, n, max
Ω

u0, max
Ω
χ2, max

Ω
(−χ∆ fχ) and max

Ω
|∇χ|2.

Proof. For local Ricci flow set hi j = −χ2Ri j and apply Lemma 2.2, we get

(∂t − χ
2∆ f )(χ2

|∇u|2) = −2χ4Hess f (∇u,∇u) − 2χ4
|Hess u|2 + 4χ3

⟨∇u,∇χ⟩∆ f u

−2χ2
|∇u|2(χ∆ fχ + |∇χ|

2) − 8χ3
⟨∇u∇χ,Hess u⟩. (23)
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By Cauchy-Schwarz and Young’s inequality we find that

4χ3
⟨∇u,∇χ⟩∆ f u ≤ 4mχ2

|∇u|2|∇χ|2 +
χ4

m
(∆ f u)2

≤ 4mχ2
|∇u|2|∇χ|2 + χ4

|Hess u|2 +
χ4

m − n
⟨∇ f ,∇u⟩2, (24)

where we have used |Hess u|2 ≥ 1
m (∆ f u)2

−
1

m−n ⟨∇ f ,∇u⟩2. Finally using (12) in (24), we infer

(∂t − χ
2∆ f u)(χ2

|∇u|2) ≤ −2χ4Hess f (∇u,∇u) + 4mχ2
|∇u|2|∇χ|2

+
χ4

m − n
⟨∇ f ,∇u⟩2 − 2χ2

|∇u|2(χ∆ fχ + |∇χ|
2) + 16|∇u|2|∇χ|2χ2. (25)

Assuming |∇ f | ≤ K1 and Hess f ≥ −K21, the above inequality reduces to

(∂t − χ
2∆ f u)(χ2

|∇u|2) ≤ 2χ2
|∇u|2

(
−χ∆ fχ − |∇χ|

2 + 2m|∇χ|2 + χ2K2 +
χ2

2(m − n)
K1 + 8|∇χ|2

)
. (26)

Further suppose that the functions −χ∆ fχ, |∇χ|2, χ2 are all bounded above by a constant C1 < ∞ then the
above equation further reduces to

(∂t − χ
2∆ f )(χ2

|∇u|2) ≤ 2χ2
|∇u|2B1, (27)

where B1 := (2m − 6 + K2 +
K1

2(m−n) )C1 is a constant depending only on C1,m,n,K1,K2. Thus we obtain

(∂t − χ
2∆ f )(χ2t|∇u|2) ≤ 2χ2

|∇u|2(B1t +
1
2

). (28)

Using the idea of (6) we deduce

(∂t − χ
2∆ f )(χ2t|∇u|2 + (B1t +

1
2

)u2) ≤ 0. (29)

Since χ2t|∇u|2 = 0 on (Ω × {0}) ∩ (∂Ω × [0,T]) and u = u0 on ∂Ω × [0,T] so by maximum principle we infer

χ2t|∇u|2 ≤ (B1T +
1
2

)max
Ω

u0. (30)

Set B̃ = (B1 +
1
2 ) maxΩ u0. This completes the proof.

Theorem 2.4 (Bernstein type estimate along extended local Ricci flow). For any α > 0, a real number, if u is
a solution to the local heat equation (3) along the extended local Ricci flow

∂
∂t
1 = −2χ2Ric + 2α∇ϕ ⊗ ∇ϕ, (31)

with Hess f ≥ −K11, |∇ f |2 ≤ K2 and |∇ϕ|2 ≤ K3, for some K1,K2,K3 ≥ 0, then we can find a constant depends on
α, K1, K2, K3, m, T, n, max

Ω
u0, max

Ω
χ2, max

Ω
(−χ∆ fχ), max

Ω
χ2
|∇χ|2 and max

Ω
|∇χ|2, and independent of Ricci

curvature restriction, B′ < ∞ such that

|∇u|2 ≤
B′

χ2t
. (32)
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Proof. For h = −Ric + α∇ϕ ⊗ ∇ϕ, we have from Lemma 2.2

(∂t − χ
2∆ f )(χ2

|∇u|2) = 2χ4Ric(∇u,∇u) − 2χ4α⟨∇ϕ,∇u⟩2 − 2χ4
|Hess u|2 − 2χ4Ric f (∇u,∇u)

+4χ3
⟨∇u,∇χ⟩∆ f u − 2χ2

|∇u|2(χ2∆ fχ + |∇χ|
2) − 8χ3

⟨∇u∇χ,Hess u⟩. (33)

In view of Ric f (∇u,∇u) = Ric(∇u,∇u) +Hess f (∇u,∇u) the above relation further reduces to

(∂t − χ
2∆ f )(χ2

|∇u|2) = −2χ4α⟨∇ϕ,∇u⟩2 − 2χ4
|Hess u|2 + 4χ3

⟨∇u,∇χ⟩∆ f u − 2χ4Hess f (∇u,∇u)

−2χ2
|∇u|2(χ2∆ fχ + |∇χ|

2) − 8χ3
⟨∇u∇χ,Hess u⟩. (34)

By Cauchy-Schwarz and Young’s inequality we find that

−8χ3
⟨∇u∇χ,Hess u⟩ ≤ χ2

|Hess u|2 + 16χ2
|∇u|2|∇χ|2, (35)

4χ3
⟨∇u,∇χ⟩∆ f u ≤ 4mχ2

|∇u|2|∇χ|2 + χ4
|Hess u|2 +

χ4

m − n
⟨∇ f ,∇u⟩2. (36)

Using the above two equation and applying the bounds for Hess f , |∇ϕ|2 and |∇ f |2 in (33), we infer

(∂t − χ
2∆ f )(χ2

|∇u|2) ≤ 2χ2
|∇u|2

(
−χ∆ fχ − |∇χ|

2 + αχ2K3 + χ
2K1 + 2m|∇χ|2 +

χ2K2

2(m − n)
+ 8χ2

|∇χ|2
)
.

(37)

Finally assuming that the functions −χ∆ fχ, |∇χ|2, χ2 and χ2
|∇χ|2 are all bounded above by a constant C < ∞

then the above equation further reduces to

(∂t − χ
2∆ f )(χ2

|∇u|2) ≤ 2χ2
|∇u|2B3,

where B3 = C(10 + αK3 + K1 + 2m + K3
2(m−n) ), is a constant independent of curvature restriction. Thus we

obtain

(∂t − χ
2∆ f )(χ2t|∇u|2) ≤ 2χ2

|∇u|2(B3t +
1
2

).

Using the idea of (6) we see that

(∂t − χ
2∆ f )(χ2t|∇u|2 + (B3t +

1
2

)u2) ≤ 0.

Since χ2t|∇u|2 = 0 on (Ω × {0}) ∩ (∂Ω × [0,T]) and u = u0 on ∂Ω × [0,T] so by maximum principle we infer

χ2t|∇u|2 ≤ (B3T +
1
2

)max
Ω

u0. (38)

Take B′ = (B3 +
1
2 ) maxΩ u0, we see B′ satisfies the criteria. This completes the proof.

2.3. Bernstein type estimate for local weighted heat equation with exponential potential on static manifold
In this subsection we consider a local weighted heat equation with exponential potential on static

weighted Riemannian manifold, given by

(∂t − χ
2∆ f )u = aeu, a > 0 real number, (39)

and we wish to find the Bernstein type gradient estimate for a bounded solution u of (39).

Theorem 2.5 (Bernstein type estimate with exponential potential). If u is a bounded solution, with u ≤ ln b1
for some b1 > 1, to the heat equation (39) on (Mn, 1, e− f dµ) with Ricm−n

f ≥ −K(m − 1)1 then

|∇u|2 ≤
C3(b1)
χ2t

, on Ω × (0,T], (40)

where C3(b1) < ∞ is a constant depends only on K, m, T, max
Ω

u0, max
Ω
χ2, max

Ω
(−χ∆ fχ), max

Ω
|∇χ|2 and b1.
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Proof. Similar to the proof of Theorem 2.1 we have from weighted Bochner formula (Lemma 1.3)

∂t|∇u|2 = χ2∆ f |∇u|2 − 2χ2
|Hess u|2 − 2χ2Ric f (∇u,∇u) + 4χ⟨∇u,∇χ⟩∆ f u + 2aeu

|∇u|2. (41)

Consequently

∂t(χ2
|∇u|2) = χ4

(
∆ f |∇u|2 − 2|Hess u|2 − 2Ric f (∇u,∇u)

)
+ 4χ3

⟨∇u,∇χ⟩∆ f u + 2χ2aeu
|∇u|2. (42)

Again in similar way we get

∆ f (χ2
|∇u|2) = χ2∆ f |∇u|2 + 2|∇u|2(χ∆ fχ + |∇χ|

2) + 8χ⟨∇χ ∇u,Hess u⟩. (43)

Subtracting (43) from (42) and simplifying we get

(∂t − χ
2∆ f )(χ2

|∇u|2) = −2χ4
|Hess u|2 − 2χ4Ric f (∇u,∇u) + 4χ3

⟨∇u,∇χ⟩ − 2χ2
|∇u|2(χ∆ fχ + |∇χ|

2)

−8χ2
⟨∇χ∇u,Hess u⟩ + 2aχ2eu

|∇u|2. (44)

From (11) and (12) we already have the following relations

4χ3
⟨∇u,∇χ⟩∆ f u ≤ 16mχ2

|∇u|2|∇χ|2 + χ4
|Hess u|2 +

2χ4

m − n
⟨∇ f ,∇u⟩2, (45)

and

−8χ2
⟨∇χ∇u,Hess u⟩ ≤ 16χ2

|∇χ|2|∇u|2 + χ4
|Hess u|2. (46)

Using the above relations together with u ≤ ln b1 in (44), we find that

(∂t − χ
2∆ f )(χ2

|∇u|2) ≤ 2χ2
|∇u|2(−χ∆ fχ + (7 + 8m)|∇χ|2 + 2ab1) − 2χ4Ricm−n

f (∇u,∇u). (47)

Applying Ricm−n
f ≥ −K(m − 1)1 in the above equation and assuming that the functions −χ∆ fχ, |∇χ|2 and χ2

are all bounded above by a constant C1 < ∞, we deduce

(∂t − χ
2∆ f )(χ2t|∇u|2) = t(∂t − χ

2∆ f )(χ2
|∇u|2) + χ2

|∇u|2

≤ 2χ2
|∇u|2(C3(b1)t +

1
2

), (48)

where C3(b1) := (1+ (7+8m)+K(m−1))C1+2ab1. With the same idea as in (6) we see that the above equation
reduces to

(∂t − χ
2∆ f )

(
χ2t|∇u|2 + (C3(b1)T +

1
2

)u2
)
≤ 0. (49)

Since χ2t|∇u|2 = 0 on (Ω × {0}) ∪ (∂Ω × [0,T]) and u = u0 on ∂Ω × [0,T] so by maximum principle we find
that

χ2t|∇u|2 ≤ χ2t|∇u|2 + (C3(b1)T +
1
2

)u2
≤ (C3(b1)T +

1
2

)max
Ω

u0. (50)

Redefining the constant C3(b1) := C3(b1)T + 1
2 we get (40). This completes the proof.

To encourage the reader we mention that Theorem 2.5 can also be deduced on evolving manifold but the
results will be similar to Theorem 2.3 and Theorem 2.4 for local Ricci flow and extended local Ricci flow.
Thus we skip those results and leave it to the reader to explore further.
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3. Concluding remark

In this section we summarize the paper briefly and provide some future aspects of this estimation.
The gradient estimation of partial differential equations over Riemannian manifolds is an active field of
research in modern times, and local heat equations offer interesting discoveries as well. In this article we
derived Bernstein type gradient estimation for local heat equation on different cases. For example, on
static weighted Riemannian manifold, evolving weighted Riemannian manifold along local Ricci flow and
extended local Ricci flow and local heat equation with non-linear exponential potential. We showed that
the gradient estimation derived in Theorem 2.3 and Theorem 2.4 are independent of Bakry-Émery Ricci
curvature restriction.

3.1. Future aspect

One can use this method or an improved one to find gradient estimation for system of parabolic
equations of the form(∂t − χ2∆ f )u = aev

(∂t − χ2∆ f )v = beu,
(51)

where a, b are positive real constants. Further, gradient estimation on local heat equations involving p-
Laplacian, weighted p-Laplacian will be a good contribution to this field.
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