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Abstract. By using the property of generalized pseudo-anti-commuting Ricci tensor, that is, Ricϕ+ϕRic =
fϕ, for real hypersurfaces in the complex hyperbolic quadric Qm∗, we give a non-existence theorem for
Hopf pseudo-Ricci-Bouguignon soliton real hypersurfaces in the complex hyperbolic quadric Qm∗. Next
as an application we obtain a classification of gradient pseudo-Ricci-Bouguignon solitons on Hopf real
hypersurfaces in Qm∗.

1. Introduction

The complex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm is the typical example of Hermitian symmetric

space of noncompact type with rank 2. Here SO0
2,m denotes the identity component of the indefinite special

orthogonal group with respect to the metric 1 (see Kobayashi and Nomizu [18], Smyth [38] and [39], Suh
[47]). Then for m ≥ 2 the triple (Qm∗, J, 1) is a Hermitian symmetric space of noncompact type and its
minimal sectional curvature is equal to −4 which derives the negative of the curvature tensor (see Klein [15]
and Reckziegel [35]).

Qm∗ has two remarkable geometric structures, first one is Kähler structure J. When we consider a Kähler
structure tensor J for any vector field X on M, then JX is given by

JX = ϕX + η(X)N,

where ϕX = (JX)T is the tangential component of the vector field JX, η(X) = 1(ξ,X), ξ = −JN, and N denotes
a unit normal vector field on M.

The other one is a real structure A, which act as complex conjugations A on the tangent spaces of Qm∗.
This geometric structure determines a maximal A-invariant subbundleQ of the tangent bundle TM of a real
hypersurface M in Qm∗. It is denoted by

A[z] = {Aλz̄|λ ∈ S1
⊂C}, [z] ∈ Qm∗,
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moreover, it is the set of all complex conjugations defined on Qm∗.
Moreover, the derivative of the complex conjugation A on Qm∗ is given by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M, where ∇̄ and q denote a connection and a certain 1-form defined on
T[z]Qm∗, [z] ∈ Qm∗ respectively.

Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗. Then we have

Sξ = αξ

for the shape operator S with the Reeb function α = 1(Sξ, ξ) on M in Qm∗.

For real hypersurfaces in the complex hyperbolic quadric Qm∗ Suh, [43], has classified the problem of
isomeric Reeb flow as follows:

Theorem A 1. Let M be a real hypersurface of the complex hyperbolic quadric Qm∗, m ≥ 3. The Reeb flow on M is
isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic CHk in the
complex hyperbolic quadric Q2k∗, k≥2, or a horosphere in Q2k∗ whose center at infinity is in the equivalent class of an
A-isotropic singular geodesic in Q2k∗.

When examining a hypersurface denoted as M within the complex hyperbolic quadric Qm∗, the unit
normal vector field N associated with M in Qm∗ can fall into two categories, namely, being A-isotropic or
A-principal (see [43], [45], [49] and [50]). In the first case, where N is A-isotropic, our Theorem A establishes
that M can be locally transformed into either a tubular structure over a completely geodesic complex
hyperbolic space denoted as CHk in Q2k∗ or a horosphere.

In the second case, when the unit normal vector field N is A-principal, we have given a complete
classification of contact hypersurfaces M in Qm∗ due to Klein and Suh [16] as follows:

Theorem B 1. Let M be a connected orientable real hypersurface in the complex hyperbolic quadric Qm∗ =
SO0

2,m/SO2SOm, m ≥ 3. Then M is a contact hypersurface if and only if M is congruent to an open part of one of the
following real hypersurfaces in Qm∗:

(i) a tube of radius r around the Hermitian symmetric space Qm−1∗ which is embedded in Qm∗ as a totally geodesic
complex hypersurface,

(ii) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,
(iii) a tube of radius r around the m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as a real

space form of Qm∗.

Inspired by these findings, we present various descriptions of real hypersurfaces within the complex
hyperbolic quadric Qm∗ concerning a set of geometric flows. Indeed, we know that a solution of the Ricci
flow equation ∂

∂t1(t) = −2Ric(1(t)) is given by

1
2

(LV1)(X,Y) + Ric(X,Y) = Ω1(X,Y),

where Ω is a constant and LV denotes the Lie derivative along the direction of the vector field V (see
Chaubey-Suh [9], Chaubey-Lee-Suh [10], Chaubey-De-Suh [11], Jeong-Suh [13], Morgan-Tian [25], Perel-
man [28], Wang [51],[52],[53],[54] and [55]). Then this solution (M,V,Ω, 1) is said to be a Ricci soliton with
potential vector field V and Ricci soliton constant Ω.

As a generalization of the notion of Ricci flow, the Ricci-Bourguignon flow (see Bourguignon [3] and [4],
Catino-Cremaschi-Djadli-Mantegazza-Mazzieri [5]) is given by

∂
∂t
1(t) = −2(Ric(1(t)) − θγ1(t)), 1(0) = 10.
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This family of geometric flows with θ = 0 reduces to the Ricci flow ∂
∂t1(t) = −2Ric(1(t)), 1(0) = 10. If the

constant θ = 1
2 , it is said to be Einstein flow. The critical point of the following Einstein flow

∂
∂t
1(t) = −2(Ric(1(t)) −

1
2
γ1(t)), 1(0) = 10,

implies that the Einstein gravitational tensor Ric(1(t))− 1
2γ1(t) vanishes. For a four-dimensional space-time

M4, this is equivalent to the vanishing Ricci tensor by virtue of dγ = 2div(Ric). In this case M4 becomes a
vacuum. That is, 1(t) = 1(0), the metric is constant along the time (see O’Neill [27]). For θ = 1

n , the tensor
Ric − γ

n1 is said to be traceless Ricci tensor, and for θ = 1
2(n−1) , it is said to be the Schouten tensor.

Now we introduce the Ricci-Bourguignon soliton (M, ξ,Ω, θ, γ, 1), which is a solution of the Ricci-
Bourguignon flow as follows:

1
2

(LV1)(X,Y) + Ric(X,Y) = (Ω+ θγ)1(X,Y), (1.1)

for any tangent vector fields X and Y on M, where Ω is a soliton constant, θ any constant and γ the scalar
curvature on M, andLV denotes the Lie derivative along the direction of the vector field V (see Bourguignon
[3], [4], Morgan-Tian [25], and Suh [47]). Then (M, 1) is said to be a Ricci-Bourguignon soliton with potential
vector field V and Ricci-Bourguignon soliton constant Ω.

If the Ricci operator Ric of a real hypersurface M in Qm∗ satisfies

Ric(X) = aX + bη(X)ξ (1.2)

for smooth functions a, b on M, then M is said to be pseudo-Einstein. Then we introduce a complete
classification of pseudo-Einstein Hopf real hypersurfaces in the complex hyperbolic quadric Qm∗ as follows:

Theorem C 1. There does not exist any Hopf pseudo-Einstein real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3.

Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗. Then we have

Sξ = αξ

for the shape operator A with the Reeb function α = 1(Sξ, ξ) on M in Qm∗. When we consider a tensor field
J for any vector field X on M , which is a Kähler structure on the tangent space TzM, z∈M, then JX is given
by

JX = ϕX + η(X)N,

where ϕX = (JX)T is the tangential component of the vector field JX, η(X) = 1(ξ,X), ξ = −JN, and N denotes
a unit normal vector field on M.

In this paper we introduce a new notion named generalized pseudo-anti-commuting property for the Ricci
tensor of a real hypersurface M in the complex hyperbolic quadric Qm∗ as follows:

Ricϕ + ϕRic = fϕ (1.3)

for a smooth function f on M in Qm∗ (see Suh [44], [45]).
It is a well-established that Einstein and pseudo-Einstein real hypersurfaces denoted as M residing

within the complex hyperbolic quadric Qm∗ adhere to a condition known as the generalized pseudo-anti-
commuting Ricci tensor condition. This condition is expressed as Ricϕ + ϕRic = fϕ, where f represents a
smooth function defined on M within Qm∗ (see Suh [44] and [45]).
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Moreover, Hopf hypersurfaces featuring an A-principal unit normal vector field, which includes cases
like a horosphere with an A-principal unit normal vector field within the complex hyperbolic quadric
Qm∗, are characterized by the equation Sϕ + ϕS = kϕ, where k is a non-zero constant. Importantly, these
hypersurfaces also satisfy the aforementioned formula for the generalized pseudo-anti-commuting Ricci
tensor as indicated in equation (1.3).

Under the assumption of Hopf it is classified in the complex hyperbolic quadric Qm∗ as follows:

Theorem D 1. Let M be a pseudo-anti-commuting Hopf real hypersurfaces in the complex hyperbolic quadric
Qm∗, m≥3. Then M is locally congruent to one of the following:

(i) a tube around a totally geodesic CHk
⊂ Q2k∗, where m = 2k,

(ii) a horosphere whose center at infinity is A-isotropic singular,
(iii) a tube around a totally geodesic Hermitian symmetric space Qm−1∗ embedded in Qm∗,
(iv) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,
(v) a tube around the m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as a real space form.

Then in this paper we consider a pseudo-Ricci-Bourguignon soliton (M,V, η,Ω, θ, γ, 1) as follows:

1
2

(LV1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ θγ)1(X,Y), (1.4)

for any tangent vector fields X and Y on M, where Ω is said to be a pseudo-Ricci-Bourguignon soliton
constant, the functions θ and ψ are any constants and γ the scalar curvature on M, and LV denotes the Lie
derivative along the direction of the vector field V (see Blaga-Tastan [2], Chaubey-Siddiqi-Prakasha [12],
and Suh-Woo [48]).

When the function ψ identically vanishes, the pseudo-Ricci-Bourguignon soliton
(M,V, η,Ω, θ, γ, 1) is said to be a Ricci-Bourguignon soliton (M,V,Ω, θ, γ, 1). We also say that the pseudo-
Ricci-Bourguignon soliton is shrinking, steady, and expanding according to the pseudo-Ricci-Bourguignon
soliton constant function Ω > 0, Ω = 0, and Ω < 0 respectively.

By virtue of Theorem C, we also know that there does not exist any Hopf Einstein real hypersurface
in the complex hyperbolic quadric Qm∗. This fact will be used in the proof of our Main Theorems. It can
be easily checked that a Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) satisfies the pseudo-anti-commuting
Ricci tensor. Then the unit normal vector field N becomes A-principal or A-isotropic (see Proposition 5.3 in
[45]). Moreover, the contact hypersurfaces in Qm∗ also satisfy the pseudo-anti commuting property and N
is A-principal. By virtue of such a situation we obtain the following

Main Theorem 1 1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3. Then there
does not exist a pseudo-Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) in the complex hyperbolic quadric Qm∗, m≥3.

If the pseudo-Ricci-Bourguignon constant ψ identically vanishes, then it becomes a Ricci-Bourguignon
soliton. So the pseudo-Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) is a general notion weaker than the
Ricci-Bourguignon soliton (M, ξ,Ω, θ, γ, 1). From such a view point, we give the following

Corollary 1.1. There does not exist a Hopf Ricci-Bourguignon soliton
(M, ξ,Ω, θ, γ, 1) in the complex hyperbolic quadric Qm∗, m≥3.

We denote D f by the gradient vector field of the function f on M defined by 1(D f ,X) = 1(grad f ,X) = X( f )
for any tangent vector field X on M. We consider the gradient Ricci-Bourguignon soliton (M,D f , ν, ρ, γ, 1) (see
Catino-Mazzieri [6], Cernea-Guan [8]) defined by

Hess( f ) + Ric = (Ω+ θγ)1,
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where Hess( f ) is defined by Hess( f ) = ∇D f and for any tangent vector fields X and Y on M

Hess( f )(X,Y) = XY( f ) − (∇XY) f .

Then a gradient pseudo-Ricci-Bourguignon soliton is given by

∇XD f + RicX + ψη(X)ξ = (Ω+ θγ)X

for any vector field X tangent to M in Qm∗. Then first by virtue of Theorem A we can give a non-existence
theorem for gradient pseudo-Ricci-Bourguignon solitons (M, ξ, η,Ω, θ, γ, 1) as follows:

Main Theorem 2 1. There does not exist a real hypersurface with isomeric Reeb flow in the complex hyperbolic
quadric Qm∗, m ≥ 3, being a gradient pseudo-Ricci-Bourguignon soliton.

Next by Theorem B for a contact real hypersurface in the complex hyperbolic quadric Qm∗, we can assert
the following

Main Theorem 3 1. There does not exist a contact real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3,
being a gradient pseudo-Ricci-Bourguignon soliton.

2. The complex hyperbolic quadric

In this section, let us introduce the complex hyperbolic quadric Qm∗. This section is due to Klein and
Suh [16]. In more detail, we also refer to Kim and Suh [14], Pérez [31], and Suh [45] and [46].

Now let us realize the complex hyperbolic quadric Qm∗ as the quotient symmetric manifold SO0
2,m/SO2SOm.

As Q1∗ is isomorphic to the real hyperbolic spaceRH2 = SO0
1,2/SO2, and Q2∗ is isomorphic to the Hermitian

product of complex hyperbolic spaces CH1
× CH1, we suppose m ≥ 3 in the sequel and throughout this

paper. Let G := SO0
2,m be the transvection group of Qm∗ and K := SO2SOm be the isotropy group of Qm∗ at

the “origin” p0 := eK ∈ Qm∗. Then

σ : G→ G, 1 7→ s1s−1 with s :=


−1
−1

1
1
. . .

1


is an involutive Lie group automorphism of G with Fix(σ)0 = K, and therefore Qm∗ = G/K is a Riemannian
symmetric space. The center of the isotropy group K is isomorphic to SO2, and therefore Qm∗ is in fact a
Hermitian symmetric space.

The Lie algebra g := so2,m of G is given by

g =
{
X ∈ gl(m + 2,R)

∣∣∣Xt
· s = −s · X

}
(see [17, p. 59]). In the sequel we will write members of g as block matrices with respect to the decomposition
Rm+2 = R2

⊕Rm in the form
X =
(

X11 X12
X21 X22

)
,

where X11, X12, X21, X22 are real matrices of the dimensions 2× 2, 2×m, m× 2 and m×m, respectively. Then

g =
{ (

X11 X12
X21 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

12 = X21, Xt
22 = −X22

}
.
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The linearisation σL = Ad(s) : g → g of the involutive Lie group automorphism σ induces the Cartan
decomposition g = k ⊕m, where the Lie subalgebra

k =Eig(σ∗, 1) = {X ∈ g|sXs−1 = X}

=
{ (

X11 0
0 X22

) ∣∣∣∣ Xt
11 = −X11, Xt

22 = −X22

}
�so2 ⊕ som

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

m = Eig(σ∗,−1) = {X ∈ g|sXs−1 = −X} =
{ (

0 X12
X21 0

) ∣∣∣∣ Xt
12 = X21

}
is canonically isomorphic to the tangent space Tp0 Qm∗. Under the identification Tp0 Qm∗ � m, the Riemannian
metric 1 of Qm∗ (where the constant factor of the metric is chosen so that the formulae become as simple as
possible) is given by

1(X,Y) =
1
2

tr(Yt
· X) = tr(Y12 · X21) for X,Y ∈ m.

1 is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Riemannian metric on Qm∗.
The complex structure J of the Hermitian symmetric space is given by

JX = Ad( j)X for X ∈ m, where j :=


0 1
−1 0

1
1
. . .

1

 ∈ K .

Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and thus defines an Ad(G)-
invariant Hermitian structure on Qm∗. By identifying the multiplication with the unit complex number i
with the application of the linear map J, the tangent spaces of Qm∗ thus become m-dimensional complex
linear spaces, and we will adopt this point of view in the sequel.

As in the complex quadric, the Riemannian curvature tensor R̄ of Qm∗ can be fully described in terms
of the “fundamental geometric structures” 1, J and A, where the set A[z], [z] ∈ Qm∗, is mentioned in the
introduction.

In fact, under the correspondence Tp0 Qm∗ � m, the curvature R̄(X,Y)Z corresponds to −[[X,Y],Z] for
X,Y,Z ∈ m, see [18, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression explicitly, one can
show that one has

R̄(X,Y)Z = −1(Y,Z)X + 1(X,Z)Y
− 1(JY,Z)JX + 1(JX,Z)JY + 21(JX,Y)JZ
− 1(AY,Z)AX + 1(AX,Z)AY
− 1(JAY,Z)JAX + 1(JAX,Z)JAY

(2.1)

for arbitrary A ∈ A[z], [z]∈Qm∗. Therefore the curvature of Qm∗ is the negative of that of the complex quadric
Qm, compare [35, Theorem 1]. This confirms that the symmetric space Qm∗ which we have constructed here
is indeed the non-compact dual of the complex quadric.

3. Some general equations

In this section we want to refer to [20], [30], [31], [32], [29], [45], [46] and [49]. Let M be a real hypersurface
in the complex hyperbolic quadric Qm∗ and denote by (ϕ, ξ, η, 1) the induced almost contact metric structure.
Note that ξ = −JN, where N is a (local) unit normal vector field of M. The tangent bundle TM of M splits
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orthogonally into TM = C⊕Rξ, where C = ker(η) is the maximal complex subbundle of TM. The structure
tensor field ϕ restricted to C coincides with the complex structure J restricted to C, and ϕξ = 0.

Now at each point [z] ∈ M let us consider a maximal A-invariant subspace Q[z] of T[z]M, [z]∈M, defined
by

Q[z] = {X ∈ C[z] | AX ∈ TzM for all A ∈ A[z]}.

Thus if the unit normal vector field N isA-isotropic it can be easily checked that the orthogonal complement
Q
⊥

[z] = C[z]⊖Q[z], [z]∈M, of the distribution Q in the complex subbundle C, becomes Q⊥[z] = Span[Aξ,AN].
Here the vector fields Aξ and AN belong to the tangent space TzM, z∈M due to Suh [43] and [45]. Then we
introduce the following lemma for real hypersurfaces in the complex hyperbolic quadric Qm∗.

Lemma 3.1. Let M be a real hypersurface in the complex hyperbolic quadric Qm∗. Then the following statements are
equivalent:

(i) The normal vector N[z] of M is A-principal,
(ii) Q[z] = C[z],

(iii) There exists a real structure A ∈ A[z] such that AN[z] ∈ Cν[z]M, where A[z] = {Aλz̄|λ∈S1
⊂C}, [z]∈Qm∗.

Then from the curvature tensor R̄(X,Y)Z in (2.1) in section 2 we get the equation of Codazzi as follows:

1((∇XS)Y − (∇YS)X,Z) = −η(X)1(ϕY,Z) + η(Y)1(ϕX,Z) + 2η(Z)1(ϕX,Y)
− 1(X,AN)1(AY,Z) + 1(Y,AN)1(AX,Z)
− 1(X,Aξ)1(JAY,Z) + 1(Y,Aξ)1(JAX,Z),

where S denotes the shape operator of M in Qm∗.
At each point z ∈M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1,Z2 ∈ V(A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [35]). Note that t is a

function on M. First of all, since ξ = −JN, we have

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

(3.1)

This implies 1(ξ,AN) = 0 and hence

0 = 21(SϕSX,Y) − α1((ϕS + Sϕ)X,Y) + 21(ϕX,Y)
− 1(X,AN)1(Y,Aξ) + 1(Y,AN)1(X,Aξ)
+ 1(X,Aξ)1(JY,Aξ) − 1(Y,Aξ)1(JX,Aξ)
+ 21(X,AN)1(ξ,Aξ)η(Y) − 21(Y,AN)1(ξ,Aξ)η(X).

(3.2)

On the other hand, we have JAξ = −AJξ = −AN, and inserting this formula into the previous equation
implies

Lemma 3.2. (Suh [45]) Let M be a Hopf hypersurface in Qm∗ with (local) unit normal vector field N. For each point
z ∈M we choose A ∈ Az such that Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonormal vectors Z1,Z2 ∈ V(A) and
0 ≤ t ≤ π

4 . Then

0 = 21(SϕSX,Y) − α1((ϕS + Sϕ)X,Y) + 21(ϕX,Y) − 21(X,AN)1(Y,Aξ)
+ 21(Y,AN)1(X,Aξ) − 21(ξ,Aξ){1(Y,AN)η(X) − 1(X,AN)η(Y)}

holds for all vector fields X and Y on M.



D. H. Hwang, C. Woo / Filomat 38:17 (2024), 6147–6167 6154

4. Some important key lemmas

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in Qm∗ in (2.1) induced
from the curvature tensor R̄ of Qm∗ can be described in terms of the complex structure J and the complex
conjugations A ∈ A as follows: for any tangent vector fields X, Y and Z on M in Qm∗

R(X,Y)Z = −1(Y,Z)X + 1(X,Z)Y − 1(JY,Z)(JX)T + 1(JX,Z)(JY)T

+ 21(JX,Y)(JZ)T
− 1(AY,Z)(AX)T + 1(AX,Z)(AY)T

− 1(JAY,Z)(JAX)T + 1(JAX,Z)(JAY)T

+ 1(SY,Z)SX − 1(SX,Z)SY,

(4.1)

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm∗.

Let {e1, e2, · · · , e2m−1, e2m := N} be a basis of the tangent vector space TzQm∗ of Qm∗ at z ∈ Qm∗. By the
definition of the Ricci operator of M in Qm∗, it is given by Ric(X) = Σ2m−1

i=1 R(X, ei)ei. So from contracting the
curvature tensor in (4.1) it follows that

Ric(X) = −(2m − 1)X + 3η(X)ξ + 1(AN,N)(AX)T
− 1(AX,N)(AN)T

+ 1(JAN,N)(JAX)T
− 1(JAX,N)(JAN)T

+ (Tr S)SX − S2X.

(4.2)

In the proof of our Main Theorems 1 and 2, we want to give more information on Hopf hypersurfaces in
the complex quadric with eitherA-principal orA-isotropic normal vector field. By using the formulas given
in section 3 we want to introduce three important lemmas for real hypersurfaces in the complex hyperbolic
quadric Qm∗. First let us introduce one of them due to Suh, Pérez and Woo [50] as follows:

Lemma 4.1. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3, such that the normal
vector field N is A-principal everywhere. Let A be the section of the S1-bundle A so that AN = N holds. Then we
have the following:

(i) The Reeb flow function α is constant.
(ii) If X∈C is a principal vector field on M with principal curvature λ, then α = ±2, λ = ±1 for α = 2λ or ϕX is a

principal curvature vector with principal curvature µ = αλ−2
2λ−α for α,2λ.

(iii) ∇̄XA = 0 for any X∈C, where ∇̄ denotes a connection on Qm∗.
(iv) ASX = SX for any X∈C.
(v) The shape operator commutes with the complex conjugation, that is, AS = SA.
(vi) q(ξ) = 2α.

We also introduce a well known lemma for a real hypersurface in Qm∗ due to Suh [43] and [45] as follows:

Lemma 4.2. Let M be a Hopf hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3. Then the tensor field

2SϕS − α(ϕS + Sϕ)

leaves Q and C ⊖ Q invariant and we have

2SϕS − α(ϕS + Sϕ) = −2ϕ on Q

and

2SϕS − α(ϕS + Sϕ) = −2δ2ϕ on C ⊖ Q,

where the function δ is given by

δ = 1(N,AN) = −1(ξ,Aξ) = −(sin2t − cos2t) = cos 2t.
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If the normal vector field N is A-isotropic, the tangent vector bundle TM is decomposed by

TM = Span{ξ} ⊕ Span{Aξ,AN} ⊕ Q,

where C ⊖ Q = Q⊥ = Span{Aξ,AN}. Then by Lemma 4.2, for any X∈Tλ⊂Qwe get the following

(2λ − α)SϕX = (αλ − 2)ϕX, (4.3)

where Tλ denotes the eigenspace corresponding to the principal curvature λ. If 2λ − α = 0, then (4.3) gives
αλ − 2 = 0. So it implies that α = ±2 and λ = ±1. Otherwise we have ϕX∈Tµ⊂Q, where µ = αλ−2

2λ−α . Then
finally, summing up the above facts, we can assert the following due to Suh, Lee and Woo [49]:

Lemma 4.3. Let M be a Hopf hypersurface with A-isotropic unit normal vector field N in the complex hyperbolic
quadric Qm∗. Then the tangent vector fields Aξ and AN = −ϕAξ of M are principal under the shape operator S such
that SAξ = 0 and SAN = SϕAξ = 0. Moreover, if X ∈ Q is a principal vector field of M with principal curvature λ,
then α = ±1 and λ = ±1 for 2λ = α, or its corresponding vector field ϕX is also principal such that SϕX = αλ−2

2λ−αϕX
for 2λ , α.

5. Pseudo-Ricci-Bourguignon soliton real hypersurfaces with A-principal normal vector field

Now in this section we want to check whether the pseudo-Ricci-Bourguignon soliton real hypersurface M
in the complex hyperbolic quadric Qm∗ satisfy that the unit normal vector field N is singular, that is, N is
either A-principal or A-isotropic.

If (M, ξ, η,Ω, θ, γ, 1) is a pseudo-Ricci-Bourguignon soliton,

1
2

(Lξ1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ θγ)1(X,Y), (5.1)

whereΩ is the Ricci soliton constant, θ any constant and γ the scalar curvature on M, then the first term in
(5.1) is given by

1
2

(Lξ1)(X,Y) =
1
2
1((ϕS − Sϕ)X,Y), (5.2)

because for any vector fields X and Y on M in Qm∗ we get

(Lξ1)(X,Y) =ξ(1(X,Y)) − 1(LξX,Y) − 1(X,LξY)
=1(∇ξX,Y) + 1(X,∇ξY) − 1([ξ,X],Y) − 1(X, [ξ,Y])
=1(∇Xξ,Y) + 1(X,∇Yξ)
=1((ϕS − Sϕ)X,Y).

Then the formula (5.1) can be given by

Ric(X) =
1
2

(Sϕ − ϕS)X − ψη(X)ξ + (Ω+ θγ)X. (5.3)

From this, by applying the structure tensor ϕ to both sides, we get the following two formulas

Ric(ϕX) =
1
2

(Sϕ2
− ϕSϕ)X − ψη(ϕX)ξ + (Ω+ θγ)ϕX,

and
ϕRic(X) =

1
2

(ϕSϕ − ϕ2S)X − ψη(X)ϕξ + (Ω+ θγ)ϕX.
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By using the almost contact structure (ϕ, ξ, η, 1) in the right side above, we know that the generalized
pseudo-anti-commuting property holds as follows:

Ric(ϕX) + ϕRic(X) = 2(Ω+ θγ)ϕX. (5.4)

Now in this section we want to introduce an important proposition which will be used in the proof of
our Main Theorem 1 as follows:

Proposition 5.1. (see [45]) Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗ such that
(M, ξ, η,Ω, θ, γ, 1) is a pseudo-Ricci-Bourguignon soliton. Then the unit normal vector field N becomes singular,
that is, N is either A-isotropic or A-principal.

The proof of this proposition is similar to the proof of Proposition 5.3 in [45]. So we want to omit
this proof. Then by virtue of Proposition 5.1, naturally we can consider two cases that N is A-isotropic or
A-principal for a Hopf pseudo-Ricci-Bourguignon soliton (M, ξ, ν, ρ, γ, 1) in Qm∗. So in section 5 we give
a complete classification of pseudo-Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) real hypersurfaces in Qm∗

when the unit normal vector field is A-principal and in section 6 we will complete the proof of our Main
Theorem 1 for the case where N is A-isotropic.

In order to do this, we will consider a remarkable proposition which will be useful in the proof of Main
Theorem 1. By virtue of Lemma 4.1, some geometric properties of Hopf hypersurfaces in Qm∗ are being
investigated when the unit normal vector field N is A-principal. Among them, as a new characterization
of contact hypersurfaces in the complex hyperbolic quadric Qm∗, we want to give one remarkable result as
follows:

Proposition 5.2. (see [49]) Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗, m ≥ 3. Then
M has an A-principal singular normal vector field N if and only if M is locally congruent to one of the following:

(i) a tube of radius r around the Hermitian symmetric space Q∗(m−1) which is imbedded in Qm∗ as a totally geodesic
complex hypersurface,

(ii) a horosphere in Qm∗ whose center at infinity is the equivalence class of an A-principal geodesic in Qm∗,

(iii) a tube of radius r around the m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as a real space
form of Qm∗.

Then by virtue of Proposition 5.2 a Hopf pseudo-Ricci-Bourguignon soliton real hypersurface M with
A-principal unit normal vector field N in Qm∗ can be regarded as a contact hypersurface in Theorem B. By
Lemma 4.1 in section 4, the expression of the shape operator S of M in Qm∗ is given either by

S =



2 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 1


,
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or

S =



α 0 · · · 0 0 · · · 0
0 2

α · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · ·
2
α 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0


,

where α, 2
α and 0 are the principal curvatures with multiplicities 1, m−1 and m−1, respectively. This means

that the shape operator satisfies Sϕ+ϕS = kϕ, where k = 2
α . Then by Theorem B due to Suh [43], M is locally

congruent to a tube of radius r around the Hermitian symmetric space Qm−1∗, a horosphere in Qm∗ whose
center at infinity is the equivalence class of an A-principal geodesic in Qm∗, or a tube of radius r around the
m-dimensional real hyperbolic space RHm which is embedded in Qm∗ as a real space form of Qm∗.

On the other hand, for a contact hypersurface in complex hyperbolic quadric Qm∗, the contact constant
function k is given by αk = 2. That is, k = 2

α .
Since the unit normal vector field N of M in Qm∗ is A-principal, that is, AN = N, and Aξ = −ξ, the Ricci

tensor becomes

Ric(X) = −(2m − 1)X + 2η(X)ξ + AX + hSX − S2X, (5.5)

where h = TrS denotes the trace of the shape operator and the mean curvature of M in Qm∗. From this it
follows that

(Ricϕ + ϕRic)X = −(4m − 2)ϕX + (Aϕ + ϕA)X

+ h(Sϕ + ϕS)X − (S2ϕ + ϕS2)X.
(5.6)

We know that M is contact if and only if Sϕ + ϕS = kϕ, k , 0 constant. So it implies SϕS + ϕS2 = kϕS
and S2ϕ + SϕS = kSϕ respectively, we get the following

S2ϕ + 2SϕS + ϕS2 = k(ϕS + Sϕ).

Moreover, by virtue of the results given in Lemmas 3.1, 3.2 and 4.2 due to Suh [43] and [45], the following
holds for a contact hypersurface in Qm∗ with A-principal normal vector field

2SϕSX = α(Sϕ + ϕS)X − 2ϕX
= (αk − 2)ϕX
= 0,

where in the above third equality we have used αk = 2.

On the other hand, let us show that (Aϕ + ϕA)X = 0. From the anti-commuting of AJ = −JA between
the Kähler structure J and the real structure A it follows that

0 = AJX + JAX
= A(ϕX + η(X)N) + ϕAX + η(AX)N
= AϕX + ϕAX + η(X)N + η(AX)N.

Then, as N is A-principal, we have (Aϕ + ϕA)X = 0, because AϕX and AX are tangent vector fields from
1(AϕX,N) = 1(ϕX,N) = 0 and 1(AX,N) = 1(X,AN) = 1(X,N) = 0 for any tangent vector field X on M. Then
from this property, together with S2ϕ + ϕS2 = k2ϕ, (5.5) becomes

(Ricϕ + ϕRic)X = {−(4m − 2) + hk − k2
}ϕX. (5.7)
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Since Ric(ξ, ξ) + 1
2 (Lξ1)(ξ, ξ) + ψ = Ω + θγ, the Ricci-Bourguignon soliton constant Ω + θγ, if the unit

normal A-principal, is given by

Ω+ θγ = Ric(ξ, ξ) + ψ = 1(Ric(ξ), ξ) + ψ = −2(m − 1) + hα − α2 + ψ

= −2(m − 1) + 2(m − 1) + ψ = ψ,
(5.8)

where we have used h = α + 2
α (m − 1), and (5.2) and (5.4), and Aξ = −ξ. By virtue of the pseudo-Ricci-

Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) in the complex hyperbolic quadric Qm∗, and using (5.4) and (5.8),
we have

(Ricϕ + ϕRic)X = 2ψϕX. (5.9)

On the other hand, by (5.6), for a contact real hypersurface in the complex hyperbolic quadric Qm∗, we
give the following

(Ricϕ + ϕRic)X = {−(4m − 2) + hk − k2
}ϕX

=
{
− (4m − 2) + {α +

2
α

(m − 1)}k − k2
}
ϕX

= {−4(m − 1) + (m − 2)k2
}ϕX,

(5.10)

where in the third equality we have used αk = 2.

Then by comparing two equations (5.8) and (5.9), it gives us

0≤k2 =
4(m − 1)

m − 2
+

2
m − 2

ψ. (5.11)

Then by Theorem B if N is the A-principal, a contact hypersurface M is locally congruent to a tube over
a totally geodesic and totally complex submanifold Qm−1∗ in Qm∗, a horosphere , or a tube over a totally
geodesic totally real submanifold RHm in complex hyperbolic quadric Qm∗. From (5.10) and tanh2(

√
2r)≤1

we can determine the soliton constant ψ. Moreover, in such tubes the Reeb function α, λ = 0, and the
non-vanishing principal curvature µ are respectively given as follows:

Lemma 5.3. Let M be a contact real hypersurface in the complex hyperbolic quadric Qm∗. Then its principal
curvatures are respectively given by

(i) α =
√

2 coth(
√

2r), and λ = 0, µ =
√

2 tanh(
√

2r), and −2(m − 1)≤ψ≤ −m,

(ii) α =
√

2, and λ = 0, µ =
√

2, and ψ = −m,

(iii) α =
√

2 tanh(
√

2r), and λ = 0, µ =
√

2 coth(
√

2r) and ψ≥m.

Proof. For the first (i): k = 2
α =
√

2tanh(
√

2r), from this, together with (5.11), it follows that

1≤tanh2(
√

2r) =
2(m − 1)

m − 2
+

1
m − 2

ψ≥0.

Then it follows that −2(m − 1)≤ψ≤ −m.
For the second (ii): k2 = 2. From this, together with (5.11), it follows that ψ = −m.
For the third (iii): k2 = 2coth2(

√
2r). From this and (5.11) it follows that ψ≥m.

Then from (5.1), (5.4) and (5.7) it follows that

−(2m − 1)X + 2η(X)ξ + AX + hSX − S2X −
1
2

(Sϕ − ϕS)X + ψη(X)ξ = ψX. (5.12)
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Consider X∈Tλ, λ = 0. Then by Lemma 4.1, SϕX = 2
αϕX.

Now we consider the following subcases.

Subcase 3.1. X∈V(A)∩Tλ, λ = 0.

Then SX = 0 and AX = X. So (5.12) becomes −(2m − 1)X + X − 1
2µϕX = ψX. From this, by taking the

inner product with ϕX, we get µ =
√

2coth
√

2r = 0. But this gives a contradiction.

Subcase 3.2. X∈JV(A)∩Tλ, λ = 0.

In this subcase, AX = −X, and SX = 0. Then (5.12) gives the following

−(2m − 1)X − X −
1
2
µϕX = ψX.

So it implies also a contradiction.

Subcase 3.3. X∈(V(A)⊕JV(A))∩Tλ, λ = 0.

Now we may put X = 1
√

2
(Y + Z), Y,Z∈Tλ, λ = 0, where Y∈V(A) and Z∈JV(A). Of course, SY = SZ = 0

and SϕY = µϕY, and SϕZ = µϕZ, µ =
√

2coth(
√

2r) in Lemma 5.3. Now we can use 1(Y, ϕZ) = 0, because
ϕZ∈Tµ. Then AX = 1

√
2
(Y − Z). Moreover, we get the following

1
2

(Sϕ − ϕS)X =
1

2
√

2
(Sϕ − ϕS)(Y + Z) =

1

2
√

2
(SϕY + SϕZ)

=
1
2

coth(
√

2r)(ϕY + ϕZ) =
1
√

2α
(ϕY + ϕZ).

Then by virtue of this formula, (5.12) gives that

−(2m − 1)(Y + Z) + (Y − Z) −
1
α

(ϕY + ϕZ) = ψX =
1
√

2
ψ(Y + Z).

From this, let us take the inner product with the vector field ϕY and use 1(ϕY,Z) = 0, because ϕY∈Tµ and
Z∈Tλ. Then we get

tanh(
√

2r) = 0 or coth(
√

2r) = 0.

But 0 < tanh(
√

2r)≤1 or coth(
√

2r)≥1 for r > 0. This gives a contradiction. So this Subcase 3.3 also can not
appear.

Accordingly, by virtue of these three subcases, we can assert that there does not exist any Hopf pseudo-
Ricci-Bouguignon soliton in the complex hyperbolic quadric Qm∗.

Consequently, summing up Propositions 5.1 and 5.2, and Lemma 5.3, together with above facts, we
obtain a complete proof of our Main Theorem 1 when the unit normal vector field N is A-principal.

6. Pseudo-Ricci-Bourguignon soliton real hypersurfaces with A-isotropic normal vector field

By Proposition 5.1, in this section we consider a Hopf pseudo-Ricci-Bourguignon soliton real hyper-
surface (M, ξ, η,Ω, θ, γ, 1) in the complex hyperbolic quadric Qm∗ with A-isotropic unit normal vector field.
Here, ξ,Ω, ψ, θ and γ denote respectively soliton vector field, soliton constant, any constant, and the scalar
curvature of M in Qm∗.

Since N is A-isotropic, we know that 1(Aξ, ξ) = 0, 1(AN,N) = 0 and 1(Aξ,N) = 0. In this case the Ricci
tensor becomes

Ric(X) = −(2m − 1)X + 3η(X)ξ − 1(AX,N)AN − 1(AX, ξ)Aξ

+ hSX − S2X.
(6.1)
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Then our assumption of Hopf pseudo-Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, 1) gives

1
2

(Lξ1)(X,Y) + Ric(X,Y) + ψη(X)η(Y) = (Ω+ θγ)1(X,Y), (6.2)

where Ω is the Ricci soliton constant, θ any constant and γ the scalar curvature on M. Then it follows that

Ric(X) + ψη(X)η(Y) =
1
2

(Sϕ − ϕS)X + (Ω+ θγ)X. (6.3)

Now let us consider the distributionQ⊥, which is an orthogonal complement of the maximalA-invariant
subspace Q in the complex subbundle C of TzM, z ∈M in Qm.

Then by Lemmas 4.2 and 4.3 in section 4, we know that α = ±2 and λ = ±1 for any vector field X∈Tλ⊂Q.
In this case the expression of the shape operator can be given by

S =



2 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 1 · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · 1 0 · · · 0
0 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · 1


.

From this it follows that the shape operator S commutes with the structure tensor ϕ, that is, Sϕ = ϕS. Or
otherwise, by Lemmas 4.2 and 4.3, for 2λ,α, the vector field ϕX belongs to the distribution Tµ⊂Q such that
SX = λX and SϕX = µϕX, where µ = αλ−2

2λ−α .
Then putting X ∈ Tλ in (6.3) and using (6.1) gives

1
2

(µ − λ)ϕX = −(2m − 1)X + (hλ − λ2)X + ψη(X)ξ − (Ω+ θγ)X. (6.4)

By taking the inner product (6.4) with ϕX, we get λ = µ = αλ−2
2λ−α from Lemma 4.1, which gives that

λ2
− αλ + 1 = 0.

Then we have two distinct roots λ1 and λ2 such that λ1 =
α+
√

α2−4
2 and λ2 =

α−
√

α2−4
2 . By using this formula,

we may put λ1 = coth(t) and λ2 = tanh(t) respcetively. Then the expression of the shape operator becomes
the following:

S =



2coth(2t) 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 coth(t) · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · coth(t) 0 · · · 0
0 0 0 0 · · · 0 tanh(t) · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · tanh(t)


.

From this expression, together with the horosphere, we can assert the following
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Lemma 6.1. Let M be a Hopf real hypersurface with A-isotropic normal vector field N in complex hyperbolic quadric
Qm∗, m ≥ 3. If it admits the pseudo-Ricci-Bourguignon soliton of type (M, ξ, η,Ω, θ, γ, 1), then the shape operator S
commutes with the structure tensor ϕ, that is, Sϕ = ϕS.

Then summing up two cases for α = 2λ and α,2λ, Lemma 6.1 means that M has isometric Reeb flow.
Then by Theorem A we get a complete classification of isometric Reeb flow.

Consequently, by virtue of (6.3), Lemma 6.1 implies that

Ric(X) = (Ω+ θγ)X − ψη(X)ξ.

This means that the Hopf pseudo-Ricci-Bourguignon soliton real hypersurface M in Qm∗ becomes pseudo-
Einstein. But by Theorem C in the introduction, there does not exist a Hopf pseudo-Einstein real hypersur-
face in Qm∗. Then, together with the result in section 5 for A-principal unit normal vector field, we give a
complete proof of our Main Theorem 1 in the introduction.

7. Gradient pseudo-Ricci-Bourguignon soliton real hypersurfaces with A-isotropic unit normal

Now in this section let us consider a real hypersurface M in the complex hyperbolic quadric Qm∗

with isometric Reeb flow, and let us assume that it is a gradient pseudo-Ricci-Bourguignon soliton
(M,D f , η,Ω, θ, γ, 1), where D f denotes the gradient of the smooth function f on M. Then from the A-
isotropy of the unit normal vector field N, it follows that 1(Aξ, ξ) = 0, 1(AN,N) = 0 and 1(Aξ,N) = 0. Then
the Ricci operator becomes

Ric(X) = −(2m − 1)X + 3η(X)ξ − 1(AX,N)AN − 1(AX, ξ)Aξ + hSX − S2X.

From this, let us put X = ξ. Then by virtue of M being Hopf and the properties of A-isotropy, we get the
following

Ric(ξ) = ℓξ,

where the constant ℓ is given by
ℓ = −2(m − 2) + hα − α2,

because we have assumed that M has isometric Reeb flow. Then by taking the covariant derivative we get
the following two formulas

(∇XRic)ξ = ℓϕSX − Ric(ϕSX),

and

(∇ξRic)X = −1(X,∇ξ(AN))AN − 1(X,AN)∇ξ(AN) − 1(X,∇ξ(Aξ))Aξ

− 1(X,Aξ)∇ξ(Aξ) + h(∇ξS)X − (∇ξS2)X.

From here, let us use the gradient pseudo-Ricci-Bourguignon soliton on M in the complex hyperbolic
quadric Qm∗. As it is mentioned in the introduction, the gradient pseudo-Ricci-Bourguignon soliton is
given by

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ θγ)X

for any vector field X tangent to M in Qm∗. From this, together with the above two formulas, it follows that

R(ξ,Y)D f = ∇ξ∇YD f − ∇Y∇ξD f − ∇[ξ,Y]D f
= (∇YRic)ξ − (∇ξRic)Y + ψϕSY
= (ℓ + ψ)ϕSY − Ric(ϕSY) + 1(Y,∇ξ(AN))AN + 1(Y,AN)∇ξ(AN)
+ 1(Y,∇ξ(Aξ))Aξ + 1(Y,Aξ)∇ξ(Aξ)

− h(∇ξS)Y + (∇ξS2)Y,

(7.1)
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where we have used that the scalar curvature γ is constant, because the Reeb flow of M is isometric in
Theorem A.

On the other hand, since N is A-isotropic, the vector fields Aξ and AN are tangent vector fields on M.
So by the equation of Gauss it follows that

∇X(Aξ) = ∇̄X(Aξ) − σ(X,Aξ)
= {(∇̄XA)ξ + A∇̄Xξ} − σ(X,Aξ)
= q(X)JAξ + AϕSX + 1(SX, ξ)AN − 1(SX,Aξ)N

and

∇X(AN) = ∇̄X(AN) − σ(X,AN)
= {(∇̄XA)N + A∇̄XN} − σ(X,AN)
= q(X)JAN − ASX − 1(SX,Aξ)N,

where q denotes a certain 1-form defined on M in Qm∗. From this, if we put X = ξ into the above two
formulas, we get the following

∇ξ(Aξ) = −{q(ξ) − α}AN, and ∇ξ(AN) = {q(ξ) − α}Aξ.

Then (7.1) can be written as follows:

R(ξ,Y)D f =(ℓ + ψ)ϕSY − Ric(ϕSY) − h(∇ξS)Y + (∇ξS2)Y
+ (q(ξ) − α){1(Y,Aξ)AN + 1(Y,AN)Aξ
− 1(Y,AN)Aξ − 1(Y,Aξ)AN}.

(7.2)

On the other hand, from the curvature tensor of M in Qm∗ it follows that

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y − 1(AY,D f )Aξ
+ 1(Aξ,D f )AY − 1(JAY,D f )JAξ + 1(JAξ,D f )JAY
+ 1(SY,D f )Sξ − 1(Sξ,D f )SY.

(7.3)

From this formula, we can take Y ∈ Q which is orthogonal to ξ, Aξ, and AN such that SY = coth(r)Y. Then
Y ∈ Tλ ⊂ V(A), λ = coth(r) and ϕY ∈ Tλ ⊂ V(A), because of the commuting property Sϕ = ϕS in Theorem
A. That is, SY = coth(r)Y, AY = Y, AϕY = ϕY, JAY = ϕAY = ϕY and JAξ = −AN. Using these properties
into (7.2) and (7.3), it follows that

(ℓ + ψ)ϕSY − λRic(ϕY) − h(∇ξS)Y + (∇ξS2)Y
= −1(Y,D f )ξ + 1(ξ,D f )Y − 1(Y,D f )Aξ
+ 1(Aξ,D f )Y + 1(ϕY,D f )AN − 1(AN,D f )ϕY
+ αλ1(Y,D f )ξ − α1(ξ,D f )SY,

(7.4)

where the Reeb function α is given by α = 2coth(2r) = coth(r) + tanh(r).
From this, by taking the inner product of (7.4) with the Reeb vector field ξ, it follows that

0 = (−1 + αλ)1(Y,D f ) = coth2r1(Y,D f )

for any Y ∈ Tλ, λ = coth r. This means that 1(Y,D f ) = 0 for any Y ∈ Tλ.

Next, let us take Y ∈ Q which is orthogonal to ξ, Aξ, and AN such that SY = tanh(r)Y. Then Y ∈ Tµ ⊂
JV(A), µ = tanh(r) and ϕY ∈ Tµ ⊂ JV(A), because of the commuting property Sϕ = ϕS in Theorem A. That
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is, SY = tanh(r)Y, AY = −Y, AϕY = −ϕY, JAY = ϕAY = −ϕY and JAξ = −AN. In this case from (7.2) and
(7.3) it follows that

(ℓ + ψ)ϕSY − µRic(ϕY) − h(∇ξS)Y + (∇ξS2)Y
= −1(Y,D f )ξ + 1(ξ,D f )Y + 1(Y,D f )Aξ
− 1(Aξ,D f )Y − 1(ϕY,D f )AN + 1(AN,D f )ϕY
+ αµ1(Y,D f )ξ − α1(ξ,D f )SY.

(7.5)

Then, by taking also the inner product (7.5) with the Reeb vector field ξ, we have

0 = (−1 + αµ)1(Y,D f ) = tanh2r1(Y,D f )

for any Y ∈ Tµ. It gives 1(Y,D f ) = 0 for Y ∈ Tµ. From this together with 1(Y,D f ) = 0 for any Y ∈ Tλ, the
gradient vector field D f can be written as

D f = 1(D f , ξ)ξ + 1(D f ,AN)AN + 1(D f ,Aξ)Aξ. (7.6)

Moreover, by taking the inner product of (7.4) with the vector fields Y ∈ Tλ and ϕY ∈ Tλ respectively , we
get the following

1(D f ,Aξ) = −(1 − αλ)1(ξ,D f ) = coth2(r)1(ξ,D f )

and
1(AN,D f ) = −(ℓ + ψ)coth(r) + coth(r){−(2m − 1) + hcoth(r) − coth2(r)} = f (r),

where we have denoted the right side by f (r) and ℓ = −2(m − 2) + hα − α2, and used 1(Ric(ϕY),Y) = 0,
1((∇ξS)Y,Y) = 0, and 1((∇ξS2)Y,Y) = 0 for any Y∈Tλ. Then (7.6) and these two formulas imply the following

D f = 1(ξ,D f ){ξ + coth2(r)Aξ} + f (r)AN. (7.7)

On the other hand, by taking the inner product of (7.5) with Y ∈ Tµ, µ = tanh r and ϕY ∈ Tλ respectively,
we have

1(D f ,Aξ) = (1 − αµ)1(ξ,D f ) = −tanh2(r)1(ξ,D f )

and
1(AN,D f ) = (ℓ + ψ)tanh(r) − tanh(r){−(2m − 1) + htanh(r) − tanh2(r)} = 1(r),

where the right side is denoted by 1(r), and used 1(Ric(ϕY),Y) = 0, 1((∇ξS)Y,Y) = 0, and 1((∇ξS2)Y,Y) = 0
for any Y∈Tµ. Then these two formulas and (7.6) give another expression of the gradient vector field D f as
follows:

D f = 1(ξ,D f ){ξ − tanh2(r)Aξ} + 1(r)AN. (7.8)

Then substracting the equations (7.8) from (7.7) implies

(coth2(r) + tanh2(r))Aξ + ( f (r) − 1(r))AN = 0.

By virtue of the independency of the vector fields Aξ and AN, we know that coth(r) = tanh(r) = 0. But this
gives a contradiction. From this, we give a complete proof of our Main Theorem 2 in the introduction

8. Gradient pseudo-Ricci-Bourguignon soliton real hypersurfaces with A-principal unit normal vector
field

In this section, we want to give a property for a gradient pseudo-Ricci-Bourguignon soliton on a contact
real hypersurface M in the complex hyperbolic quadric Qm∗. Then the gradient Ricci-Bourguignon soliton
(M,D f ,Ω, θ, γ, 1) satisfies the following for any tangent vector field X on M

∇XD f + Ric(X) + ψη(X)ξ = (Ω+ θγ)X. (8.1)
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Then by differentiating (8.1), the curvature tensor of grad f is given by the following

R(X,Y)D f =∇X∇YD f − ∇Y∇XD f − ∇[X,Y]D f
= − (∇XRic)Y − Ric(∇XY) − ψ(∇Xη)(Y)ξ − ψη(∇XY)ξ
− ψη(Y)∇Xξ + (Ω+ θγ)∇XY
+ (∇YRic)X + Ric(∇YX) + ψ(∇Yη)(X)ξ + ψη(∇YX)ξ
+ ψη(X)∇Yξ − (Ω+ θγ)∇XY
+ Ric([X,Y]) − (Ω+ θγ)[X,Y] + ψη([X,Y])ξ
=(∇YRic)X − (∇XRic)Y − ψ(∇Xη)(Y)ξ + ψ(∇Yη)(X)ξ
− ψη(Y)∇Xξ + ψη(X)∇Yξ

(8.2)

where we have used that the functions Ω, θ and the scalar curvature γ are constant on M in Qm∗.

Now let us assume that M is a contact real hypersurface in Qm∗. Then it is Hopf and A-principal. So the
Ricci operator is given by

Ric(X) = −(2m − 1)X + 2η(X)ξ + AX + hSX − S2X

for any tangent vector field X on M. From this, let us put X = ξ. Then M being Hopf and Aξ = −ξ imply

Ric(ξ) = dξ,

where d = −2(m − 1) + hα − α2 is constant, and the mean curvature h = TrS is constant for a contact
hypersurface M in Qm∗. Then by taking the covariant derivative of the Ricci operator, we have

(∇XRic)ξ = ∇X(Ric(ξ)) − Ric(∇Xξ) = dϕSX − Ric(ϕSX),

and

(∇ξRic)X = ∇ξ(RicX) − Ric(∇ξX)

= −(∇ξA)X + h(∇ξS)X − (∇ξS2)X

= h(∇ξS)X − (∇ξS2)X,

where we have used ∇ξA = 0, because (∇ξA)A + A(∇ξA) = 2(∇ξA)A = 0 from A2 = I and A ∈ End(TQm)
for an A-principal unit normal N. From (8.2), together with above formula, by putting X = ξ we have the
following for a contact hypersurface M in Qm∗

R(ξ,Y)D f =(∇YRic)ξ − (∇ξRic)Y
− ψ(∇ξη)(Y)ξ + ψ(∇Yη)(ξ)ξ − ψη(Y)∇ξξ + ψη(ξ)∇Yξ

=(d + ψ)ϕAY − Ric(ϕAY) − h(∇ξA)Y + (∇ξA2)Y.
(8.3)

where we have used that the scalar curvature γ of contact real hypersurfaces in Theorem B is constant.
Then the diagonalization of the shape operator S of the contact real hypersurface in complex hyperbolic
quadric Qm∗ is given by

S =



α 0 · · · 0 0 · · · 0
0 2

α · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · ·
2
α 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0


.
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Here by Lemma 5.3 the principal curvatures are given byα =
√

2 coth(
√

2r),λ = 2
α =
√

2 tanh(
√

2r) andµ = 0
for the case (i), α =

√
2, λ =

√
2 and µ = 0, for the case (ii) and α =

√
2 coth(

√
2r), λ = 2

α =
√

2 tanh(
√

2r) and
µ = 0 for the case (iii) in Theorem B in the Introduction with multiplicities 1, 2m− 1 and 2m− 1 respectively.
All of these principal curvatures satisfy αλ = 2.

On the other hand, the curvature tensor R(X,Y)Z of M induced from the curvature tensor R̄(X,Y)Z of
the complex hyperbolic quadric Qm∗ gives

R(ξ,Y)D f = −1(Y,D f )ξ + 1(ξ,D f )Y − 1(AY,D f )Aξ + 1(Aξ,D f )AY
− 1(JAY,D f )ϕAξ + 1(ϕAξ,D f )JAY
+ 1(SY,D f )Sξ − 1(Sξ,D f )SY
= α1(SY,D f )ξ − αη(D f )SY

(8.4)

for any Y ∈ Tλ ⊂ V(A), λ =
√

2 tanh(
√

2r), λ =
√

2, or λ =
√

2 coth(
√

2r) such that SY = λY, AY = Y and
Aξ = −ξ for a contact real hypersurface M in the complex hyperbolic quadric Qm∗. Consequently, (8.3) and
(8.4) give

(ℓ + ψ)ϕSY − Ric(ϕSY) − h(∇ξS)Y + (∇ξS2)Y = α1(SY,D f )ξ − αη(D f )SY.

From this, by taking the inner product with the Reeb vector field ξ, we have

α1(SY,D f ) − α2η(D f )η(Y) = 0. (8.5)

So for any Y ∈ Tλ ⊂ V(A) in (8.5) it follows that

0 = α1(SY,D f ) = αλ1(Y,D f ) = 21(Y,D f ). (8.6)

Accordingly, the gradient vector field D f is orthogonal to the eigenspace Tλ for principal curvatures,
λ =

√
2 tanh

√
2r, λ =

√
2, and λ =

√
2 coth

√
2r, respectively.

Next, we consider Y ∈ Tµ ⊂ JV(A), µ = 0. Then it follows that SY = µY = 0, Aξ = −ξ and AY = −Y.
Then these properties, (8.3) and (8.4) imply the following

(d + ψ)ϕSY − Ric(ϕSY) − h(∇ξS)Y + (∇ξS2)Y = 21(Y,D f )ξ − 21(ξ,D f )Y, (8.7)

where we have used αλ = 2. From this, by taking the inner product with the Reeb vector field ξ, we get

1(Y,D f ) = 0 for any Y ∈ Tµ. (8.8)

Moreover, if we take the inner product the above formula with Y ∈ Tµ, and use SY = 0, we have

−21(ξ,D f ) = (d + ψ)1(ϕSY,Y) − 1(Ric(ϕSY),Y) − h1((∇ξS)Y,Y) + 1((∇ξS2)Y,Y)

= −h1(∇ξ(SY) − S∇ξY,Y) + 1(∇ξ(S2Y) − S2
∇ξY,Y)

= 0.

(8.9)

Consequently, from (8.6), (8.8) and (8.9) it follows that the gradient vector field D f identically vanishes.
Then D f = 0 in (8.1) means that

Ric(X) = (Ω+ θγ)X − ψη(X)ξ.

That is, M is pseudo-Einstein. But Theorem C in the introduction gives that there does not exist a Hopf
pseudo-Einstein real hypersurface in the complex hyperbolic quadric Qm∗. From this, we give a complete
proof of our Main Theorem 3 in the introduction.

Remark 1. The metric 1 of a Riemannian manifold M of dimension m≥3 is said to be a gradient Einstein soliton
[6] if there exists a smooth function f on M such that

Ric −
1
2
γ1 + ∇2 f = ρ1,
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where γ denotes the scalar curvature of M and ρ a constant on M. Here ∇2 f denotes the Hessian operator of 1
and f the Einstein potential function of the gradient Einstein soliton. So this soliton is an example of gradient
pseudo-Ricci-Bourguignon soliton.
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