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Abstract. In this paper we prove the existence of mild solutions for a first-order impulsive semilinear
stochastic differential inclusion with an infinite-dimensional fractional Brownian motion and a standard
cylindrical Wiener process. We focus on convex-valued case. The results are obtained by using two different
fixed point theorems for multivalued mappings, more precisely, the technique is based on multivalued
version of a nonlinear alternative of Leray-Schauder’s fixed point theorem in generalized Banach spaces.

1. Introduction

The theory of stochastic differential and partial differential inclusions has become an active area of
investigation due to their applications in several fields in the applied sciences such as mechanics, electrical
engineering, medical biology, ecology amongst others.

Recently, stochastic differential and partial differential inclusions have been extensively studied. For
instance, in [22, 24] the authors investigated the existence of solutions of nonlinear stochastic differential
inclusions by means of a Banach fixed point theorem and a semigroup approach. Balasubramaniam [23]
obtained existence of solutions of functional stochastic differential inclusions by Kakutani’s fixed point
theorem,[24] initiated the study of existence of solutions of semilinear stochastic evolution inclusions in
a Hilbert space by using the nonlinear alternative of Leray-Schauder type [18], some existence results for
impulsive neutral stochastic evolution inclusions in Hilbert Space, where a class of second-order evolution
inclusions with a convex case are considered. In [12] the authors study the existence results for impul-
sive neutral stochastic evolution inclusions in Hilbert spaces where they considered a class of first-order
evolution inclusions with convex by using Leray-Schauder’s Alternative fixed point theorem.

That is why in recent years they have been the objectives of many investigations. We refer to the
monographs by Benchohra et al. [21], amongst others, to see several studies on the properties of their
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solutions. The reader can also find a detailed and extensive bibliography in the previously mentioned
books (see also Da Prato and Zabczyk [10], Gard [28], Gikhman and Skorokhod [14], Sobzyk [13]). As a
motivating example, let us refer to a stochastic model for drug distribution in a biological system which
was described by Tsokos and Padgett [6] as a closed system with a simplified heart, one organ or capillary
bed, and re-circulation of a blood with a constant rate of flow, where the heart is considered as a mixing
chamber of constant volume. For the basic theory concerning stochastic differential inclusions see the
monographs of Bharucha-Reid [3], Mao[31], Φksendal, [5], Tsokos and Padgett [6], Sobczyk [13] and Da
Prato and Zabczyk [10]. In many realistic cases, it is advantageous to treat the first order differential (see
Bao [15]). Motivated by [32, 33] we will generalize the existence of the solution to impulsive stochastic
partial functional differential equations.
Recently, inspired by the works of Boudaoui et al. [2], Blouhi et al.
Motivated by the previous works, in the present paper, it is interesting to show more general existence
result to that in [32, 33]. To the best of our acknowledge, there is no result concerning coupled System of
Impulsive Neutral Functional Differential Inclusions Driven by a Fractional Brownian Motion and Wiener
Process,
in this paper we are interested in proving the existence of solutions for a system of stochastic impulsive
differential inclusions of the following

dx(t) ∈ (Ax(t) + F1(t, xt, yt)dt +
∞∑

l=1

σ1
l (t)dBH

l (t)

+ 11(t)dW(t), t ∈ J := [0, b], t , tk,

dy(t) ∈ (Ay(t) + F2(t, xt, yt)dt +
∞∑

l=1

σ2
l (t)dBH

l (t)

+ 12(t)dW(t), t ∈ J := [0, b], t , tk,
∆x(t) = Ik(x(tk)), t = tk k = 1, 2, . . . ,m

∆y(t) = Ik(y(tk)),

x(t) = ϕ(t), t ∈ J0 = (−∞, 0],

y(t) = ϕ̄(t), t ∈ J0 = (−∞, 0],

(1)

where X is a real separable Hilbert space with inner product ⟨·, ·⟩ induced by norm ∥ · ∥, A : D(A) ⊂ X −→ X
is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators (S(t))t≥0

in X .Here, ,BH
l is an infinite sequence of independent fractional Brownian motions, l = 1, 2, . . ., with

Hurst parameter X, Ik, Ik ∈ C(X,X) (k = 1, 2, . . . ,m), σi
l : J × DF0 × DF0 → L0

Qi
(Y,X).Here, DF0 is a linear

space of family of F0-measurable functions from (−∞, 0] into X,which will be also defined in the next
section and L0

Qi
(Y,X) denotes the space of all Qi-Hilbert-Schmidt operators from Y into X for each i = 1, 2,

1i : J × DF0 × DF0 → L0(Y,X) Here, L0(Y,X) = L2(Q1/2Y,X) be a separable Hilbert space with respect to the
Hilbert- Schmidt norm ∥.∥L0 and Q-Wiener process on (Ω,F ,P) with a linear bounded covariance operator Q
such that trQ < ∞. Let {W(t), t ∈ R} be a standard cylindrical Wiener process with values in Y and defined on
(Ω,F ,P) be a complete probability space, which will be also defined in the next section. Moreover, the fixed
times tk satisfies 0 < t1 < t2 < . . . < tm < b, x(t−k ) and x(t+k ) denotes the left and right limits of x(t) at t = tk.As
for xt we mean the segment solution which is defined in the usual way, that is, if y(·, ·) : (−∞, b] ×Ω → X,
then for any t ≥ 0, yt(·, ·) : (−∞, 0] ×Ω→ X is given by:

xt(θ,ω) = x(t + θ,ω), for θ ∈ (−∞, 0], ω ∈ Ω, σ(t) = (σ1(t), σ2(t), . . .),
∥σ(t)∥2 =

∑
∞

l=1 ∥σl(t)∥2L0
Q
< ∞, (2)
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where σ(·) ∈ l2 and l2 is given as

l2 = {ϕ = (ϕl)l≥1 : [0,T]→ L0
Q(Y,X) : ∥ϕ(t)∥2 =

∞∑
l=1

∥ϕl(t)∥2L0
Q
< ∞}.

It is obvious that system (1) can be seen as a fixed point problem:

dz(t) = (A∗z(t) + F(t, zt))dt

+

∞∑
l=1

σl(t)dBH
l (t) + 1(t)dW(t), t ∈ [0, b], t , tk,

∆z(t) = I∗k(z(tk)), t = tk k = 1, 2, . . . ,m
z(t) = z0, t ∈ J0 = (−∞, 0],

(3)

where

zt =

[
xt
yt

]
,A∗ =

[
A 0
0 A

]
, F(t, zt) =

[
F1(t, xt, yt)
F2(t, xt, yt)

]
, σl(t) =

[
σ1

l (t)
σ2

l (t)

]
and

z0 =

[
ϕ(t)
ϕ̄(t)

]
, 1(t) =

[
11(t)
12(t)

]
Some results on the existence of solutions for differential equations with infinite Brownian motion were
obtained in [7, 26]. Some existence and uniqueness of mild solutions to neutral stochastic delay functional
integro-differential equations perturbed by a fractional Brownian motion can be found in [2].
Very recently in the case without delay and BH

l is a fractional Brownian motion, the problem (1) was studied
by Blouhi et. al. [8] and Boudaoui et al. [2] proved the existence of mild solutions to stochastic impulsive
evolution equations with time delays, driven by fractional Brownian motion and Krasnoselski-Schaefer
type fixed point theorem. Recently Precup [25] proved the role of matrix convergence and vector metric in
the study of semilinear operator systems.
Before describing the properties fulfilled by the operators f i, hi, σi and Ik, Īk, we need to introduce some
notation and describe some spaces.

In this work, we will use an axiomatic definition of the phase space DF0 introduced by Hale and Kato
[16].

Definition 1.1. DF0 is a linear space of family ofF0-measurable functions from (−∞, 0] into X endowed with a norm
∥ · ∥DF0

, which satisfies the following axioms:

(i) If x : (−∞, b] −→ X, b > 0 is such that z0 = (x0, y0) ∈ DF0 × DF0 , then for every t ∈ [0, b) the following
conditions hold

(a) xt ∈ DF0 ,

(b) ∥x(t)∥ ≤ L∥xt∥DF0
,

(c) ∥xt∥D ≤ K(t) sup{∥x(s)∥ : 0 ≤ s ≤ t} +N(t)∥x0∥DF0
,

where L > 0 is a constant; K,N : [0,∞) −→ [0,∞), K is continuous, N is locally bounded and K, N are
independent of x(·).

(ii) For the function x(·) in (i), xt is aDF0 -valued function [0, b).

(iii) The spaceDF0 is complete.
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Denote

K̂ = sup{K(t) : t ∈ J} and N̂ = sup{N(t) : t ∈ J}.

Now, for a given b > 0, we define

DFb =
{
x : (−∞, b] ×Ω→ X, xk ∈ C(Jk,X) for k = 1, . . .m, x0 ∈ DF0 , and there exist
x(t−k ) and x(t+k ) with x(tk) = x(t−k ), k = 1, · · · ,m, and sup

t∈[0,b]
E(|x(t)|2) < ∞

}
,

endowed with the norm

∥x∥DFb
= ∥ϕ∥DF0

+ sup
0≤s≤b

(
√
E∥x(s)∥2),

where xk denotes the restriction of x to Jk = (tk−1, tk], k = 1, 2, · · · ,m, and J0 = (−∞, 0], i = 1, 2.

The paper is organized as follows. In Section 2 we recall some definitions and facts which will be
needed in our analysis. Section 3 we prove some existence results based on a nonlinear alternative of
Leray-Schauder type theorem in generalized Banach spaces in the convex case.

2. Preliminaries

In this section, we introduce some notations, recall some definitions, and preliminary facts which are
used throughout this paper. Actually we will borrow it from [29]. Although we could simply refer to
this paper whenever we need it, we prefer to include this summary in order to make our paper as much
self-contained as possible.

2.1. Some results on stochastic integrals with respect to fractional Brownian motions
Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying the usual conditions

(i.e. right continuous and F0 containing all P-null sets).
For a stochastic process x(·, ·) : [0,T] × Ω → X we will write x(t) (or simply x when no confusion is

possible) instead of x(t, ω).

Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process BH is said to be a two-sided one-
dimensional fractional Brownian motion ( f Bm) with Hurst parameter H, if its covariance function RH(t, s) =
E[BH(t))BH(s)] satisfies

RH(t, s) =
1
2

(|t|2H + |s|2H
− |t − s|2H) t, s ∈ [0,T].

It is known that BH(t) with H > 1
2 admits the following Volterra representation

BH(t) =
∫ t

0
KH(t, s)dB(s), (4)

where B is a standard Brownian motion given by

B(t) = BH((K∗H)−1ξ[0,t]),

and the Volterra kernel the kernel K(t, s) is given by

KH(t, s) = cHs1/2−H
∫ t

s
(u − s)H− 3

2

(u
s

)H− 1
2

du, t ≥ s,
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where cH =
√

H(2H−1)
β(2H−2,H− 1

2 )
and β(·, ·) denotes the Beta function, K(t, s) = 0 if t ≤ s, and it holds

∂KH

∂t
(t, s) = cH

( t
s

)H− 1
2

(t − s)H− 3
2 ,

and the kernel K∗H is defined as follows. Denote by E the set of step functions on [0,T]. LetH be the Hilbert
space defined as the closure of Ewith respect to the scalar product

⟨χ[0,t], χ[0,s]⟩H = RH(t, s),

and consider the linear operator K∗H from E to L2([0,T]) defined by,

(K∗Hϕ)(t) =
∫ T

s
ϕ(t)

∂KH

∂t
(t, s)dt.

Notice that,

(K∗Hχ[0,t])(s) = KH(t, s)χ[0,t](s).

The operator K∗H is an isometry between E and L2([0,T]) which can be extended to the Hilbert spaceH . In
fact, for any s, t ∈ [0,T] we have

⟨K∗Hχ[0,t],K∗Hχ[0,t]⟩L2([0,T]) = ⟨χ[0,t], χ[0,s]⟩H = RH(t, s).

In addition, for any ϕ ∈ H ,∫ T

0
ϕ(s)dBH(s) =

∫ T

0
(K∗Hϕ)(s)dB(s),

if and only if K∗Hϕ ∈ L2([0,T]).
Next we are interested in considering an f Bm with values in a Hilbert space and giving the definition of
the corresponding stochastic integral.

Definition 2.2. An Ft-adapted process ϕ on [0,T] × Ω → X is an elementary or simple process if for a partition
ψ = {t̄0 = 0 < t̄1 < . . . < t̄n = T} and (Ft̄i )-measurable X-valued random variables (ϕt̄i )1≤i≤n, ϕt satisfies

ϕt(ω) =
n∑

i=1

ϕi(ω)χ(t̄i−1,t̄i](t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process ϕ is defined as

IH(ϕ) =
∫ T

0
ϕl(s)dBH

l (s) =
n∑

i=1

ϕl(t̄i)(BH
l (t̄i) − BH

l (t̄i−1)), (5)

whenever ϕt̄i ∈ L2(Ω,Ft̄iP,X) for all i ≤ n.

Let (X, ⟨·, ·⟩, | · |X), (Y, ⟨·, ·⟩, | · |Y) be separable Hilbert spaces. Let L(Y,X) denote the space of all linear
bounded operators from Y into X. Let en,n = 1, 2, . . . be a complete orthonormal basis in Y and Q ∈ L(Y,X)
be an operator defined by Qen = λnen with finite trace trQ =

∑
∞

n=1 λn < ∞ where λn, n = 1, 2, . . ., are
non-negative real numbers. Let (βH

n )n∈N be a sequence of two-sided one-dimensional standard fractional
Brownian motions mutually independent on (Ω,F ,P). If we define the infinite dimensional f Bm on Y with
covariance Q as

BH(t) =
∞∑

n=1

√
λnβ

H
n (t)en, (6)
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then it is well defined as an Y-valued Q-cylindrical fractional Brownian motion (see [10]) and we have

E⟨βH
l (t), x⟩⟨βH

k (s), y⟩ = RHlk (t, s)⟨Q(x), y⟩, x, y ∈ Y and s, t ∈ [0,T],

such that

RHlk =
1
2
{| t |2H + | s |2H + | t − s |2H

}δlk t, s ∈ [0,T],

where

δl j =

{
1 j = l,
0, j , l.

In order to define Wiener integrals with respect to a Q − f Bm, we introduce the space L0
Q := L0

Q(Y,X) of
all Q−Hilbert-Schmidt operators φ : Y −→ X. We recall that φ ∈ L(Y,X) is called a Q−Hilbert-Schmidt
operator, if

∥φ∥2L0
Q
= ∥φQ1/2

∥
2
HS = tr(φQφ∗) < ∞.

Definition 2.3. Let ϕ(s), s ∈ [0,T], be a function with values in L0
Q(Y,X). The Wiener integral of ϕ with respect to

f Bm given by (6) is defined by∫ T

0
ϕ(s)dBH(s) =

∞∑
n=1

∫ t

0

√
λnϕ(s)endβH

n

=

∞∑
n=1

∫ T

0

√
λnK∗H (ϕen)(s)dβn. (7)

Notice that if

∞∑
n=1

∥ϕQ1/2en∥L1/H([0,T];X) < ∞, (8)

the next result ensures the convergence of the series in the previous definition.

Lemma 2.4. [29] For any ϕ : [0,T]→ L0
Q(Y,X) such that (8) holds, and for any α, β ∈ [0,T] with α > β,

E

∣∣∣∣∣∣
∫ β

α
ϕ(s)dBH(s)

∣∣∣∣∣∣
2

X

≤ cHH(2H − 1)(α − β)2H−1
∞∑

n=1

∫ β

α

∣∣∣ϕ(s)Q1/2en

∣∣∣2
X ds. (9)

If in addition

∞∑
n=1

|ϕQ1/2en|X is uniformly convergent for t ∈ [0,T],

then,

E

∣∣∣∣∣∣
∫ β

α
ϕ(s)dBH(s)

∣∣∣∣∣∣
2

X

≤ cHH(2H − 1)(α − β)2H−1
∫ β

α

∥∥∥ϕ(s)
∥∥∥2

L0
Q

ds. (10)
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2.2. Some results on fixed point theorems and set-valued analysis
For x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all i = 1, . . . ,n. Also

|x| = (|x1|, . . . , |xn|) and max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)). If c ∈ R, then x ≤ c means xi ≤ c for
each i = 1, . . . ,n.

Definition 2.5. A square matrix of real numbers M is said to be convergent to zero if its spectral radius ρ(M) is
strictly less than 1. In other words, this means that all the eigenvalues of M are in the open unit disc. (i.e. |λ| < 1,
for every λ ∈ C with det(M − λI) = 0, where I denote the unit matrix ofMn×n(R)).

Some examples of matrices convergent to zero can be seen in [29].

Pcl(X) = {Y ∈ P(X) : y closed },

Pb(X) = {Y ∈ P(X) : y bounded },

Pc(X) = {Y ∈ P(X) : y convex },

Pcp(X) = {Y ∈ P(X) : y compact }.

Consider Hd : P(X) × P(X) −→ Rn
+ ∪ {∞} defined by

Hd(A,B) :=

Hd1 (A,B)
. . .

Hdn (A,B)

 .
Let (X, d) be a generalized metric space with

d(x, y) :=

d1(x, y)
. . .

dn(x, y)

 .
Notice that d is a generalized metric space on X if and only if di, i = 1, . . . ,n are metrics on X, Hd(A,B) =

max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then, (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a
generalized metric space.

A multivalued map F : X −→ P(X) is convex (closed) valued if F(y) is convex (closed) for all y ∈ X,
F is bounded on bounded sets if F(B) =

⋃
y∈B F(y) is bounded in X for all B ∈ Pb(X). F is called upper

semi-continuous (u.s.c. for short) on X if for each y0 ∈ X the set F(y0) is a nonempty, subset of X, and for
each open setU of X containing F(y0), there exists an open neighborhoodV of y0 such that F(V) ∈ U. F is
said to be completely continuous if F(B) is relatively compact for every B ∈ Pb(X). F is quasicompact if, for
each subset A ⊂ X ,F(A) is relatively compact.

If the multivalued map F is completely continuous with nonempty compact valued, then F is u.s.c. if
and only if F has a closed graph, i.e., xn −→ x∗, yn −→ y∗, yn ∈ F(xn) imply y∗ ∈ F(x∗).

A multi-valued map F : J −→ Pcp,c(X) is said to be measurable if for each y ∈ X, the mean-square
distance between y and F(t) is measurable.

Definition 2.6. The set-valued map F : J × X × X→ P(X × X) is said to be L2-Carathéodory if

(i) t 7→ F(t, v) is measurable for each v ∈ X × X;

(ii) v 7→ F(t, v) is u.s.c. for almost all t ∈ J;

(iii) for each q > 0, there exists hq ∈ L1(J,R+) such that

∥F(t, v)∥2 := sup
f∈F(t,v)

∥ f ∥2 ≤ hq(t), for all ∥v∥2 ≤ q and for a.e. t ∈ J.
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Remark 2.7. (a) For each x ∈ C(J,X), the set SF,x is closed whenever F has closed values. It is convex if and only if
F(t, x(t)) is convex for a.e. t ∈ J.

Lemma 2.8. [4] Let I be a compact interval and X be a Hilbert space. Let F be an L2-Carathéodory multi-valued map
with SF,y , ∅ . and let Γ be a linear continuous mapping from L2(I,X) to C(I,X). Then, the operator

Γ ◦ SF : C(I,X) −→ Pcp,c(L2([0,T],X)), y 7−→ (Γ ◦ SF)(y) = Γ(SF, y),

is a closed graph operator in C(I,X) × C(I,X), where SF,y is known as the selectors set from F and given by
f ∈ SF,y = { f ∈ L2([0,T],X) : f (t) ∈ F(t, y) f or a.e.t ∈ [0,T]}.

We denote the graph of G to be the set 1r(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Lemma 2.9. [19] If G : X → Pcl(Y) is u.s.c., then 1r(G) is a closed subset of X × Y. Conversely, if G is locally
compact and has nonempty compact values and a closed graph, then it is u.s.c.

Lemma 2.10. [27] If G : X→ Pcp(Y) is quasicompact and has a closed graph, then G is u.s.c.

The following two results are easily deduced from the limit properties

Lemma 2.11. (See e.g. [17], Theorem 1.4.13) If G : X→ Pcp(X) is u.s.c., then for any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Lemma 2.12. (See e.g. [17], Lemma 1.1.9) If Let (Kn)n∈N ⊂ K ⊂ X be a sequence of subsets where K is compact in
the separable Banach space X. Then

co(lim sup
n→∞

Kn) = ∩N>0co(∪n≥NKn)

where coA refers to the closure of the convex hull of A.

The second one is due to Mazur, 1933:

Lemma 2.13. (Mazur’s Lemma, ([20] [Theorem 21.4])) Let X be a normed space and {xk}k∈N ⊂ X be a sequence

weakly converging to a limit x ∈ X. Then there exists a sequence of convex combinations ym =

m∑
k=1

αmkxk with αmk > 0

for k = 1, 2, . . . ,m and
m∑

k=1

αmk = 1, which converges strongly to x.

Recall that a set-valued operator G possesses a fixed point if there exists y ∈ X such that y ∈ G(y).

By above lemma we can easily prove the following so-called nonlinear alternatives of Leray and Schauder
will be needed in the proof of our result (see [18]).

Lemma 2.14. Let (X, ∥ · ∥) be a generalized Banach and G : X −→ Pcl,cv(X) be an upper semicontinuous and compact
map. Then either,

(a) G has at least one fixed point, or

(b) the setM = {x ∈ X and λ ∈ (0, 1),with x ∈ λG(u)} is unbounded.

Our next result describes a basic theorem of reflexive spaces with A : E→ E be a linear operator:

Theorem 2.15. [11] E is reflexive if and only if BE = {x ∈ E; ||x|| ≤ 1} is compact in the weak topology.

Now, let us state the following well-known lemma [10], which will be used in the sequel in the proofs
of the main results.

Lemma 2.16. For any r ≥ 1 and for arbitrary L2
0-valued predictable process 1(.),

sup
s∈[0,t]

∥∥∥∫ s

0
1(u)dW(u)

∥∥∥2r

X ≤ (r(2r − 1))r
( ∫ t

0

∥∥∥1(s)
∥∥∥2r

L2
0
ds

)r
. (11)
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3. Mild Solutions

In this section we prove the existence of mild solution of the problem (1). Our approach is based on
multivalued versions of Schaefer’s fixed point theorem .

3.1. The convex case
First, we define what we mean by a mild solution.

Definition 3.1. A stochastic process x, y : (−∞, b] ×Ω −→ X is called a mild solution of the system (1) if

• u(t) = (x(t), y(t)) is measurable and Ft-adapted, for each t ≥ 0;

• (x(t), y(t)) ∈ X × X has càdlàg paths on t ∈ [0, b] a.s., for every 0 ≤ s < t ≤ b, there exist f i
∈ SFi,x,y for each

i = 1, 2 such that the following integral equation holds

x(t) = S(t)ϕ(0) +
∫ t

0
S(t − s) f 1(s)ds +

∫ t

0
S(t − s)σ1

l (s)dBH
l (s)

+

∫ t

0
S(t − s)11(s)dW(s) +

∑
0<tk<t

S(t − tk)Ik(x(t−k ), y(t−k )),

y(t) = S(t)ϕ̄(0) +
∫ t

0
S(t − s) f (s)ds +

∫ t

0
S(t − s)σ1

l (s)dBH
l (s)

+

∫ t

0
S(t − s)12(s)dW(s) +

∑
0<tk<t

S(t − tk)Īk(x(t−k ), y(t−k )), t ∈ J.

• (x0(·), y0(·)) = (ϕ, ϕ̄) ∈ DF0 ×DF0 on J0 := (−∞, 0] satisfies ∥ϕ∥DF0
< ∞ and ∥ϕ̄∥DF0

< ∞.

We are now in a position to state and prove our existence result for the problem (1). First we will list the
following hypotheses which will be imposed in our main theorem.
Consider the following assumptions: In all this part, we assume that S(t) is compact for t > 0 and that there
exists M > 0 such that

∥S(t)∥ ≤M, for every t ∈ [0, b].

(H1) The function 1i : J −→ L0(Y,X) and σi : J −→ L0
Q(Y,X) satisfies∫ b

0
∥1i(s)∥2L0 ds = C1 < ∞, t ∈ J,

and ∫ b

0
∥σi(s)∥2ds = C2 < ∞, t ∈ J.

(H2) Fi : [0, b]×DF0× −→ Pcv,cp(X) is an integrably bounded multi-valued map,i.e.,there exists pi ∈ L2(J,X)
and ψi : R+ −→ (0,∞) is continuous and increasing such that

E|Fi(t, x, y)|2X = sup
f i∈Fi(t,x,y)

E| f i(t)|2X ≤ pi(t)ψi(∥x∥2DF0
+ ∥y∥2

DF0
), t ∈ J, x, y ∈ DF0 ,

(H3) There exist constants dk, dk ≥ 0 for each k = 1, . . . ,m such that

|Ik(x)|2X ≤ dk, |Ik(y)|2X ≤ dk for all x, y ∈ X.
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Lemma 3.2. Assume that Fi : J ×DF0 ×DF0 −→ Pcv,cp(X) is a Carathèodory map satisfying (H1)-(H3) hold. Then
the operator is completely continuous and u.s.c.

Proof. The proof will be given in several steps.
Step 1. Consider the problem (1) on (−∞, t1].



dx(t) ∈ (Ax(t) + F1(t, xt, yt)dt +
∑
∞

l=1 σ
1
l (t)dBH

l (t)
+ 11(t)dW(t), t ∈ J := [0, t1]

dy(t) ∈ (Ay(t) + F2(t, xt, yt)dt +
∑
∞

l=1 σ
2
l (t)dBH

l (t)
+ 12(t)dW(t), t ∈ J := [0, t1],

x(t) = ϕ(t) ∈ DF0 , J0 = (−∞, 0],

y(t) = ϕ̄(t) ∈ DF0 , J0 = (−∞, 0],

(12)

Let
C0 = {x ∈ C([0, t1],X) : sup

t∈[0,t1]
E(|x(t)|2) < ∞}.

Put
C∗0 = DF0 ∩ C0.

Consider the multivalued operator N0 : C∗0 × C∗0 → P(C∗0 × C∗0).We will prove that N0 the operator is
completely continuous and u.s.c. with (N0

1(x, y),N0
2(x, y)), (x, y) ∈ C∗0 × C∗0 defined by

N0(x, y) =
{
(h0, h

0
) ∈ C∗0 × C∗0

}
,

given by

N0
1(x, y) =


h0
∈ C∗0 : h0(t) =


ϕ(t), if t ∈ (−∞, 0],
S(t)ϕ(0) +

∫ t

0 S(t − s) f 1(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s), if t ∈ [0, t1]


and

N0
2(x, y) =


h̄0
∈ C∗0 : h̄0(t) =


ϕ̄(t), if t ∈ (−∞, 0],
S(t)ϕ̄(0) +

∫ t

0 S(t − s) f 2(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s), if t ∈ [0, t1]


where

f i
∈ SFi,u = { f i

∈ L2(J,X) : f i(t) ∈ Fi(t, x, y) for a.e t ∈ [0, t1]}.

From the assumption it is easy to see that N0 is well defined.Let θ, θ̄ : (−∞, t1] −→ X be the function
defined by

θ(t) =
{
ϕ(t), t ∈ (−∞, 0],
S(t)ϕ(0), t ∈ [0, t1].

and

θ̄(t) =
{
ϕ̄(t), t ∈ (−∞, 0],
S(t)ϕ̄(0), t ∈ [0, t1].
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It is clear that (θ, θ̄) is an element of C∗0×C∗0. Set (x(t), y(t)) = (z(t)+θ(t), z̄(t)+ θ̄(t)),−∞ < t ≤ t1.Obviously,
if x, y satisfies (12) if and only if (z, z̄) satisfies (z0, z̄0) = (0, 0) if t ∈ (−∞, 0] and

z(t) =
∫ t

0 S(t − s) f 1(s)ds +
∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s), if t ∈ [0, t1],

z̄(t) =
∫ t

0 S(t − s) f 2(s)ds +
∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s), if t ∈ [0, t1],

where f i(t) ∈ Fi(t, zt + θt, z̄t + θ̄t) for a.e. t ∈ [0, t1].
Put

Ĉ∗0 =
{
z, z̄ ∈ C∗0, such that z0 = 0 ∈ DF0 and z̄0 = 0 ∈ DF0

}
and for any z, z̄ ∈ Ĉ∗0 we have

∥x∥Ĉ∗0
= ∥z0∥DF0

+ sup
t∈[0,t1]

√
E∥z(t)∥2.

It is not difficult to check that (Ĉ∗0, ∥.∥Ĉ∗0
) is a Banach space. Consider the multivalued operator N0 : Ĉ∗0×Ĉ∗0 →

P(Ĉ∗0 × Ĉ∗0) defined by

N0(z, z̄) = (N0
1(z, z̄),N0

2(z, z̄)), (z, z̄) ∈ Ĉ∗0 × Ĉ∗0
where

N0(z, z̄) =
{
(h0, h

0
) ∈ Ĉ∗0 × Ĉ∗0

}
given by

N0
1(z, z̄) =


h0
∈ Ĉ∗0 : h0(t) =


0, if t ∈ (−∞, 0],∫ t

0 S(t − s) f 1(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s), if t ∈ [0, t1]


and

N0
2(z, z̄) =


h̄0
∈ Ĉ∗0 : h̄0(t) =


0, if t ∈ (−∞, 0],∫ t

0 S(t − s) f 2(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s), if t ∈ [0, t1]


Clearly, that the operator N0 is equivalent to N0 , and so we turn our attention to proving that N0 does in
fact have a fixed point. We shall show that N0 Then the operator is completely continuous and u.s.c. on
t ∈ (−∞, t1].We divide the proof into several claims.

Claim 1. N0 is convex for each z, z̄ ∈ Ĉ∗0.
In fact, if h0

1,h0
2 ∈ N0

1 and h̄0
1,h̄0

2 ∈ N0
2, then there exist f 1

1 , f 1
2 ∈ SF1,z+θ,z̄+θ̄ and f 2

1 , f 2
2 ∈ SF2,z+θ,z̄+θ̄ such that

h0
i (t) =

∫ t

0
S(t − s) f 1

i (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s) +

∫ t

0
S(t − s)11(s)dW(s).

and

h̄0
i (t) =

∫ t

0
S(t − s) f 2

i (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s) +

∫ t

0
S(t − s)12(s)dW(s).
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Let 0 ≤ α ≤ 1. Then, for each t ∈ [0, t1], we have

(αh0
1 + (1 − δ)h0

2)(t) =
∫ t

0
S(t − s)[α f 1

1 (s) + (1 − α) f 1
2 (s)]ds +

∫ t

0
S(t − s)1(s)dBH(s)

+

∫ t

0
S(t − s)11(s)dW(s) ∈ N0

1(z, z̄).

Similarly, we have

(αh̄0
1 + (1 − δ)h̄0

2)(t) =
∫ t

0
S(t − s)[α f 2

1 (s) + (1 − α) f 2
2 (s)]ds +

∫ t

0
S(t − s)1(s)dBH(s) ∈ N0

2(z, z̄)

+

∫ t

0
S(t − s)12(s)dW(s) ∈ N0

2(z, z̄).

Since SF,z+θ,z̄+θ̄ = (SF1,z+θ,z̄+θ̄,SF2,z+θ,z̄+θ̄) is convex ( because F(t, z, z̄) has convex values).

Claim 2. N0 maps bounded sets into bounded sets in Ĉ∗0 × Ĉ∗0.
Indeed, it is enough to show that for any q > 0 there exists a positive constant l = (l1, l2) such that for each
(z, z̄) ∈ Bq = {(z, z̄) ∈ Ĉ∗0 × Ĉ∗0 : ∥z∥2

Ĉ∗0
≤ q, ∥z̄∥2

Ĉ∗0
≤ q} one has

∥h0
∥

2
Ĉ∗0
≤ l1, ∥h̄

0
∥

2
Ĉ∗0
≤ l2.

If (h0, h̄0) ∈ (N0
1,N

0
2) there exists f i(t) ∈ Fi(t, z + θ, z̄ + θ̄) for each t ∈ (−∞, t1], we get

E|h0(t)|2 = E
∣∣∣∣ ∫ t

0
S(t − s) f 1(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s)

+

∫ t

0
S(t − s)11(s)dW(s)

∣∣∣∣2.
and

E|h̄0(t)|2 = E
∣∣∣∣ ∫ t

0
S(t − s) f 2(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s)

+

∫ t

0
S(t − s)12(s)dW(s)

∣∣∣∣2.
This, together with (H1)-(H3) , Lemma 2.16 and 2.4 yields that,

E|h0(t)|2

= E
∣∣∣∣ ∫ t

0 S(t − s) f 1(s)ds +
∑
∞

l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s) +
∫ t

0 S(t − s)11(s)dW(s)
∣∣∣∣2

≤ 3E
∣∣∣∣ ∫ t

0 S(t − s) f 1(s)ds
∣∣∣∣2 + 3E

∣∣∣∣ ∑∞l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s)
∣∣∣∣2

+3E
∣∣∣∣ ∫ t

0 S(t − s)11(s)dW(s)
∣∣∣∣2

≤ 3Mt1

∫ t

0 E| f 1(s)|2ds + 3McHH(2H − 1)t2H−1
1

∫ t1

0 ∥σ
1(s)∥2ds

+3MC2∗

∫ t1

0 ∥1
1(s)∥2

L2
0
ds

≤ 3Mt1ψ1(2Cstd)
∫ t

0 p1(s)ds + 3McHH(2H − 1)t2H−1
1 C2 + 3MC1

:= l1,
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where

∥zt + θt∥
2
DF0
+ ∥z̄t + θ̄t∥

2
DF0

≤ 2(∥zt∥
2
DF0
+ ∥θt∥

2
DF0

) + 2(∥z̄t∥
2
DF0
+ ∥θ̄t∥

2
DF0

)

≤ 4(Ñ2(∥ϕ∥2
DF0
+ ∥ϕ̄∥2

DF0
) + K̃2(2q +M(E|ϕ(0)|2 + E|ϕ̄(0)|2))

= Cstd.

Similarly, we have

E|h̄0(t)|2

≤ 3Mt1

∫ t

0 E| f 2(s)|2ds + 3McHH(2H − 1)t2H−1
1

∫ t1

0 ∥σ
2(s)∥2ds + 3MC2∗

∫ t1

0 ∥1
2(s)∥2ds

≤ 3Mt1ψ2(2Cstd)
∫ t

0 p2(s)ds + 3McHH(2H − 1)t2H−1
1 C2 + 3MC1

:= l2, (
E|h0(t)|2

E|h̄0(t)|2

)
≤

(
l1
l2

)
Claim 3. N0 maps bounded sets into equicontinuous sets of Ĉ∗0 × Ĉ∗0.
Let Bq be a bounded set in Ĉ∗0 × Ĉ∗0 as in Claim 2. Let τ1, τ2 ∈ J, τ1 < τ2 and (x, y) ∈ Bq,there exists
f i(t) ∈ Fi(t, z + θ, z̄ + θ̄), i = 1, 2, such that

E|h0(τ2) − h0(τ1)|2

≤ 6E|
∫ τ2

0
S(τ2 − s) − S(τ1 − s) f 1(s)ds|2 + 6E|

∫ τ2

τ1

|S(τ1 − s) f 1(s)ds|2

+6E|
∞∑

l=1

∫ τ2

0
S(τ2 − s) − S(τ1 − s)σ1

l (s)dBH
l (s)|2 + 6E|

∞∑
l=1

∫ τ2

τ1

|S(τ1 − s)σ1
l (s)dBH

l (s)ds|2

+ 6E|
∫ τ2

0
S(τ2 − s) − S(τ1 − s)11(s)dW(s)|2 + 6E|

∫ τ2

τ1

|S(τ1 − s)11(s)dW(s)|2

From (H1)-(H3) , Lemma 2.16 and 2.4, we obtain

E|h0(τ2) − h0(τ1)|2

≤ 6t1ψ1(2Cstd)
∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2p1(s)ds + 6t1ψ1(2Cstd)E|

∫ τ2

τ1

|S(τ1 − s)|2p1(s)ds

+6C2cHH(2H − 1)t2H−1
1

∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2

+6C2cHH(2H − 1)t2H−1
1

∫ τ2

τ1

|S(τ1 − s)|2ds + 6C1

∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2ds

+6C1E|
∫ τ2

τ1

|S(τ1 − s)|2ds

Similarly, we obtain that

E|h̄0(τ2) − h̄0(τ1)|2

≤ 6t1ψ2(2Cstd)
∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2p2(s)ds + 6t1ψ1(2Cstd)E|

∫ τ2

τ1

|S(τ1 − s)|2p1(s)ds

+6C2cHH(2H − 1)t2H−1
1

∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2
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+6C2cHH(2H − 1)t2H−1
1

∫ τ2

τ1

|S(τ1 − s)|2ds + 6C1

∫ τ2

0
|S(τ2 − s) − S(τ1 − s)|2ds

+6C1E|
∫ τ2

τ1

|S(τ1 − s)|2ds

The right-hand term tends to zero as |τ2 − τ1| → 0 since S(t) is strongly continuous operator and the
compactness of S(t) for t > 0 implies the continuity in the uniform operator topology [1]. This proves the
equicontinuity.

Claim 4. (N0(Bq)(t) is precompact in Ĉ∗0 × Ĉ∗0. As a consequence of Steps Claim 2 and Claim 3, together
with the Arzelá-Ascoli theorem, it suffices to show that N0 maps Bq into a precompact set in Ĉ∗0 × Ĉ∗0. Let
0 < t < t1 be fixed and let ϵ be a real number satisfying 0 < ϵ < t1. For (z, z̄) ∈ Bq we define

h0
ϵ(z, z̄)(t) = S(ϵ)

∫ t−ϵ

0
S(t − s − ϵ) f 1(s)ds +

∞∑
l=1

S(ϵ)
∫ t−ϵ

0
S(t − s − ϵ)σ1

l (s)dBH
l (s)

+S(ϵ)
∫ t−ϵ

0
S(t − s − ϵ)11(s)dW(s)

and

h̄0
ϵ(z, z̄)(t) = S(ϵ)

∫ t−ϵ

0
S(t − s − ϵ) f 2(s)ds +

∞∑
l=1

S(ϵ)
∫ t−ϵ

0
S(t − s − ϵ)σ2

l (s)dBH
l (s)

+S(ϵ)
∫ t−ϵ

0
S(t − s − ϵ)12(s)dW(s)

Since S(t) is a compact operator, the set

Hϵ = {̃h1ϵ(t) = (h0
ϵ, h̄

0
ϵ) : h̃1ϵ ∈ N0(z, z̄) (z, z̄) ∈ Bq}

Using (H1)-(H3),Lemma 2.16 and 2.4, we have

E
∣∣∣∣h0(t) − h0

ϵ(t)
∣∣∣∣2

≤ 3E
∣∣∣∣ ∫ t

t−ϵ
S(t − s) f 1(s)ds)

∣∣∣∣2 + 3E
∣∣∣∣ ∞∑

l=1

∫ t

t−ϵ
S(t − s)σ1

l (s))dBH
l (s)

∣∣∣∣2
+3E

∣∣∣∣ ∫ t

t−ϵ
S(t − s)11(s)ds)

∣∣∣∣2
≤ 3M2ψ1(2Cstd)

∫ t

t−ϵ
p1(s)ds + 3M2(cHH(2H − 1)ϵ2H−1

∫ t

t−ϵ
||σ1(s))||ds

+3M2
∫ t

t−ϵ
||11(s))||2L0 ds

Similarly,

E
∣∣∣∣h̄0(t) − h̄0

ϵ(t)
∣∣∣∣2 ≤ 3M2ψ2(2Cstd)

∫ t

t−ϵ
p2(s)ds

+ 3M2(cHH(2H − 1)ϵ2H−1
∫ t

t−ϵ
||σ2(s))||2ds

+ 3M2C1∗

∫ t

t−ϵ
||12(s))||2L0‘ds
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The right-hand side tends to 0, as ϵ → 0. Therefore, there are precompact sets arbitrarily close to the set
H = {̃h1(t) = (h0, h̄0) : h̃1 ∈ N0(z, z̄) (z, z̄) ∈ Bq}. This set is then precompact in X × X.
Claim 5.N0 = (N0

1,N
0
2) has a closed graph. Let un = (zn, zn) −→ u∗ = (z∗, z∗),(h0

n, h̄
0
n) ∈ N0(un) and (h0

n, h̄
0
n) −→

(h0
∗
, h̄0
∗
) as n −→ ∞, we shall prove that h0

∗
∈ N0

1(u∗) and h̄0
∗
∈ N0

2(u∗) . The fact that h̄0
n ∈ N0

1(un) and h̄0
n ∈ N0

2(un)
means that there exists f i

n ∈ SFi,un for each i = 1, 2 such that

h0
n(z, z̄)(t) =

∫ t

0
S(t − s) f 1

n (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s)

+

∫ t

0
S(t − s)11(s)dW(s)

and

h̄0
n(z, z̄)(t) =

∫ t

0
S(t − s) f 2

n (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s)

+

∫ t

0
S(t − s)12(s)dW(s)

We must prove that there exists f i
∗ ∈ SFi,z∗+θ,z̄∗+θ̄ such that

h0
∗
(t) =

∫ t

0
S(t − s) f 1

∗ (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s) +

∫ t

0
S(t − s)11(s)dW(s), t ∈ [0, t1].

and

h̄0
∗
(t) =

∫ t

0
S(t − s) f 2

∗ (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s) +

∫ t

0
S(t − s)12(s)dW(s), t ∈ [0, t1].

Now, consider the continuous linear operator Γ : L2([0, t1],X) −→ Ĉ∗0 defined for each i = 1, 2, by

Γ( f i)(t) =
∫ t

0
S(t − s) f i(s)ds.

From the definition of Γwe know that

h0
n(t) −

∞∑
l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s) −

∫ t

0
S(t − s)11(s)dW(s) ∈ Γ(SF1,zn+θ,z̄n+θ̄).

and

h̄0
n(t) −

∞∑
l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s) −

∫ t

0
S(t − s)12(s)dW(s) ∈ Γ(SF2,zn+θ,z̄n+θ̄).

Since (zn, z̄n) −→ (z∗, z̄∗) and (h0
n, h̄

0
n) −→ (h0

∗
, h̄0
∗
) , there is f i

∗ ∈ SFi,z∗+θ,z̄∗+θ̄ such that

h0
∗
(t) =

∫ t

0
S(t − s) f 1

∗ (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH
l (s) +

∫ t

0
S(t − s)11(s)dW(s), t ∈ [0, t1].

and

h0
∗
(t) =

∫ t

0
S(t − s) f 2

∗ (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ2

l (s)dBH
l (s) +

∫ t

0
S(t − s)12(s)dW(s), t ∈ [0, t1].
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Hence (h0
∗
, h̄0
∗
) ∈ (N0

1(u∗),N0
2(u∗)), proving our claim. Lemma 2.10 yields that N0 is upper semicontinuous on

t ∈ [0, t1],denote this solution by (x0, y0) ∈ C∗0 × C∗0
Step 2. Now consider the problem on (−∞, t2]

dx(t) = (Ax(t) + F1(t, xt, yt)dt
+

∑
∞

l=1 σ
1
l (t)dBH

l (t) + 11(t)dW(t), t ∈ (t1, t2],
dy(t) = (Ay(t) + F2(t, xt, yt)dt

+
∑
∞

l=1 σ
2
l (t)dBH

l (t) + 12(t)dW(t), t ∈ (t1, t2],
x(t+1 ) = x0(t−1 ) + I1(x1(t1))
y(t+1 ) = y0(t−1 ) + I1(y1(t1))
x(t) = x0(t) if t ∈ (−∞, t1]
y(t) = y0(t) if t ∈ (−∞, t1]

(13)

Let
C1 = {y ∈ C([t1, t2],X) : : x(t+1 ) exists , sup

t∈[t1,t2]
E(|x(t)|2) < ∞}.

Put
C∗1 = DF0 ∩ C0 ∩ C1.

Consider the multivalued operator N1 : C∗1 ×C∗1 → P(C∗1 ×C∗1) with N1(x, y) = (N1
1(x, y),N1

2(x, y)), (x, y) ∈
C∗1 × C∗1 defined by

N1(x, y) =
{
(h1, h

1
) ∈ C∗1 × C∗1

}
,

given by

N1
1(x, y) =


h1
∈ C∗1 : h1(t) =



x0(t), ift ∈ (−∞, t1],
x0(t−1 ) + S(t − t1)I1(y0(t−1 ))
+

∫ t

t1
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s), if t ∈ (t1, t2]


and

N1
2(x, y) =


h̄1
∈ C∗1 : h̄1(t) =



y0(t), ift ∈ (−∞, t1],
y0(t−1 ) + S(t − t1)Ī1(y0(t−1 ))
+

∫ t

t1
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s), if t ∈ (t1, t2]


where

f i
∈ SFi,u = { f i

∈ L2((t1, t2],X) : f i(t) ∈ Fi(t, x, y) for a.e t ∈ (t1, t2]}.

Let θ : (−∞, t2] −→ X be the function defined by

θ(t) =
{

x0(t), t ∈ (−∞, t1],
x0(t−1 ) + S(t − t1)I1(x0(t−1 )), if t ∈ (t1, t2]

and

θ̄(t) =
{

y0(t), t ∈ (−∞, t1],
y0(t−1 ) + S(t − t1)Ī1(y0(t−1 )), if t ∈ (t1, t2]
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Thus we have (θ, θ̄) is an element of C∗1 × C∗1. Let(x(t), y(t)) = (z(t) + θ(t), z̄(t) + θ̄(t)),−∞ < t ≤ t2.Obviously,
if (x, y) satisfies the integral equation


x(t) = x0(t−1 ) + S(t − t1)I1(x0(t−1 )) +

∫ t

t1
S(t − s) f 1(s)ds +

∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)11(s)dW(s) if t ∈ (t1, t2]

y(t) = y0(t−1 ) + S(t − t1)Ī1(y0(t−1 )) +
∫ t

t1
S(t − s) f 2(s)ds +

∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s) if t ∈ (t1, t2]

By replacing (z, z̄) in previous equation and satisfies (z0, z̄0) = (0, 0) if t ∈ (−∞, t1] we have



z(t) = S(t − t1)I1(z0(t−1 ) + θ(t−1 ), z̄0(t−1 ) + θ̄(t−1 ))
+

∫ t

0 S(t − s) f 1(s)ds +
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)11(s)dW(s) if t ∈ (t1, t2]

z̄(t) = S(t − t1)I1(z0(t−1 ) + θ(t−1 ), z̄0(t−1 ) + θ̄(t−1 ))
+

∫ t

0 S(t − s) f 2(s)ds +
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s) if t ∈ (t1, t2]

where f i(t) ∈ Fi(t, zt + θt, z̄t + θ̄t) for a.e. t ∈ (t1, t2]. Put

Ĉ∗1 =
{
z, z̄ ∈ C∗1, such that zt1 = 0 and z̄t1 = 0

}
and for any z, z̄ ∈ Ĉ∗1 .
Consider the multivalued operator N1 : Ĉ∗1×Ĉ∗1 → P(Ĉ∗1×Ĉ∗1) with N1(z, z̄) = (N1

1(z, z̄),N1
2(z, z̄)), (z, z̄) ∈ Ĉ∗1×Ĉ∗1

defined by

N1(z, z̄) =
{
(h1, h

1
) ∈ Ĉ∗1 × Ĉ∗1

}
,

given by

N1
1(z, z̄) =


h1
∈ C∗1 : h1(t) =



0, if t ∈ (−∞, t2]
S(t − t1)I1(z0(t−1 ) + θ(t−1 ), z̄0(t−1 ) + θ̄(t−1 ))∫ t

t1
S(t − s) f 1(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ1

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)11(s)dW(s), if t ∈ (t1, t2]


and

N1
2(z, z̄) =


h̄1
∈ C∗1 : h̄1(t) =



0, if t ∈ (−∞, t2]
S(t − t1)Ī1(z0(t−1 ) + θ(t−1 ), z̄0(t−1 ) + θ̄(t−1 ))
+

∫ t

t1
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s), if t ∈ (t1, t2]


As in Step 1, we can show that N1 is upper semicontinuous on t ∈ (t1, t2],denote this solution by (x1, y1) ∈
C∗1 × C∗1.
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Step3.We continue this process taking into account that (zm, z̄m) := (z|[tm,b], z̄|[tm,b]) is a solution of the problem

dx(t) = (Ax(t) + F1(t, xt, yt)dt
+

∑
∞

l=1 σ
1
l (t)dBH

l (t) + 11(t)dW(t), t ∈ (tm, b],
dy(t) = (Ay(t) + F2(t, xt, yt)dt

+
∑
∞

l=1 σ
2
l (t)dBH

l (t) + 12(t)dW(t), t ∈ (tm, b],
x(t+m) = xm(t−m) + Im(xm(tm),
y(t+m) = ym(t−m) + Im(ym(t1)),
x(t) = xm−1(t) if t ∈ (−∞, tm]
y(t) = ym−1(t) if t ∈ (−∞, tm]

(14)

Let
Cm = {x ∈ C([tm, b],X) : : x(t+m) exists , sup

t∈[tm,b]
E(|x(t)|2) < ∞}.

Set
C∗m = DF0 ∩ ∩

j=m
j=0 C j.

Consider the multivalued operator Nm : C∗m ×C∗m → P(C∗m ×C∗m) with Nm(x, y) = (Nm
1 (x, y),Nm

2 (x, y)), (x, y) ∈
C∗m × C∗m defined by

Nm(x, y) =
{
(hm, h

m
) ∈ C∗m × C∗m

}
given by

Nm
1 (x, y) =


h, ∈ C∗1 : h,(t) =



xm(t), if t ∈ (−∞, tm],
xm(t−1 ) + S(t − t1)Im(xm(t−1 ))
+

∫ t

tm
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)12(s)dW(s), if t ∈ (tm, b]


and

Nm
2 (x, y) =


h̄m
∈ C∗m : h̄m(t) =



ym(t), if t ∈ (−∞, tm],
ym(t−1 ) + S(t − t1)Ī1(ym(t−1 ))
+

∫ t

tm
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)12(s)dW(s), if t ∈ (tm, b]


where

f i
∈ SFi,u = { f i

∈ L2((t1, t2],X) : f i(t) ∈ Fi(t, x, y) for a.e t ∈ (tm, b]}.

Let θ : (−∞, b] −→ X be the function defined by

θ(t) =
{

xm(t), t ∈ (−∞, tm],
xm(t−1 ) + S(t − t1)I1(xm(t−1 )), if t ∈ (tm, b]

and

θ̄(t) =
{

ym(t), t ∈ (−∞, tm],
ym(t−1 ) + S(t − t1)Ī1(ym(t−1 )), if t ∈ (tm, b]

Observe that (θ, θ̄) is an element of C∗m × C∗m. Let (x(t), y(t)) = (z(t) + θ(t), z̄(t) + θ̄(t)),−∞ < t ≤ b. Obvi-
ously, if (x, y) satisfies the integral equation

x(t) = xm(t−m) + S(t − tm)Im(xm(t−1 )) +
∫ t

t1
S(t − s) f 1(s)ds +

∑
∞

l=1

∫ t

tm
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)11(s)dW(s) t ∈ (tm, b]

y(t) = ym(t−m) + S(t − tm)Īm(ym(t−1 )) +
∫ t

t1
S(t − s) f 2(s)ds +

∑
∞

l=1

∫ t

tm
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

t1
S(t − s)12(s)dW(s) t ∈ (tm, b]
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Put (zm, z̄m) := (ztm , z̄tm ) = (0, 0) for each t ∈ (−∞, tm] we have

z(t) = S(t − tm)I1(z0(t−1 ) + θ(t−1 ), z̄0(t−1 ) + θ̄(t−1 ))
+

∫ t

tm
S(t − s) f 1(s)ds +

∑
∞

l=1

∫ t

tm
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)11(s)dW(s) t ∈ (tm, b]

z̄(t) = S(t − tm)Im(zm(t−1 ) + θ(t−m), z̄m(t−1 ) + θ̄(t−m))
+

∫ t

tm
S(t − s) f 2(s)ds +

∑
∞

l=1

∫ t

t1
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)12(s)dW(s) t ∈ (tm, b]

where f i(t) ∈ Fi(t, zt + θt, z̄t + θ̄t) for a.e. t ∈ (tm, b].
Put

Ĉ∗m =
{
z, z̄ ∈ C∗m, such that ztm = 0 and z̄tm = 0

}
and for any z, z̄ ∈ Ĉ∗1 .
Consider the multivalued operator NmĈ∗m × Ĉ∗m → P(Ĉ∗m × Ĉ∗m) with Nm(z, z̄) = (Nm

1 (z, z̄),Nm
2 (z, z̄)), (z, z̄) ∈

Ĉ∗m × Ĉ∗m defined by

Nm(z, z̄) =
{
(hm, h

m
) ∈ Ĉ∗m × Ĉ∗m

}
given by

Nm
1 (z, z̄) =


hm
∈ Ĉ∗m : hm(t) =



0, if t ∈ (−∞, tm]
S(t − t1)Im(zm(t−1 ) + θ(t−m), z̄m(t−m) + θ̄(t−m))∫ t

tm
S(t − s) f 1(s)ds

+
∑
∞

l=1

∫ t

tm
S(t − s)σ1

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)11(s)dW(s), if t ∈ (tm, b]


and

Nm
2 (z, z̄) =


h̄1
∈ Ĉ∗m : h̄1(t) =



0, if t ∈ (−∞, tm]
S(t − tm)Īm(zm(t−m) + θ(t−m), z̄m(t−m) + θ̄(t−m))
+

∫ t

tm
S(t − s) f 2(s)ds

+
∑
∞

l=1

∫ t

tm
S(t − s)σ2

l (s)dBH
l (s)

+
∫ t

tm
S(t − s)12(s)dW(s), if t ∈ (tm, b]


As in Step 1, we can show that N1 is upper semicontinuous on t ∈ (tm, b],denote this solution by (xm, ym) ∈
C∗m × C∗m.
The desired result is then complete.

Now, we present the fist our existence and compactness of solution set of the Problem (1).

Theorem 3.3. Assume that Fi : [0, b]×DF0 ×DF0 −→ Pcv,cp(X) is a Carathèodory map satisfying (H1)-(H3) hold.
Then the (1) has at least one mild solution on J. If further X is a reflexive space, then the solution set is compact in
DFb ×DFb .

Proof. Part 1. Existence of solutions.
We transform the problem (1) into a fixed point problem. Consider the multi- valued operator N : DFb ×

DFb → P(DFb ×DFb ) defined in lemma 3.2. It is clear that all solutions of Problem (1) are fixed points of the
multi-valued operator defined by We shall show that N satisfies assumptions of Lemma 2.14. Since for each
(x, y) ∈ DFb ×DFb , the nonlinearity Fi takes convex values, the selection set SFi,u is convex, and therefore N
has convex values. From lemma 3.2, N is completely continuous and u.s.c.
Claim 5. There exist a priori bounds on solutions.
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Consider the multivalued operator N : DFb × DFb → P(DFb × DFb ).We will prove that N the operator is
completely continuous and u.s.c. with (N1(x, y),N2(x, y)), (x, y) ∈ DFb ×DFb defined by

N(x, y) =
{
(h, h) ∈ DFb ×DFb

}
given by

N1(x, y) =


h ∈ DFb : h(t) =



ϕ(t), if t ∈ (−∞, 0],
S(t)ϕ(0) +

∫ t

0 S(t − s) f 1(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s)
+

∑
0<tk<t S(t − tk)Ik(x(t−k )), if t ∈ [0, b]


and

N2(x, y) =


h̄ ∈ DFb : h̄(t) =



ϕ̄(t), if t ∈ (−∞, 0],
S(t)ϕ̄(0) +

∫ t

0 S(t − s) f 2(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s)
+

∑
0<tk<t S(t − tk)Īk(y(t−k )), if t ∈ [0, b]


where

f i
∈ SFi,u = { f i

∈ L2(J,X) : f i(t) ∈ Fi(t, x, y) for a.e t ∈ J}.

Let θ, θ̄ : (−∞, b] −→ X be the function defined by

θ(t) =
{
ϕ(t), t ∈ (−∞, 0],
S(t)ϕ(0), t ∈ [0, t1].

and

θ̄(t) =
{
ϕ̄(t), t ∈ (−∞, 0],
S(t)ϕ̄(0), t ∈ [0, t1].

It is clear that (θ, θ̄) is an element ofDFb ×DFb . Set (x(t), y(t)) = (z(t)+θ(t), z̄(t)+ θ̄(t)),−∞ < t ≤ b.Obviously,
if x, y satisfies (1) if and only if (z, z̄) satisfies (z0, z̄0) = (0, 0) if t ∈ (−∞, 0] and

z(t) =
∫ t

0 S(t − s) f 1(s)ds +
∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s) +
∑

0<tk<t S(t − tk)Ik(z(t−k ) + θ(t−k )), if t ∈ [0, b]

z̄(t) =
∫ t

0 S(t − s) f 2(s)ds +
∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s) +
∑

0<tk<t S(t − tk)Ik(z(t−k ) + θ(t−k )), if t ∈ [0, b]

where f i(t) ∈ Fi(t, zt + θt, z̄t + θ̄t) for a.e. t ∈ [0, b].
Put

D̂Fb =
{
z, z̄ ∈ DFb , such that z0 = 0 ∈ DF0 and z̄0 = 0 ∈ DF0

}
and for any z, z̄ ∈ D̂Fb we have

∥x∥
D̂Fb
= ∥z0∥DF0

+ sup
t∈[0,b]

√
E∥z(t)∥2.

It is not difficult to check that (D̂Fb , ∥.∥D̂Fb
) is a Banach space. Consider the multivalued operator N :

D̂Fb × D̂Fb → P(D̂Fb × D̂Fb ) defined by

N(z, z̄) = (N1(z, z̄),N2(z, z̄)), (z, z̄) ∈ D̂Fb × D̂Fb
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where
N(z, z̄) =

{
(h, h) ∈ D̂Fb × D̂Fb

}
given by

N1(z, z̄) =


h ∈ D̂Fb : h(t) =



0, if t ∈ (−∞, 0],∫ t

0 S(t − s) f 1(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ1
l (s)dBH

l (s)

+
∫ t

0 S(t − s)11(s)dW(s)
+

∑
0<tk<t S(t − tk)Īk(z̄(t−k ) + θ̄(t−k )), if t ∈ [0, b]


and

N2(z, z̄) =


h̄0
∈ D̂Fb : h̄(t) =



0, if t ∈ (−∞, 0],∫ t

0 S(t − s) f 2(s)ds
+

∑
∞

l=1

∫ t

0 S(t − s)σ2
l (s)dBH

l (s)

+
∫ t

0 S(t − s)12(s)dW(s)
+

∑
0<tk<t S(t − tk)Īk(z̄(t−k ) + θ̄(t−k )), if t ∈ [0, b]


Clearly, that the operator N is equivalent to N .Let z be a possible solution of the equation (z, z̄) ∈ λN(z, z̄)
and (z0, z̄0) = (ϕ, ϕ̄), for some λ ∈ (0, 1). Then,

z(t) =

∫ t

0
S(t − s) f 1(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ1

l (s)dBH(s) +
∫ t

0
S(t − s)11(s)dW(s)

+
∑

0<tk<t

S(t − tk)Ik(z(t−k ) + θ(t−k ))

and

z̄(t) =

∫ t

0
S(t − s) f 2(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ2

l (s)dBH(s) +
∫ t

0
S(t − s)12(s)dW(s)

+
∑

0<tk<t

S(t − tk)Īk(z(t−k ) + θ(t−k ))

Thus, for t ∈ [0, b], namely:

E|z(t)|2

≤ 4E
∣∣∣∣ ∫ t

0
S(t − s) f 1(s)ds

∣∣∣∣2 + 4E
∣∣∣∣ ∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH(s)
∣∣∣∣2 + 4E

∣∣∣∣ ∫ t

0
S(t − s)11(s)dW(s)

∣∣∣∣2
+4E

∣∣∣∣ ∑
0<tk<t

S(t − tk)Ik(z(t−k ) + θ(t−k ), z̄(t−k ) + θ̄(t−k ))
∣∣∣∣2

which immediately yields:

E|z(t)|2

≤ 4Mb
∫ t

0
p1(s)ψ1(∥zs + θs∥

2
DF0
+ ∥z̄s + θ̄s∥

2
DF0

)ds + 4McHH(2H − 1)t2H−1
∫ t

0
∥σ1(s)∥2ds

+4M
∫ t

0
∥11(s)∥2L0 ds + 6M

( m∑
k=1

dk

)2

which immediately yields

E|z(t)|2 ≤ A1 + 4Mb
∫ t

0
p1(s)ψ1(∥zs + θs∥

2
DF0
+ ∥z̄s + θ̄s∥

2
DF0

)ds
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and

E|z̄(t)|2 ≤ A2 + 4Mb
∫ t

0
p2(s)ψ2(∥zs + θs∥

2
DF0
+ ∥z̄s + θ̄s∥

2
DF0

)ds

where

A1 = 4McHH(2H − 1)t2H−1
∫ t

0
∥σ1(s)∥2ds + 4M

∫ t

0
∥11(s)∥2L0 ds + 6M

( m∑
k=1

dk

)2
,

A2 = 4McHH(2H − 1)t2H−1
∫ t

0
∥σ2(s)∥2ds + 4M

∫ t

0
∥12(s)∥2L0 ds + 6M

( m∑
k=1

d̄k

)2
.

But

∥zt + θt∥
2
DF0
+ ∥z̄t + θ̄t∥

2
DF0

≤ 4K̃2 sups∈[0,b]

(
E|z(s)|2 + E|z̄(s)|2

)
+ 4K̃2M

(
E|ϕ(0)|2 + E|ϕ̄(0)|2

)
+ 4Ñ2

(
∥ϕ∥2

DF0
+ ∥ϕ̄∥2

DF0

)
.

Adding these we obtain

E|z(t)|2 + E|z̄(t)|2 ≤ B∗ + 4Mb
∫ t

0
p∗(s)ϕ∗(∥zs + θs∥

2
DF0
+ ∥z̄s + θ̄s∥

2
DF0

)ds (15)

where
B∗ = A1 + A2 and p∗(t) = sup{p1(t), p2(t)} ϕ∗ = ψ1 + ψ2.

If we set v(t) the right hand side of the above inequality we have that

∥zt + θt∥
2
DF0
+ ∥z̄t + θ̄t∥

2
DF0
≤ v(t),

and therefore (15) becomes

E|z(t)|2 + E|z̄(t)|2 ≤ B∗ + 6Mb
∫ t

0
p∗(s)ϕ(v(s))ds. (16)

Using (16) in the definition of v, we have that

v(t) ≤ 4K̃2
(
B∗ +Mb

∫ t

0 p∗(s)ϕ(v(s)ds
)
+ 4K̃2M

(
E|ϕ(0)|2 + E|ϕ̄(0)|2

)
+4Ñ2

(
∥ϕ∥2

DF0
+ ∥ϕ̄∥2

DF0

) (17)

and therefore

v(t) ≤ L1 + L2

∫ t

0
p∗(s)ϕ(v(s))ds, (18)

where

L1 = 4K̃2M
(
E|ϕ(0)|2 + E|ϕ̄(0)|2

)
+ 4Ñ2

(
∥ϕ∥2

DF0
+ ∥ϕ̄∥2

DF0

)
+ 4K̃2B∗

and
L2 = 4K̃2Mb.

Let us denote the right-hand side of the inequality (18) by v(t). Then we have

w(0) = L1, v(t) ≤ w(t), t ∈ J,
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and
w′(t) = L2p∗(t)ϕ(v(t)), t ∈ J.

Using the increasing character of ψ we obtain

w′(t) ≤ L2p∗(t)ϕ(w(t)), for a.e. t ∈ J.

This implies, for each t ∈ J, we have

Γ(w(t)) =
∫ w(t)

w(0)

ds
ψ(s)

≤ L2

∫ b

0
m∗(s)ds <

∫
∞

L1

ds
ψ(s)

.

Consequently, there exists a constant K such that

v(t) ≤ w(t) ≤ Cst, t ∈ J.

Thus
∥z∥2
D̂Fb

≤ Cst and ∥z̄∥2
D̂Fb

≤ Cst.

As a consequence of Lemma 2.14 we deduce that N has a fixed point, since (x(t), y(t)) = (z(t)+θ(t), z̄(t)+
θ̄(t)) if t ∈ (−∞, b]. Then (x, y) is a fixed point of the operator N which is a mild solution of the problem (1).

Part 2 Compactness of the solution set. Let

SF = {(z, z̄) ∈ D̂Fb
× D̂Fb

: (z, z̄) is a solution of Problem(1)}

From Part 1, SF , ∅ and there exists M such that for every (z, z̄) ∈ SF,∥z∥2
D̂Fb

≤ M and ∥z̄∥2
D̂Fb

≤ M. Since N

is completely continuous, then N(SF) = (N1(SF1 ),N2(SF2 )) is relatively compact in D̂Fb
× D̂Fb

. Let (z, z̄) ∈ SF

then (z, z̄) ∈ N(z, z̄) and SF ⊂ N(SF ). It remains to prove that SF is a closed set in D̂Fb
× D̂Fb

. Let (zn, z̄n) ∈ SF

such that (zn, z̄n) converge to (z, z̄). For every n ∈ N, there exists υi
n(t) ∈ Fi(t, zn + θ, z̄n + θ̄) a.e. t ∈ J for each

i ∈ {1, 2} such that

zn(t) =

∫ t

0
S(t − s) f 1

n (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ1

l (s)dBH(s) +
∫ t

0
S(t − s)11(s)dW(s)

+
∑

0<tk<t

S(t − tk)Ik(zn(t−k ) + θ(t−k )),

and

z̄n(t) =

∫ t

0
S(t − s) f 2

n (s)ds +
∞∑

l=1

∫ t

0
S(t − s)σ2

l (s)dBH(s) +
∫ t

0
S(t − s)12(s)dW(s)

+
∑

0<tk<t

S(t − tk)Īk(zn(t−k ) + θ(t−k ))

(H2) implies that for a.e. t ∈ J , f i
n ∈ pi(t)ψi(2Cst), i = 1, 2 hence ( f i

n)n∈N is integrably bounded. Note that
this still remains true holds for SF is a bounded set. Since X is reflexive, by Theorem 2.15, there exists a
subsequence, still denoted by ( f i

n)n∈N, which converges weakly to some limit f i
∈ L2(J,X). Moreover, the

mapping Γ : L2(J,X) −→ X defined by

Γ( f i)(t) =
∫ t

0
S(t − s) f i(s)ds
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is a continuous linear operator. Then it remains continuous if these spaces are endowed with their weak
topologies [11]. Therefore for a.e. t ∈ J, the sequence (zn(t), z̄n(t)) converges to (z(t), z̄(t)) and by the continuity
of (Ik, Ik) it follows that

z(t) =

∫ t

0
S(t − s) f 1(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ1

l (s)dBH(s) +
∫ t

0
S(t − s)11(s)dW(s)

+
∑

0<tk<t

S(t − tk)Ik(z(t−k ) + θ(t−k ))

and

z̄(t) =

∫ t

0
S(t − s) f 2(s)ds +

∞∑
l=1

∫ t

0
S(t − s)σ2

l (s)dBH(s) +
∫ t

0
S(t − s)12(s)dW(s)

+
∑

0<tk<t

S(t − tk)Īk(z(t−k ) + θ(t−k )).

Now we need to prove that f i(t) ∈ Fi(t, z(t)+θ(t), z̄(t)+ θ̄(t)), for a.e. t ∈ J. Lemma 2.13 yields the existence of
constants αn

i ≥ 0, j = 1, 2 . . . , k(n) and i = 1, 2 such that
∑k(n)

j=1 α
n
i = 1 and the sequence of convex combinations

hi
n(.) =

∑k(n)
j=1 α

n
j f i

j (.) converges strongly to some limit f i
∈ L2(J,X). Since Fi takes convex values, using Lemma

2.12, we obtain that

f i(t) ∈

⋂
n≥1

{hi
k(t) : k ≥ n}, a.e t ∈ J

⊆

⋂
n≥1

co{ f i
k(t), k ≥ n}

⊆

⋂
n≥1

co{
⋃
k≥n

Fi(t, zk(t) + θ(t), z̄k(t) + θ̄)}.

Thus

f i(t) ⊆ co{lim sup
k→∞

Fi(t, zk(t) + θ(t), z̄k(t) + θ̄(t))}. (19)

Since Fi is u.s.c. and has compact values, then by Lemma 2.11, we have

lim sup
n→∞

Fi(t, zn(t) + θ(t), z̄n(t) + θ̄(t)) ⊆ Fi(t, z(t) + θ(t), z̄(t) + θ̄(t)) for a.e t ∈ J.

This and (19) imply that f i(t) ∈ co(Fi(t, z(t)+θ(t), z̄(t)+ θ̄(t)). Since, for each i = 1, 2 , Fi(., .) has closed, convex
values, we deduce that f i(t) ∈ Fi(t, z(t) + θ(t), z̄(t) + θ̄(t)) for a.e. t ∈ J, for each i = 1, 2 as claimed. Hence
(z, z̄) ∈ SFi which proves that SFi , for each i = 1, 2, is closed, hence compact in D̂Fb

× D̂Fb
.
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