Filomat 38:17 (2024), 6259–6270 https://doi.org/10.2298/FIL2417259B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Wiener index of the cozero-divisor graph of a finite commutative ring

Barkha Baloda^a , Praveen Mathil^a , Jitender Kumara,[∗] **, Aryan Barapatre^a**

^aDepartment of Mathematics, Birla Institute of Technology and Science Pilani, Pilani-333031, India

Abstract. Let *R* be a ring with unity. The cozero-divisor graph Γ ′ (*R*) of a ring *R* is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of *R*, and two distinct vertices *x* and *y* are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. To extend the corresponding results of the ring \mathbb{Z}_n of integer modulo *n*, in this article, we derive a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring *R*. As applications, we compute the Wiener index of Γ ′ (*R*), when either *R* is the product of ring of integers modulo *n* or a reduced ring. At the final part of this paper, we provide a SageMath code to compute the Wiener index of the cozero-divisor graph of these classes of rings including the ring \mathbb{Z}_n of integers modulo *n*.

1. Introduction and Preliminaries

The Wiener index is one of the most frequently used topological indices in chemistry as a molecular shape descriptor. This was first used by H. Wiener in 1947 and then the formal definition of the Wiener index was introduced by Hosoya [17]. The *Wiener index* of a graph is defined as the sum of the lengths of the shortest paths between all pairs of vertices in a graph. Other than the chemistry, the Wiener index was used to find various applications in quantitative structure-property relationships (see [19]). The Wiener index was also employed in crystallography, communication theory, facility location, cryptography, etc. (see [13, 16, 26]). An application of the Wiener index has been established in the water pipeline network, which is essential for water supply management (see [14]). Other utilization of the Wiener index can be found in [15, 18, 31, 32] and reference therein.

The association of the graphs to rings was introduced by Beck [12] and he was mainly interested in the coloring of a graph associated to a commutative ring. Then Anderson and Livingston [8] studied a subgraph of the graph introduced by Beck and named as the zero divisor graph. Further, various aspects of the zero divisor graphs have been explored, see [7, 20, 21, 24] and reference therein. Moreover, various other graphs, namely: inclusion ideal graph, total graph, annihilating-ideal graph, co-maximal graph and cozero-divisor graphs of rings have been introduced and studied extensively. Afkhami *et al.* [1] introduced the cozero-divisor graph of a commutative ring and studied its basic graph-theoretic properties including

²⁰²⁰ *Mathematics Subject Classification*. Primary 05C25 mandatory; Secondary 05C50

Keywords. Cozero-divisor graph, Wiener index, reduced ring, ring of integer modulo *n*.

Received: 02 September 2023; Revised: 29 December 2023; Accepted: 26 January 2024

Communicated by Paola Bonacini

The first author gratefully acknowledge for providing financial support to CSIR (09/719(0093)/2019-EMR-I) government of India. The second author sincerely acknowledge for providing financial support to Birla Institute of Technology and Science (BITS) Pilani, Pilani-333031, India.

^{*} Corresponding author: Jitender Kumar

Email addresses: barkha0026@gmail.com (Barkha Baloda), maithilpraveen@gmail.com (Praveen Mathil),

jitenderarora09@gmail.com (Jitender Kumar), aryanbar@gmail.com (Aryan Barapatre)

completeness, girth and clique number etc. They also investigated the relations between the zero-divisor graph and the cozero-divisor graph. The *cozero-divisor* graph Γ ′ (*R*) of the ring *R* with unity is an undirected simple graph whose vertex set is the set of all non-zero and non-unit elements of *R*, and two distinct vertices *x*, *y* are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. The complement of the cozero-divisor graph and the characterization of the commutative rings with forest, star, or unicyclic cozero-divisor graphs have been investigated in [2]. Akbari *et al.* [5] studied the cozero-divisor graph associated to the polynomial ring and the ring of power series. Some of the work on the cozero-divisor graphs of rings can be found in [3, 4, 6, 11, 22, 23, 25].

Over the recent years, the Wiener index of certain graphs associated with rings has been studied by various authors. The Wiener index of the zero divisor graph of the ring Z*ⁿ* of integers modulo *n* has been studied in [9, 29]. Recently, Selvakumar *et al.* [28] calculated the Wiener index of the zero divisor graph for a finite commutative ring with unity. The Wiener index of the unit graph associated with commutative rings has been investigated in [10]. The Wiener index of the cozero-divisor graph of the ring Z*ⁿ* has been obtained in [23]. The aim of this manuscript is to extend the results of [23] to an arbitrary ring. In this connection, we study the Wiener index of the cozero-divisor graph of a finite commutative ring with unity. First, we provide the necessary results and notations used throughout the paper. The remaining paper is arranged as follows: In Section 2, a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring with unity is presented. Using this formula, in Section 3, we obtain the Wiener index of the cozero-divisor graph of the ring *R*, where *R* is the product of ring of integers modulo *n*. In Section 4, we compute the Wiener index of the cozero-divisor graph of a finite commutative reduced ring. In Section 5, we derive SageMath codes to compute the Wiener index of the cozero-divisor graph of various classes of rings.

Now we recall the necessary definitions, results and notations of graph theory from [30]. A *graph* Γ is a pair $\Gamma = (V, E)$, where $V = V(\Gamma)$ and $E = E(\Gamma)$ are the set of vertices and edges of Γ , respectively. Let Γ be a graph. Two distinct vertices *x* and *y* of Γ are *adjacent*, denoted by *x* ∼ *y*, if there is an edge between *x* and *y*. Otherwise, we denote it by $x \neq y$. A *subgraph* Γ' of a graph Γ is a graph such that $V(\Gamma') \subseteq V(\Gamma)$ and $E(\Gamma') \subseteq E(\Gamma)$. If $U \subseteq V(\Gamma)$, then the subgraph $\Gamma(U)$ of Γ induced by U is the graph with vertex set U and two vertices of Γ(*U*) are adjacent if and only if they are adjacent in Γ. The *complement* Γ of Γ is a graph with the same vertex set as Γ and distinct vertices *x*, *y* are adjacent in Γ if they are not adjacent in Γ. A graph Γ is said to be *complete* if any two distinct vertices are adjacent. The complete graph on *n* vertices is denoted by *Kn*. A *path* in a graph is a sequence of distinct vertices with the property that each vertex in the sequence is adjacent to the next vertex of it. The graph Γ is said to be *connected* if there is a path between every pair of vertices. The *distance* between any two vertices *x* and *y* of Γ, denoted by $d(x, y)$ (or $d_Γ(x, y)$), is the number of edges in a shortest path between *x* and *y*. The *Wiener index W*(Γ) of the connected graph Γ is defined as the sum of all the distances between every pair of vertices, that is

$$
W(\Gamma) = \frac{1}{2} \sum_{u \in V(\Gamma)} \sum_{v \in V(\Gamma)} d(u, v)
$$

Let $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$ be *k* pairwise disjoint graphs. Then the *generalised join graph* $\Gamma[\Gamma_1, \Gamma_2, \ldots, \Gamma_k]$ of $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$ is the graph formed by replacing each vertex u_i of Γ by Γ *i* and then joining each vertex of Γ *i* to every vertex of Γ_j whenever $u_i \sim u_j$ in Γ (cf. [27]).

Let *R* be a ring. An element *a* of *R* is said to be a *zero-divisor* if there exists a non-zero element $x \in R$ such that $ax = xa = 0$. An element *u* of a ring *R* with unity 1, is said to be a *unit* if there exists $v \in R$ such that $uv = vu = 1$. The set of zero-divisors and the set of units of the ring *R* are denoted by $Z(R)$ and $U(R)$, respectively. The set of all non-zero zero-divisors of the ring *R* is denoted by $Z(R)^*$. For $x \in R$, the principal ideal generated by *x* is denoted by (x) . For a positive integer *k*, we write $[k] = \{1, 2, \ldots, k\}$.

2. Formulae for the Wiener index of the cozero-divisor graph of a finite commutative ring

The purpose of this section is to provide a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring. Let *R* be a finite commutative ring with unity. Define a relation \equiv on $V(\Gamma'(R))$ such that

 $x \equiv y$ if and only if $(x) = (y)$.

Note that ≡ is an equivalence relation. Let *x*1, *x*2, . . . , *x^k* be the representatives of the equivalence classes of *X*1, *X*2, . . . , *X^k* , respectively under the relation ≡. We begin with the following lemma.

Lemma 2.1. In the cozero-divisor graph $\Gamma'(R)$, an element of X_i is adjacent to an element of X_j if and only if $(x_i) \nsubseteq (x_j)$ *and* $(x_i) \nsubseteq (x_i)$.

Proof. Suppose $a \in X_i$ and $b \in X_j$. Then $(a) = (x_i)$ and $(b) = (x_j)$ in R. If $a \sim b$ in $\Gamma'(R)$, then $(a) \nsubseteq (b)$ and $(b) \nsubseteq (a)$. It follows that $(x_i) \nsubseteq (x_j)$ and $(x_j) \nsubseteq (x_i)$. The converse holds by the definition of $\Gamma'(R)$.

Corollary 2.2. *(i)* For $i \in [k]$, the induced subgraph $\Gamma'(X_i)$ of $\Gamma'(R)$ is isomorphic to $\overline{K}_{|X_i|}$.

(ii) For distinct i, $j \in [k]$, an element of X_i is adjacent to either all or none of the elements of X_j .

Define a subgraph $\Upsilon'(R)$ (or Υ') induced by the set $\{x_1, x_2, \ldots, x_k\}$ of representatives of the respective equivalence classes X_1, X_2, \ldots, X_k under the relation \equiv .

In view of Corollary 2.2 and Υ′ (defined above), we have the following proposition.

Proposition 2.3. *For each i* \in [*k*]*, let* Γ'_i *i be the subgraph of* Γ ′ (*R*) *induced by the set Xⁱ . Then*

$$
\Gamma'(R) = \Upsilon'[\Gamma'_1, \Gamma'_2, \ldots, \Gamma'_k].
$$

Lemma 2.4. *Let* Υ′ (*R*) *be a subgraph of* Γ ′ (*R*) *defined above and let* Υ′ (*R*) *contains at least two vertices. Then* Υ′ (*R*) *is connected if and only if the cozero-divisor graph* Γ ′ (*R*) *is connected. Moreover, for a connected graph* Γ ′ (*R*) *and a*, *b* ∈ *V*(Γ ′ (*R*))*, we have*

$$
d_{\Gamma'(R)}(a,b) = \begin{cases} 2 & \text{if } a,b \in X_i \text{ for some } i, \\ d_{\Upsilon'(R)}(x_i, x_j) & \text{if } a \in X_i, b \in X_j \text{ and } i \neq j. \end{cases}
$$

Proof. First suppose that the graph Υ′ (*R*) is connected. Let *a*, *b* be two arbitrary vertices of Γ ′ (*R*). Suppose that $a \in X_i$ and $b \in X_j$. If $i = j$, then $a \neq b$ in $\Gamma'(R)$. Since $\Upsilon'(R)$ is connected, we have $x_t \in X_t$ such that $x_i \sim x_i$ in $\Gamma'(R)$. Consequently, $a \sim x_t \sim b$ in $\Gamma'(R)$ and $d_{\Gamma'(R)}(a, b) = 2$. We may now suppose that $i \neq j$. If $a \sim b$, then there is nothing to prove. Further, suppose that $a \star b$ in $\Gamma'(R)$. Connectedness of $\Upsilon'(R)$ implies that there exists a path $x_i \sim x_{i_1} \sim x_{i_2} \sim \cdots \sim x_{i_t} \sim x_j$, where $i \neq j$. It follows that $a \sim x_{i_1} \sim x_{i_2} \sim \cdots \sim x_{i_t} \sim b$ in $\Gamma'(R)$ and $d_{\Gamma'(R)}(a, \dot{b}) = d_{\Upsilon'(R)}(x_i, x_j)$. Therefore, Γ'(*R*) is connected. The converse is straightforward.

Let *R* be a finite commutative ring with unity. As a consequence of Proposition 2.3 and Lemma 2.4, we have the following theorem.

Theorem 2.5. *The Wiener index of the cozero-divisor graph* Γ ′ (*R*) *of a finite commutative ring with unity is given by*

$$
W(\Gamma'(R)) = 2\sum {\binom{|X_i|}{2}} + \sum_{1 \leq i < j \leq k} |X_i||X_j|d_{\Upsilon'(R)}(x_i,x_j),
$$

 \mathbf{w} *where* \mathbf{x}_i *is a representative of the equivalence class* X_i *under the relation* \equiv .

In the subsequent sections, we use Theorem 2.5 to derive the Wiener index of the cozero-divisor graph Γ ′ (*R*) of various classes of rings.

3. Wiener index of the cozero-divisor graph of the product of ring of integers modulo *n*

First note that the cozero-divisor graph $\Gamma'(\mathbb{Z}_4)$ is a graph with exactly one vertex. Observe that the graph $Γ'(Z_p)$, where *p* is a prime, is a graph without any vertices. Moreover, for *α* ≥ 2, the cozero-divisor graph of the ring $\mathbb{Z}_{p^{\alpha}}$, where $p^{\alpha} \neq 4$, is a graph with $p^{\alpha-1}-1$ vertices without any edge. Consequently, except the ring \Z_{p^a} , we obtain the Wiener index of the cozero-divisor graph of the ring *R* such that $R\cong\Z_{n_1}\times\Z_{n_2}\times\cdots\times\Z_{n_k}$ or $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$. In this connection, first we obtain all the possible distances $d(x, y)$ of any two vertices *x*, *y*² of the graph $\Gamma'(R)$. We begin with the following lemma.

Lemma 3.1. Let $R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ and let $x = (x_1, x_2, \ldots, x_r, \ldots, x_k)$, $y = (y_1, y_2, \ldots, y_r, \ldots, y_k) \in R$. Define $S_r = \{(x, y): x_r, y_r \in Z(\mathbb{Z}_{n_r})^*$ and $(x_r) \subseteq (y_r), x_i = 0, y_i \in U(\mathbb{Z}_{n_i})$ for each $i \neq r\}$. Then

 $d_{\Gamma'(\mathbb{R})}(x, y) =$ \int $\overline{\mathcal{L}}$ 1 if *x* ∼ *y*, 2 if $x \neq y$ and $(x, y) \notin S_r$ for all *r*, 3 if $(x, y) \in S_r$ for some *r*.

Proof. Recall that all the elements of the ring \mathbb{Z}_{n_i} are either units or zero-divisors. For $R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ the definition of $\Gamma'(R)$ implies that for $x = (x_1, x_2, ..., x_k) \in V(\Gamma'(R))$, all x_i 's $(1 \le i \le k)$ are neither units nor zero elements. Clearly, if $x \sim y$, then $d(x, y) = 1$. Consequently, to compute the distances $d(x, y)$ between any two non-adjacent vertices *x* and *y* of Γ ′ (*R*), we consider the following cases on the possibilities of *xⁱ* 's such that $x \in V(\Gamma'(R))$, that is, x is a non-unit and non-zero element of the ring R.

Case-1. x_i ∈ $Z(\mathbb{Z}_{n_i})^*$ for each i ∈ [k]. First suppose that y_i ∈ $Z(\mathbb{Z}_{n_i})^*$ for each i ∈ [k]. Then consider *z* = (1, 0, ..., 0) ∈ *R*. Note that (*x*) ⊈ (*z*) and (*z*) ⊈ (*x*). Similarly, (*y*) ⊈ (*z*) and (*z*) ⊈ (*y*). It follows that $x \sim z \sim y$ in $\Gamma'(R)$ and so $d(x, y) = 2$. Now let $y_j = 0$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. Since $x \neq y$, it implies that $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Choose $z = (z_1, z_2, ..., z_k) \in R$ such that $z_i = 0$ if $y_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j \in U(\mathbb{Z}_{n_i})$ if $y_j = 0$. Note that $(z) \nsubseteq (x)$ and $(z) \nsubseteq (y)$. Also, $(x) \nsubseteq (z)$ and $(y) \nsubseteq (z)$. Therefore, $x \sim z \sim y$ and so $d(x, y) = 2$. Further, note that if $y_j = 0$ for some $j \in [k]$ and $y_i \in U(\mathbb{Z}_{n_i})$ for *remaining i* ∈ [*k*], then one can observe that *x* ∼ *y* and so $d(x, y) = 1$. Now, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and y_j ∈ $Z(\mathbb{Z}_{n_j})^*$ for remaining j ∈ [k]. Since $x \neq y$, we obtain $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Thus, consider $z=(z_1,z_2,\ldots,z_k)\in R$ such that $z_i=0$ if $y_i\in U(\mathbb{Z}_{n_i})$, and $z_j\in U(\mathbb{Z}_{n_j})$ if $y_j\in Z(\mathbb{Z}_{n_j})^*$. It follows that $x\sim z\sim y$ in $\Gamma'(R)$ and so $d(x, y) = 2$. Finally, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_i = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining *i* ∈ [*k*]. With this possibility, we have $(x) \nsubseteq (y)$ and $(y) \nsubseteq (x)$. Thus, $d(x, y) = 1$.

Case-2. $x_j = 0$ for some $j \in [k]$ and $x_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since $d(x, y) = d(y, x)$, then by **Case-1**, for $y=(y_1,y_2,\ldots,y_k)$ such that $y_i\in Z(\mathbb{Z}_{n_i})^*$ for each $i\in [k]$, we get $d(x,y)=1$. Now let $y_j=0$ for some $j\in [k]$ and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For $x \neq y$, consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that

$$
z_i = \begin{cases} 1 & \text{when both } x_i = y_i = 0, \\ 0 & \text{otherwise.} \end{cases}
$$

With this choice of *z*, note that $(x) \not\subseteq (z)$ and $(z) \not\subseteq (x)$. Similarly, $(y) \not\subseteq (z)$ and $(z) \not\subseteq (y)$. It follows that *x* ∼ *z* ∼ *y* and so *d*(*x*, *y*) = 2. Further, suppose that *y*_{*j*} = 0 for some *j* ∈ [*k*] and *y*_{*i*} ∈ *Z*(\mathbb{Z}_{n_i})^{*} for remaining $i \in [k]$. Since $x \neq y$, we obtain $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Consider $z = (z_1, z_2, ..., z_k)$ such that $z_i \in U(\mathbb{Z}_{n_i})$ if $y_i = 0$, and $z_j = 0$ if $y_j \in Z(\mathbb{Z}_{n_j})^*$. It follows that $x \sim z \sim y$. Consequently, $d(x, y) = 2$. Next, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $y_j \in Z(\mathbb{Z}_{n_j})^*$ for remaining $j \in [k]$. Since $x \neq y$, we have $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Then consider $z = (z_1, z_2, \ldots, z_k) \in \mathbb{R}$ such that

$$
z_i = \begin{cases} 0 & \text{if } y_i \in U(\mathbb{Z}_{n_i}), \\ 1 & \text{if } y_i \in Z(\mathbb{Z}_{n_i})^*.\end{cases}
$$

It follows that $x \sim z \sim y$ in $\Gamma'(R)$ and so $d(x, y) = 2$. Finally, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For $x \nsim y$, consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i \in U(\mathbb{Z}_{n_i})$ if *x*^{*i*} = 0, and *z*^{*j*} = 0 if *x*^{*j*} ∈ *U*(\mathbb{Z}_n *j*). Consequently, *x* ∼ *z* ∼ *y* and so *d*(*x*, *y*) = 2.

Case-3. $x_j = 0$ for some $j \in [k]$ and $x_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. If $y = (y_1, y_2, \dots, y_k)$ is such that $y_i \in Z(\mathbb{Z}_{n_i})^*$ for each $i \in [k]$, then by Case-1 and the fact $d(x, y) = d(y, x)$, we have $d(x, y) = 2$. Similarly, if *y*^{*j*} = 0 for some *j* ∈ [*k*] and *y_i* ∈ *U*(\mathbb{Z}_{n_i}) for remaining *i* ∈ [*k*], then by **Case-2**, we obtain *d*(*x*, *y*) = 2.

Now let $y_j = 0$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. Then consider $z = (z_1, z_2, \dots, z_k) \in R$ such that $z_i = 0$ if $x_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j = 1$ if $x_j = 0$. It follows that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Also, $(y) \nsubseteq (z)$ and (*z*) ⊈ (*y*). Consequently, $x \sim z \sim y$ and so $d(x, y) = 2$. Next, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since $x \nsim y$, it implies that $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Consider $z = (z_1, z_2, \ldots, z_k)$ such that $z_i = 1$ if $x_i = 0$, and $z_j = 0$ if $x_j \in Z(\mathbb{Z}_{n_j})^*$. Consequently, we have $x \sim z \sim y$ in $\Gamma'(R)$. Therefore, $d(x, y) = 2$. Further, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $y_j \in Z(\mathbb{Z}_{n_i})^*$ for remaining $j \in [k]$. Since $x \neq y$ in $\Gamma'(R)$, we get $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Suppose that there exists exactly one $r \in [k]$ such that $x_r \in Z(\mathbb{Z}_{n_r})^*$ and $x_i = 0$ for each $i \in [k] \setminus \{r\}$. Also, $y_r \in Z(\mathbb{Z}_{n_r})^*$ and $y_i \in U(\mathbb{Z}_{n_i})$ for each $i \in [k] \setminus \{r\}$. Then $(x_r) \subseteq (y_r)$. It follows that $(x, y) \in S_r$. Let $a = (a_1, a_2, \ldots, a_r, \ldots, a_k) \in V(\Gamma'(R))$ such that $a \sim y$. Then $(y_r) \subset (a_r)$ and it follows that $(x_r) \subseteq (y_r) \subseteq (a_r)$. Consequently, $(x_i) \subseteq (a_i)$ for each $i \in [k]$ and so $a \neq x$ in $\Gamma'(R)$. Therefore, $d(x, y) > 2$. Consider $z = (z_1, z_2, \ldots, z_k)$ and $z' = (z_1')$ $\sum_{1}^{\prime} z_2^{\prime}$ $\sum_{i_2}^7, \ldots, z_k^7$ h_k ^{(k}) \in *R* such that

$$
z_i = \begin{cases} 1 & \text{if } x_i = 0, \\ 0 & \text{if } x_i \in Z(\mathbb{Z}_{n_i})^* \end{cases}
$$

and

$$
z'_{i} = \begin{cases} 0 & \text{if } y_{i} \in U(\mathbb{Z}_{n_{i}}), \\ 1 & \text{if } y_{i} \in Z(\mathbb{Z}_{n_{i}})^{*}.\end{cases}
$$

Then note that $(z) \nsubseteq (z')$ and $(z') \nsubseteq (z)$. Also, $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Moreover, $(y) \nsubseteq (z')$ and $(z') \nsubseteq (y)$. It follows that $x \sim z \sim z' \sim y$ in $\Gamma'(R)$. Therefore, $d(x, y) = 3$.

Next, we claim that if there exist *t* and $r \in [k]$ such that $x_t \in Z(\mathbb{Z}_{n_t})^*$ and $x_r \in Z(\mathbb{Z}_{n_r})^*$, then $d(x, y) \leq 2$. Since $x \neq y$, we obtain $(x) \subseteq (y)$. If there exists $i_1 \in [k]$ such that $x_{i_1}, y_{i_1} \in Z(\mathbb{Z}_{n_{i_1}})^*$, then take $r = i_1$. Now consider $z = (z_1, z_2, \dots, z_k) \in R$ such that

$$
z_i = \begin{cases} 0 & \text{if } i = t, \\ 1 & \text{if } i = r, \\ 0 & \text{if } y_i \in U(\mathbb{Z}_{n_i}) \text{ and } i \neq \{t, r\}, \\ 1 & \text{if } y_i \in Z(\mathbb{Z}_{n_i})^* \text{ and } i \neq \{t, r\}. \end{cases}
$$

Then note that $x \sim z \sim y$ in $\Gamma'(R)$. Therefore, $d(x, y) = 2$.

Case-4. $x_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $x_j \in Z(\mathbb{Z}_{n_i})^*$ for remaining $j \in [k]$. Let $y_j \in U(\mathbb{Z}_{n_i})$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. For $x \neq y$ in $\Gamma'(R)$, consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i = 0$ if $x_i \in U(\mathbb{Z}_{n_i})$, and $z_j = 1$ if $x_j \in Z(\mathbb{Z}_{n_j})^*$. Note that $(z) \nsubseteq (x)$ and $(z) \nsubseteq (y)$. Also, $(x) \nsubseteq (z)$ and $(y) \nsubseteq (z)$. Therefore, $x \sim z \sim y$ and so $d(x, y) = 2$. Next, let $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since $x \neq y$ in $\Gamma'(R)$, we get $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Thus, consider $z = (z_1, z_2, \ldots, z_k)$ such that $z_i = 1$ if $x_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j = 0$ if $x_j \in U(\mathbb{Z}_{n_i})$. Notice that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Similarly, $(y) \nsubseteq (z)$ and (*z*) ⊈ (*y*). Therefore, *x* ∼ *z* ∼ *y* and so $d(x, y) = 2$.

Case-5. $x_j \in Z(\mathbb{Z}_{n_j})^*$ and $x_l = 0$ for some $j, l \in [k]$, and $x_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. In view of the earlier cases and $d(x, y) = d(y, x)$, in this case we require to compute $d(x, y)$ only when $y = (y_1, y_2, \dots, y_k) \in R$ such that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For non-adjacent vertices *x* and *y*, choose $z = (z_1, z_2, \dots, z_k) \in R$ such that

$$
z_i = \begin{cases} 0 & \text{if } x_i \in Z(\mathbb{Z}_{n_i})^* \text{ and } x_i \in U(\mathbb{Z}_{n_i}), \\ 1 & \text{if } x_i = 0. \end{cases}
$$

Then observe that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Moreover, $(y) \nsubseteq (z)$ and $(z) \nsubseteq (y)$. Consequently, $x \sim z \sim y$. It follows that $d(x, y) = 2$.

Thus, the result holds. \square

Now for a positive integer *n*, let d_1, d_2, \ldots, d_t be all the proper divisors of *n*. Then define

 $\mathcal{A}_{d_i} = \{x \in \mathbb{Z}_n : \gcd(x, n) = d_i\}.$

We shall use the following facts and observations without referring them explicitly.

- (i) $|\mathcal{A}_{d_i}| = \phi(\frac{n}{d_i})$ (cf. [33]), where ϕ is the Euler-totient function.
- (ii) For each d_i , where $1 \le i \le t$, $\mathcal{A}_{d_i} \subsetneq Z(\mathbb{Z}_n)^*$.
- (iii) For $u, v \in \mathcal{A}_{d_i}$, we have $(u) = (v) = (d_i)$.

Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ ($k \ge 2$), where each p_i is a prime. For each $i \in [k]$, consider $X_i^0 = \{0\}$, $X_i^1 = U(\mathbb{Z}_{p_i^{m_i}})$ and X_i^j j_i ^{*i*} = $\mathcal{A}_{p_i^{j-1}}$ for 2 ≤ *j* ≤ *m_i*. Then

$$
|X_i^j| = \begin{cases} 1 & \text{if } j = 0, \\ p_i^{m_i} - p_i^{m_i - 1} & \text{if } j = 1, \\ p_i^{m_i - j + 1} - p_i^{m_i - j} & \text{if } 2 \le j \le m_i. \end{cases}
$$

Let $x = (x_1, x_2, \dots, x_k)$ and $y = (y_1, y_2, \dots, y_k) \in R$. One can observe that $(x) = (y)$ if and only if $(x_i) = (y_i)$ for each *i*. Consequently, each equivalence class of $V(\Gamma'(R))$, under the relation \equiv , is of the form $X_1^{j_1}$ $x_1^{j_1} \times X_2^{j_2}$ $x_2^{j_2} \times \cdots \times X_k^{j_k}$ *k* , where $0 \le j_r \le m_r$. Moreover, $|X_1^{j_1}|$ $x_1^{j_1} \times X_2^{j_2}$ $\frac{Z^{j_2}}{2} \times \cdots \times X_k^{j_k}$ $|X_i^j| = \prod_{i=1}^k |X_i^{j_i}|$ $\frac{j_i}{i}$.

In view of Lemma 3.1, now we calculate the Wiener index of $\Gamma'(R)$, where $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ and $k \ge 2$. Let $x = (x_1^{j_1})$ $j_1^j, x_2^{j_2}$ $x_2^{j_2}, \ldots, x_k^{j_k}$ $y_k^{j_k}$) and $y = (y_1^{l_1}, y_2^{l_2}, \dots, y_k^{l_k})$ *k*) be the representatives of two distinct equivalence classes $X_1^{j_1}$ $x_1^{j_1} \times X_2^{j_2}$ $x_2^{j_2} \times \cdots \times X_k^{j_k}$ $X_k^{j_k}$ and $X_1^{l_1} \times X_2^{l_2} \times \cdots \times X_k^{l_k}$ $\kappa_k^{\nu_k}$, respectively.

Theorem 3.2. Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ and S_r be the set defined in Lemma 3.1. Then the Wiener index of *the cozero-divisor graph* Γ ′ (*R*) *is given by*

$$
W(\Gamma'(R)) = 2 \sum_{\substack{(x_1^l, x_2^l, \ldots, x_k^{l_k}) \in \Upsilon' \\ x \neq y}} \left(\frac{\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i})}{2} \right) + \sum_{x \sim y} \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i}) \right) \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i}) \right) \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right) \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right) \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right) \left(\prod_{\substack{i=1 \ i \geq 1}}^{k} (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right).
$$

Example 3.3. Let $R \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9$. Then note that $X_1^0 = X_2^0 = X_3^0 = \{0\}$, $X_1^1 = U(\mathbb{Z}_2) = \{1\}$, $X_2^1 = U(\mathbb{Z}_4) = \{1,3\}$, $X_3^1 = U(\mathbb{Z}_9) = \{1, 2, 4, 5, 7, 8\}, X_2^2 = \mathcal{A}_2 = \{2\}$ *and* $X_3^2 = \mathcal{A}_3 = \{3, 6\}.$ *Thus, the set of all equivalence classes of V*(*Γ'***(***R***))** *is* **{** $X_1^{j_1}$ $X_1^{j_1} \times X_2^{j_2}$ $x_2^{j_2} \times X_3^{j_3}$ $j_3^j: 0 \le j_1 \le 1, 0 \le j_2, j_3 \le 2$ $\setminus \{X_1^0 \times X_2^0 \times X_3^0, X_1^1 \times X_2^1 \times X_3^1\}$. Consequently, we have the following 16 equivalence classes of $V(\Gamma'(R))$, viz. $Y_1 = X_1^0 \times X_2^0 \times X_3^1$, $Y_2 = X_1^0 \times X_2^0 \times X_3^2$, $Y_3 = X_1^0 \times X_2^1 \times X_3^0$ $Y_4 = X_1^0 \times X_2^2 \times X_3^0$, $Y_5 = X_1^0 \times X_2^1 \times X_3^1$, $Y_6 = X_1^0 \times X_2^2 \times X_3^1$, $Y_7 = X_1^0 \times X_2^1 \times X_3^2$, $Y_8 = X_1^0 \times X_2^2 \times X_3^1$, $Y_9 = X_1^0 \times X_2^2 \times X_3^1$ $Y_9 = X_1^1 \times X_2^0 \times X_{3'}^0$, $Y_{10} = X_1^1 \times X_2^0 \times X_{3'}^1$, $Y_{11} = X_1^1 \times X_2^0 \times X_{3'}^2$, $Y_{12} = X_1^1 \times X_2^1 \times X_{3'}^0$, $Y_{13} = X_1^1 \times X_2^1 \times X_{3'}^2$ $Y_{14} = X_1^1 \times X_2^2 \times X_3^0$, $Y_{15} = X_1^1 \times X_2^2 \times X_3^1$ and $Y_{16} = X_1^1 \times X_2^2 \times X_3^2$. Let y_i be the representative of the equivalence *class* Y_i , where $1 \le i \le 16$. Note that S_1 is an empty set and $S_2 = \{(y_4, y_{15})\}$, $S_3 = \{(y_2, y_{13})\}$. Now, the pair of *equivalence classes whose elements are at distance two in* Γ ′ (*R*) *are*

 $\{\{Y_1, Y_2\}, \{Y_1, Y_5\}, \{Y_1, Y_6\}, \{Y_1, Y_{10}\}, \{Y_1, Y_{15}\}, \{Y_2, Y_5\}, \{Y_2, Y_6\}, \{Y_2, Y_7\}, \{Y_2, Y_8\}, \{Y_2, Y_{10}\}, \{Y_2, Y_{11}\},$ $\{Y_2, Y_{15}\}, \{Y_2, Y_{16}\}, \{Y_3, Y_4\}, \{Y_3, Y_5\}, \{Y_3, Y_7\}, \{Y_3, Y_{12}\}, \{Y_3, Y_{13}\}, \{Y_4, Y_5\}, \{Y_4, Y_6\}, \{Y_4, Y_7\}, \{Y_4, Y_8\}, \{Y_4, Y_{12}\},$ $\{Y_4, Y_{13}\}, \{Y_4, Y_{14}\}, \{Y_4, Y_{16}\}, \{Y_5, Y_6\}, \{Y_5, Y_7\}, \{Y_5, Y_8\}, \{Y_6, Y_8\}, \{Y_6, Y_{15}\}, \{Y_7, Y_8\}, \{Y_7, Y_{13}\}, \{Y_8, Y_{13}\}, \{Y_8, Y_{15}\}, \{Y_9, Y_{16}\}, \{Y_9, Y_{17}\}, \{Y_9, Y_{18}\}, \{Y_9, Y_{19}\}, \{Y_9, Y_{10}\}, \{Y_9, Y_{11}\}, \{Y_1, Y_2$ $\{Y_8, Y_{16}\}, \{Y_9, Y_{10}\}, \{Y_9, Y_{11}\}, \{Y_9, Y_{12}\}, \{Y_9, Y_{13}\}, \{Y_9, Y_{14}\}, \{Y_9, Y_{15}\}, \{Y_9, Y_{16}\}, \{Y_{10}, Y_{11}\}, \{Y_{10}, Y_{15}\}, \{Y_{11}, Y_{13}\},$ $\{Y_{11}, Y_{15}\}, \{Y_{11}, Y_{16}\}, \{Y_{12}, Y_{13}\}, \{Y_{12}, Y_{14}\}, \{Y_{13}, Y_{14}\}, \{Y_{13}, Y_{16}\}, \{Y_{14}, Y_{15}\}, \{Y_{14}, Y_{16}\}, \{Y_{15}, Y_{16}\}\}.$

Thus, the Wiener index of the cozero-divisor graph of the ring $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9$ *is given by*

$$
W(\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9)) = 2 \times \frac{1}{2} [30 + 2 + 2 + 0 + 132 + 30 + 12 + 2 + 0 + 30 + 2 + 2 + 12 + 0 + 30 + 2]
$$

+ $[6(2 + 1 + 4 + 2 + 1 + 2 + 2 + 4 + 1 + 2) + 2(2 + 1 + 1 + 2 + 1)$
+ $2(6 + 2 + 1 + 6 + 2 + 1 + 6 + 2) + (1 + 6 + 2) + 12(1 + 6 + 2 + 2 + 4 + 1 + 6 + 2)$
+ $6(4 + 1 + 6 + 2 + 2 + 4 + 1 + 2) + 4(1 + 6 + 2 + 2 + 1 + 6 + 2) + 2(1 + 6 + 2 + 2 + 1)$
+ $(0) + 6(2 + 4 + 1 + 2) + 2(2 + 1) + 2(6 + 2) + 4(6) + (0)$]
+ $2[6(2 + 12 + 6 + 6 + 6) + 2(12 + 6 + 4 + 2 + 6 + 2 + 6 + 2) + 2(1 + 12 + 4 + 2 + 4)$
+ $(12 + 6 + 4 + 2 + 2 + 4 + 1 + 2) + 12(6 + 4 + 2) + 6(2 + 6) + 4(2 + 4) + 2(4 + 6 + 2)$
+ $(6 + 2 + 2 + 4 + 1 + 6 + 2) + 6(2 + 6) + 2(4 + 6 + 2) + 2(4 + 1) + 4(1 + 2) + (6 + 2) + 6(2)]$
+ $3[(1 \times 6) + (2 \times 4)]$
= 2611.

4. The Wiener index of the cozero-divisor graph of reduced ring

In this section, we obtain the Wiener index of the cozero-divisor graph of a finite commutative reduced ring. Let *R* be a reduced ring i.e. $R \cong F_{q_1} \times F_{q_2} \times \cdots \times F_{q_k}$ with $k \ge 2$, where F_{q_i} is a finite field with q_i elements. Notice that, for $x = (x_1, x_2, ..., x_k)$ and $y = (y_1, y_2, ..., y_k) \in R$ such that $(x) = (y)$, we have $x_i = 0$ if and only if $y_i = 0$ for each *i*. For $i_1, i_2, \ldots, i_r \in [k]$, define

 $X_{\{i_1, i_2, ..., i_r\}} = \{(x_1, x_2, ..., x_k) \in R : \text{only } x_{i_1}, x_{i_2}, ..., x_{i_r} \text{ are non-zero}\}.$

Note that the sets *XA*, where *A* is a non-empty proper subset of [*k*], are the equivalence classes of *V*(Γ ′ (*R*)) under the relation ≡. Let x_A be the representative of equivalence class X_A . Now we obtain the possible distances between the vertices of Υ′ (*R*).

Lemma 4.1. For the distinct vertices x_A and x_B of $\Upsilon'(R)$, we have

$$
d_{\Upsilon'(R)}(x_A, x_B) = \begin{cases} 1 & \text{if } A \nsubseteq B \text{ and } B \nsubseteq A, \\ 2 & \text{otherwise.} \end{cases}
$$

Proof. First assume that $A \nsubseteq B$ and $B \nsubseteq A$. Then $(x_A) \nsubseteq (x_B)$ and $(x_B) \nsubseteq (x_A)$. It follows that $d_{\Upsilon'(R)}(x_A, x_B) = 1$. Now, without loss of generality, let $A \subseteq B$. Then there exists $i \in [k]$ such that $i \notin B$ and so $i \notin A$. By Lemma 2.1, we have $x_A \sim x_{\{i\}} \sim x_B$. Thus, $d_{\Upsilon'(R)}(x_A, x_B) = 2$.

For distinct subsets $A, B \subseteq [k]$, define $D_1 = \{(A, B): A \nsubseteq B\}$ and $D_2 = \{(A, B): A \subseteq B\}$. Using Theorem 2.5 and the sets *D*¹ and *D*2, we obtain the Wiener index of the cozero-divisor Γ ′ (*R*) of a reduced ring *R* in the following theorem.

Theorem 4.2. *The Wiener index of the cozero-divisor graph of a finite commutative reduced ring* $R \cong F_{q_1} \times F_{q_2} \times F_{q_3}$ $\cdots \times F_{q_k}$, where $k \geq 2$, is given by

$$
W(\Gamma'(R)) = 2 \sum_{A \subseteq [k]} \left(\prod_{i \in A} (q_i - 1) \right) + \sum_{\{A, B\} \in D_1} \left(\prod_{i \in A} (q_i - 1) \right) \left(\prod_{j \in B} (q_j - 1) \right)
$$

+
$$
2 \sum_{\{A, B\} \in D_2} \left(\prod_{i \in A} (q_i - 1) \right) \left(\prod_{j \in B} (q_j - 1) \right).
$$

Proof. The proof follows from Lemma 4.1. \Box

Example 4.3. [23, Corollary 6.2] Let $R = \mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q$, where p and q are distinct primes. Then we have two *distinct equivalence classes,* $X_{\{1\}} = \{(a,0): a \in \mathbb{Z}_p \setminus \{0\}\}$ and $X_{\{2\}} = \{(0,b): b \in \mathbb{Z}_q \setminus \{0\}\}$, of the equivalence relation \equiv *Moreover, D*₁ = {{{1}, {2}}} *and D*₂ *is an empty set. Note that* $|X_{(1)}| = p - 1$ *and* $|X_{(2)}| = q - 1$ *. Consequently, by Theorem 4.2, we get* $W(\Gamma'(\mathbb{Z}_{pq})) = (p-1)(p-2) + (q-1)(q-2) + (p-1)(q-1) = p^2 + q^2 - 4p - 4q + pq + 5$.

Example 4.4. Let $R = \mathbb{Z}_{pqr} \cong \mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_r$, where p, q, r are distinct primes. For $a \in \mathbb{Z}_p \setminus \{0\}$, $b \in \mathbb{Z}_q \setminus \{0\}$ *and* $c \in \mathbb{Z}_r$ \ {0}*, we have the equivalence classes :* $X_{\{1\}} = \{(a, 0, 0)\}\$ *,* $X_{\{2\}} = \{(0, b, 0)\}\$ *,* $X_{\{3\}} = \{(0, 0, c)\}\$ *,* $X_{\{1, 2\}} =$ $\{(a, b, 0)\}, X_{\{1,3\}} = \{(a, 0, c)\}, X_{\{2,3\}} = \{(0, b, c)\}.$ Moreover, $D_1 = \{(11, 2)\}, \{(11, 3)\}, \{(2\}, \{3\}\}, \{(1, 2), \{1, 3\}\}.$ $\{ \{1, 2\}, \{2, 3\} \}, \{ \{1, 3\}, \{2, 3\} \}, \{ \{1\}, \{2, 3\} \}, \{ \{2\}, \{1, 3\} \}, \{ \{3\}, \{1, 2\} \}$ and $D_2 = \{ \{ \{1\}, \{1, 2\} \}, \{ \{1\}, \{1, 3\} \}, \{ \{2\}, \{1, 2\} \}$ $\{\{2\},\{2,3\}\},\{\{3\},\{1,3\}\},\{\{3\},\{2,3\}\}\}.$ Also, $|X_{[1]}| = p - 1$, $|X_{[2]}| = q - 1$, $|X_{[3]}| = r - 1$, $|X_{[1,2]}| = (p - 1)(q - 1)$, $|X_{[1,3]}| = (p-1)(r-1)$, $|X_{[2,3]}| = (q-1)(r-1)$. Then, by Theorem 4.2, the Wiener index of $\Gamma'(R)$ is given by

$$
W(\Gamma'(\mathbb{Z}_{pqr})) = 2\binom{p-1}{2} + 2\binom{q-1}{2} + 2\binom{r-1}{2} + 2\binom{(p-1)(q-1)}{2} + 2\binom{(p-1)(r-1)}{2} + 2\binom{(q-1)(r-1)}{2} + \binom{(p-1)(q-1)}{2} + (p-1)(q-1)(r-1) + (p-1)(r-1) + (p-1)(q-1)(r-1) + (p-1)(q-1)(r-1) + (p-1)(q-1)(r-1) + (p-1)(q-1)(r-1) + (p-1)(p-1)(r-1) + (p-1)(p-1)(q-1) + 2(p-1)\left[(p-1)(q-1)\right] + 2(p-1)\left[(p-1)(r-1)\right] + 2(q-1)\left[(p-1)(q-1)\right] + 2(r-1)\left[(p-1)(r-1)\right] + 2(r-1)\left[(q-1)(r-1)\right].
$$

Simplifying this expression, we get

 $W(\Gamma'(\mathbb{Z}_{pqr})) = pqr(p+q+r-3) + p^2q^2 + p^2r^2 + q^2r^2 - p^2(q+r) - q^2(p+r) - r^2(p+q) - 2(pq+pr+qr) + 4(p+q+r) - 3.$

Let $\tau(n)$ be the number of divisors of *n* and let $D = \{d_1, d_2, \ldots, d_{\tau(n)-2}\}\$ be the set of all proper divisors of $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \cdots p_k^{n_k}$ $\binom{n_k}{k}$, where $k \geq 2$. If $d_i | d_j$, then define

$$
A = \{(d_i, d_j) \in D \times D \mid d_i \neq p_r^s\};
$$

\n
$$
B = \{(d_i, d_j) \in D \times D \mid d_i = p_r^s \text{ and } \frac{n}{d_j} \neq p_r^t\};
$$

\n
$$
C = \{(d_i, d_j) \in D \times D \mid d_i = p_r^s \text{ and } \frac{n}{d_j} = p_r^t\}.
$$

Using the notations defined above, the following theorem which was proved in [23], by using different approach, can also be obtained by using Lemma 3.1 and Theorem 3.2.

Theorem 4.5. [23, Theorem 6.3] For $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \cdots p_k^{n_k}$ $\frac{n_k}{k}$ with $k \geq 2$ and p_i 's are distinct primes, we have

$$
W(\Gamma'(\mathbb{Z}_n)) = \sum_{i=1}^{\tau(n)-2} \phi\left(\frac{n}{d_i}\right) \left(\phi\left(\frac{n}{d_i}\right) - 1\right) + \frac{1}{2} \sum_{\substack{d_i \nmid d_i \\ d_j \nmid d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_j}\right) + 2 \sum_{\substack{(d_i, d_j) \in A \\ d_j \nmid d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + 2 \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \frac{1}{2} \sum_{\substack{(d_i, d_j) \in A \\ d_i \neq d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_i}\right) + \
$$

5. SageMath Code

In this section, we produce a SAGE code to compute the Wiener index of the cozero-divisor graph of ring classes considered in this paper including the ring Z*ⁿ* of integers modulo *n*. On providing the value of integer *n*, the following SAGE code computes the Wiener index of the graph Γ ′ (Z*n*).

```
cozero_divisor_graph=Graph()
E = []n=72
for i in range(n):
```

```
for j in range(n):
     if (i != j):
          p = gcd(i, n)q = gcd(j, n)if (p\%q! = 0 \text{ and } q\%p! = 0):
               E. append ((i, j))
```
 $cozero_divisor_graph$. $add_edges(E)$

```
i f(E = -1):
    V=[]for i in range(1, n):
         if (gcd(i, n)! = 1):
             V. append ( i )
    cozero_divisor_graph.add_vertices(V)
```
 $W = \csc$ divisor graph. wiener index ();

```
if (W = 00):
    print ("Wiener<Index<undefined<br/>for<Null<Graph")
e ls e :
    print ( "Wiener Index : " , W)
```
Using the given code, in Table 1, we obtain the Wiener index of Γ ′ (Z*n*) for some values of *n*.

		500	1000	1500	2000	2500
$W(\Gamma'(\mathbb{Z}_n))$	2954				77174 306202 930248 1222530	1946274

Table 1: Wiener index of Γ ′ (Z*n*)

Let *R* be a reduced ring i.e. $R \cong F_{q_1} \times F_{q_2} \times \cdots \times F_{q_n}$, where F_{q_i} is a field with q_i elements. The following code determines the Wiener index of $\Gamma'(R)$ by providing the values of the field size q_i ($1 \le i \le n$).

```
field_orders = [3, 5, 7]P=Subsets (range (len (field_orders)))[1:-1]
P=[Set(i) for i in P]D1=[]D2 = 1for i in P:
     for j in P :
           if (\text{not}(i \text{.} \text{issubset}(i)) \text{ or } j \text{.} \text{issubset}(i)) and P \text{.} \text{index}(i) > P \text{.} \text{index}(j)):
                D1 . append ([i, j])if (i.issubset(j) and i!=j :
               D2. append ([i, j])partial-sum=0
for i in P:
     sum-pp=1
     for j in i :
           sum_pp *= field_orders[j]−1
      partial\_sum + = ((sum\_pp * (sum\_pp - 1))/2)D1_sum=0for i in D1 :
     D1<sub>-pp=1</sub>
     for j in i [ 0 ] :
           D1_pp <sub>*</sub>= field_orders[j]−1
     for k in i [ 1 ] :
           D1_pp <sub>*</sub>= field_orders[k]−1
     D1_sum += D1_pp
D2_sum=0
for i in D2 :
     D2-pp=1
     for j in i [ 0 ] :
           D2_pp <sub>*</sub>= field_orders[j]−1
     for k in i [ 1 ] :
           D2_pp <sub>*</sub>= field_orders[k]−1
     D2_sum += D2_pp
W = 2 * partial_sum + D1_sum + 2*D2_sum
```
print ("Wiener Index : " , W)

Using the given code, in the following tables, we obtain the Wiener index of the cozero-divisor graphs of the reduced rings $F_{q_1} \times F_{q_2}$ (see Table 2) and $F_{q_1} \times F_{q_2} \times F_{q_3}$ (see Table 3), respectively.

Table 2: Wiener index of $\Gamma'(F_{q_1} \times F_{q_2})$

(q_1, q_2, q_3)			$(7,8,13)$ $(9,25,49)$ $(53,64,81)$ $(83,101,121)$ $(125,131,169)$ $(289,343,361)$	
$W(\Gamma'(F_{q_1} \times F_{q_2} \times F_{q_3}))$ 35196	2500400	108637254 620456582	2355211790	71251552134

Table 3: Wiener index of $\Gamma'(F_{q_1} \times F_{q_2} \times F_{q_3})$

Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$. Then the following SAGE code gives the value of $W(\Gamma'(R))$ after providing the values of $p_i^{m_i} (1 \le i \le k)$, where each p_i is a prime.

```
orders = [2, 4, 9]A = cartesian_product([range(i) for i in orders]). list()
units = [(i \text{ for } i \text{ in } range(1, j) \text{ if } gcd(i, j) == 1) \text{ for } j \text{ in } orders]def contQ ( 1st1 , 1st2 ):
      flag = Truefor i in range ( len ( orders ) ) :
           p = gcd(lst1[i], orders[i])q=gcd(lst2[i], orders[i])
            if (\text{not}(\text{lst1}[\text{i}]=0 \text{ or } \{\text{lst2}[\text{i}]\}. issubset (\text{units}[\text{i}]) \text{ or } p\%q = 0):
                 flag = Falsereturn flag
E = []
for i in A:
      for j in A:
            if (\text{not}(\text{contQ}(i, j)) \text{ or } \text{contQ}(j, i)) and A.\text{index}(i) > A.\text{index}(j)):
                 E . append ([i, j])G = Graph()G. add_edges(E)W<sup>=</sup>G. wiener_index ()
print ( " Wiener Index : " , W)
```
Using the given code, we obtain the Wiener index of the cozero-divisor graph of the ring $R \cong \mathbb{Z}_{p_1^{m_1}} \times$ $\mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$, where $k \geq 2$, in Table 4.

R	$W(\Gamma'(R))$
$\overline{\mathbb{Z}}_4 \times \mathbb{Z}_9$	420
$\overline{\mathbb{Z}}_9\times\mathbb{Z}_{25}$	8808
$\mathbb{Z}_{16} \times \mathbb{Z}_{25}$	48870
$\overline{\mathbb{Z}_{27}} \times \mathbb{Z}_{49}$	268022
$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$	521
$\mathbb{Z}_5\times\mathbb{Z}_7\times\mathbb{Z}_{11}$	14948
$\mathbb{Z}_8\times\mathbb{Z}_9\times\mathbb{Z}_{16}$	167769
$\mathbb{Z}_4\times\mathbb{Z}_9\times\mathbb{Z}_{25}$	327394
$\overline{\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_9}$	232937
$\overline{\mathbb{Z}_3} \times \mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_8$	333963

Table 4: Wiener index of Γ ′ (*R*)

Acknowledgement: We would like to thank the referee for his/her valuable suggestions which helped us to improve the presentation of the paper.

Declarations

Conflicts of interest/**Competing interests**: There is no conflict of interest regarding the publishing of this paper.

Availability of data and material (data transparency): Not applicable.

References

- [1] M. Afkhami and K. Khashyarmanesh, *The cozero-divisor graph of a commutative ring*, Southeast Asian Bull. Math. **35** (2011),753–762.
- [2] M. Afkhami and K. Khashyarmanesh, *On the cozero-divisor graphs of commutative rings and their complements*, Bull. Malays. Math. Sci. Soc. (2). **35** (2012),935–944.
- [3] M. Afkhami and K. Khashyarmanesh, *Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring*, J. Algebra Appl. **11** (2012):1250103.
- [4] M. Afkhami and K. Khashyarmanesh, *On the cozero-divisor graphs and comaximal graphs of commutative rings*, J. Algebra Appl. **12** (2013):1250173.
- [5] S. Akbari, F. Alizadeh, and S. Khojasteh, *Some results on cozero-divisor graph of a commutative ring*, J. Algebra Appl. **13** (2014):1350113.
- [6] S. Akbari and S. Khojasteh, *Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree*, Comm. Algebra. **42**(2014),1594–1605.
- [7] D. F. Anderson, M. C. Axtell, and J. A. Stickles, *Zero-divisor graphs in commutative rings*, Commutative algebra: Noetherian and non-Noetherian perspectives, 23–45, 2011.
- [8] D. F. Anderson and P. S. Livingston, *The zero-divisor graph of a commutative ring*, J. Algebra. **217** (1999),434–447.
- [9] T. Asir and V. Rabikka, *The Wiener index of the zero-divisor graph of* Z*n*, Discrete Appl. Math. **319** (2022),461–471.
- [10] T. Asir, V. Rabikka, and H. Su, *On Wiener index of unit graph associated with a commutative ring*, Algebra Colloq. **29** (2022),221–230.
- [11] M. Bakhtyiari, R. Nikandish, and M. J. Nikmehr, *Coloring of cozero-divisor graphs of commutative von Neumann regular rings*, Proc. Indian Acad. Sci. Math. Sci. **130** (2020):49.
- [12] I. Beck, *Coloring of commutative rings*, J. Algebra. **116** (1988),208–226.
- [13] D. Bonchev, *The Wiener number–some applications and new developments*, In Topology in Chemistry, 58–88, Elsevier, 2002.
- [14] J. Dinar, Z. Hussain, S. Zaman, and S. U. Rehman, *Wiener index for an intuitionistic fuzzy graph and its application in water pipeline network*, Ain Shams Eng. J. **14** (2023),101826.
- [15] A. A. Dobrynin, R. Entringer, and I. Gutman, *Wiener index of trees: theory and applications*, Acta Appl. Math. **66** (2001),211–249.
- [16] I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo, *Some recent results in the theory of the Wiener number*, Indian J. Chem. **32A** (1993),651–661.
- [17] H. Hosoya, *Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons*, Bull. Chem. Soc. Jpn. **44** (1971),2332–2339.
- [18] D. Janežič, A. Miličević, S. Nikolić, and N. Trinajstić, Graph-theoretical matrices in chemistry, (second edition), CRC Press, Boca Raton, FL, 2015.
- [19] M. Karelson, *Molecular descriptors in QSAR*/*QSPR*, Wiley-Interscience, 2000.
- [20] L. Lu, L. Feng, and W. Liu, *Signed zero-divisor graphs over commutative rings*, Commun. Math. Stat. **2022** (2022), 1–15.
- [21] L. Lu, L. Feng, W. Liu, and G. Yu, *Zero-divisor graphs of rings and their Hermitian matrices*, Bull. Malays. Math. Sci. Soc. **46** (2023):130.
- [22] A. Mallika and R. Kala, *Rings whose cozero-divisor graph has crosscap number at most two*, Discrete Math. Algorithms Appl. **9** (2017):1750074.
- [23] P. Mathil, B. Baloda, and J. Kumar, *On the cozero-divisor graphs associated to rings*, AKCE Int. J. Graphs Comb. **19** (2022),238–248.
- [24] K. Mönius, Eigenvalues of zero-divisor graphs of finite commutative rings, J. Algebraic Combin. **54** (2021),787-802.
- [25] R. Nikandish, M. J. Nikmehr, and M. Bakhtyiari, *Metric and strong metric dimension in cozero-divisor graphs*, Mediterr. J. Math. **18** (2021):112.
- [26] S. Nikolić and N. Trinajstić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995),105-129.
- [27] A. J. Schwenk, *Computing the characteristic polynomial of a graph*, In Graphs and combinatorics, Lecture Notes in Math., 406,153–172, Springer, Berlin, 1974.
- [28] K. Selvakumar, P. Gangaeswari, and G. Arunkumar, *The Wiener index of the zero-divisor graph of a finite commutative ring with unity*, Discrete Appl. Math. **311** (2022),72–84.
- [29] P. Singh and V. K. Bhat, *Adjacency matrix and Wiener index of zero divisor graph* Γ(*Zn*), J. Appl. Math. Comput. **66** (2021),717–732.
- [30] D. B. West, *Introduction to graph theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- [31] H. Wiener, *Structural determination of para*ffi*n boiling points*, J. Am. Chem. Soc. **69** (1947),17–20.
- [32] K. Xu, M. Liu, K. C. Das, I. Gutman, and B. Furtula, *A survey on graphs extremal with respect to distance-based topological indices*, MATCH Commun. Math. Comput. Chem. **71** (2014),461–508.
- [33] M. Young, *Adjacency matrices of zero-divisor graphs of integers modulo n*, Involve. **8** (2015),753–761.