

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Wiener index of the cozero-divisor graph of a finite commutative ring

Barkha Baloda^a, Praveen Mathil^a, Jitender Kumar^{a,*}, Aryan Barapatre^a

^aDepartment of Mathematics, Birla Institute of Technology and Science Pilani, Pilani-333031, India

Abstract. Let R be a ring with unity. The cozero-divisor graph $\Gamma'(R)$ of a ring R is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of R, and two distinct vertices x and y are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. To extend the corresponding results of the ring \mathbb{Z}_n of integer modulo n, in this article, we derive a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring R. As applications, we compute the Wiener index of $\Gamma'(R)$, when either R is the product of ring of integers modulo n or a reduced ring. At the final part of this paper, we provide a SageMath code to compute the Wiener index of the cozero-divisor graph of these classes of rings including the ring \mathbb{Z}_n of integers modulo n.

1. Introduction and Preliminaries

The Wiener index is one of the most frequently used topological indices in chemistry as a molecular shape descriptor. This was first used by H. Wiener in 1947 and then the formal definition of the Wiener index was introduced by Hosoya [17]. The *Wiener index* of a graph is defined as the sum of the lengths of the shortest paths between all pairs of vertices in a graph. Other than the chemistry, the Wiener index was used to find various applications in quantitative structure-property relationships (see [19]). The Wiener index was also employed in crystallography, communication theory, facility location, cryptography, etc. (see [13, 16, 26]). An application of the Wiener index has been established in the water pipeline network, which is essential for water supply management (see [14]). Other utilization of the Wiener index can be found in [15, 18, 31, 32] and reference therein.

The association of the graphs to rings was introduced by Beck [12] and he was mainly interested in the coloring of a graph associated to a commutative ring. Then Anderson and Livingston [8] studied a subgraph of the graph introduced by Beck and named as the zero divisor graph. Further, various aspects of the zero divisor graphs have been explored, see [7, 20, 21, 24] and reference therein. Moreover, various other graphs, namely: inclusion ideal graph, total graph, annihilating-ideal graph, co-maximal graph and cozero-divisor graphs of rings have been introduced and studied extensively. Afkhami *et al.* [1] introduced the cozero-divisor graph of a commutative ring and studied its basic graph-theoretic properties including

2020 Mathematics Subject Classification. Primary 05C25 mandatory; Secondary 05C50

Keywords. Cozero-divisor graph, Wiener index, reduced ring, ring of integer modulo n.

Received: 02 September 2023; Revised: 29 December 2023; Accepted: 26 January 2024

Communicated by Paola Bonacini

The first author gratefully acknowledge for providing financial support to CSIR (09/719(0093)/2019-EMR-I) government of India. The second author sincerely acknowledge for providing financial support to Birla Institute of Technology and Science (BITS) Pilani, Pilani-333031, India.

Email addresses: barkha0026@gmail.com (Barkha Baloda), maithilpraveen@gmail.com (Praveen Mathil), jitenderarora09@gmail.com (Jitender Kumar), aryanbar@gmail.com (Aryan Barapatre)

^{*} Corresponding author: Jitender Kumar

completeness, girth and clique number etc. They also investigated the relations between the zero-divisor graph and the cozero-divisor graph. The *cozero-divisor* graph $\Gamma'(R)$ of the ring R with unity is an undirected simple graph whose vertex set is the set of all non-zero and non-unit elements of R, and two distinct vertices x, y are adjacent if and only if $x \notin Ry$ and $y \notin Rx$. The complement of the cozero-divisor graph and the characterization of the commutative rings with forest, star, or unicyclic cozero-divisor graphs have been investigated in [2]. Akbari *et al.* [5] studied the cozero-divisor graph associated to the polynomial ring and the ring of power series. Some of the work on the cozero-divisor graphs of rings can be found in [3, 4, 6, 11, 22, 23, 25].

Over the recent years, the Wiener index of certain graphs associated with rings has been studied by various authors. The Wiener index of the zero divisor graph of the ring \mathbb{Z}_n of integers modulo n has been studied in [9, 29]. Recently, Selvakumar $et\ al$. [28] calculated the Wiener index of the zero divisor graph for a finite commutative ring with unity. The Wiener index of the unit graph associated with commutative rings has been investigated in [10]. The Wiener index of the cozero-divisor graph of the ring \mathbb{Z}_n has been obtained in [23]. The aim of this manuscript is to extend the results of [23] to an arbitrary ring. In this connection, we study the Wiener index of the cozero-divisor graph of a finite commutative ring with unity. First, we provide the necessary results and notations used throughout the paper. The remaining paper is arranged as follows: In Section 2, a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring with unity is presented. Using this formula, in Section 3, we obtain the Wiener index of the cozero-divisor graph of the ring R, where R is the product of ring of integers modulo R. In Section 4, we compute the Wiener index of the cozero-divisor graph of various classes of rings.

Now we recall the necessary definitions, results and notations of graph theory from [30]. A graph Γ is a pair $\Gamma = (V, E)$, where $V = V(\Gamma)$ and $E = E(\Gamma)$ are the set of vertices and edges of Γ , respectively. Let Γ be a graph. Two distinct vertices x and y of Γ are adjacent, denoted by $x \sim y$, if there is an edge between x and y. Otherwise, we denote it by $x \not\sim y$. A subgraph Γ' of a graph Γ is a graph such that $V(\Gamma') \subseteq V(\Gamma)$ and $E(\Gamma') \subseteq E(\Gamma)$. If $U \subseteq V(\Gamma)$, then the subgraph $\Gamma(U)$ of Γ induced by U is the graph with vertex set U and two vertices of $\Gamma(U)$ are adjacent if and only if they are adjacent in Γ . The complement Γ of Γ is a graph with the same vertex set as Γ and distinct vertices x, y are adjacent in Γ if they are not adjacent in Γ . A graph Γ is said to be complete if any two distinct vertices are adjacent. The complete graph on n vertices is denoted by K_n . A path in a graph is a sequence of distinct vertices with the property that each vertex in the sequence is adjacent to the next vertex of it. The graph Γ is said to be connected if there is a path between every pair of vertices. The distance between any two vertices x and y of Γ , denoted by d(x,y) (or $d_{\Gamma}(x,y)$), is the number of edges in a shortest path between x and y. The Wiener index $W(\Gamma)$ of the connected graph Γ is defined as the sum of all the distances between every pair of vertices, that is

$$W(\Gamma) = \frac{1}{2} \sum_{u \in V(\Gamma)} \sum_{v \in V(\Gamma)} d(u, v)$$

Let $\Gamma_1, \Gamma_2, \dots, \Gamma_k$ be k pairwise disjoint graphs. Then the *generalised join graph* $\Gamma[\Gamma_1, \Gamma_2, \dots, \Gamma_k]$ of $\Gamma_1, \Gamma_2, \dots, \Gamma_k$ is the graph formed by replacing each vertex u_i of Γ by Γ_i and then joining each vertex of Γ_i to every vertex of Γ_i whenever $u_i \sim u_i$ in Γ (cf. [27]).

Let R be a ring. An element a of R is said to be a *zero-divisor* if there exists a non-zero element $x \in R$ such that ax = xa = 0. An element u of a ring R with unity 1, is said to be a *unit* if there exists $v \in R$ such that uv = vu = 1. The set of zero-divisors and the set of units of the ring R are denoted by Z(R) and U(R), respectively. The set of all non-zero zero-divisors of the ring R is denoted by $Z(R)^*$. For $x \in R$, the principal ideal generated by x is denoted by x. For a positive integer x, we write x we write x is denoted by x.

2. Formulae for the Wiener index of the cozero-divisor graph of a finite commutative ring

The purpose of this section is to provide a closed-form formula of the Wiener index of the cozero-divisor graph of a finite commutative ring. Let R be a finite commutative ring with unity. Define a relation \equiv on $V(\Gamma'(R))$ such that

$$x \equiv y$$
 if and only if $(x) = (y)$.

Note that \equiv is an equivalence relation. Let x_1, x_2, \dots, x_k be the representatives of the equivalence classes of X_1, X_2, \dots, X_k , respectively under the relation \equiv . We begin with the following lemma.

Lemma 2.1. *In the cozero-divisor graph* $\Gamma'(R)$ *, an element of* X_i *is adjacent to an element of* X_j *if and only if* $(x_i) \nsubseteq (x_j)$ *and* $(x_i) \nsubseteq (x_i)$.

Proof. Suppose $a \in X_i$ and $b \in X_j$. Then $(a) = (x_i)$ and $(b) = (x_j)$ in R. If $a \sim b$ in $\Gamma'(R)$, then $(a) \nsubseteq (b)$ and $(b) \nsubseteq (a)$. It follows that $(x_i) \nsubseteq (x_j)$ and $(x_j) \nsubseteq (x_i)$. The converse holds by the definition of $\Gamma'(R)$. \square

Corollary 2.2. (i) For $i \in [k]$, the induced subgraph $\Gamma'(X_i)$ of $\Gamma'(R)$ is isomorphic to $\overline{K}_{|X_i|}$.

(ii) For distinct i, $j \in [k]$, an element of X_i is adjacent to either all or none of the elements of X_i .

Define a subgraph $\Upsilon'(R)$ (or Υ') induced by the set $\{x_1, x_2, ..., x_k\}$ of representatives of the respective equivalence classes $X_1, X_2, ..., X_k$ under the relation \equiv .

In view of Corollary 2.2 and Υ' (defined above), we have the following proposition.

Proposition 2.3. For each $i \in [k]$, let Γ'_i be the subgraph of $\Gamma'(R)$ induced by the set X_i . Then

$$\Gamma'(R) = \Upsilon'[\Gamma'_1, \Gamma'_2, \dots, \Gamma'_k].$$

Lemma 2.4. Let $\Upsilon'(R)$ be a subgraph of $\Gamma'(R)$ defined above and let $\Upsilon'(R)$ contains at least two vertices. Then $\Upsilon'(R)$ is connected if and only if the cozero-divisor graph $\Gamma'(R)$ is connected. Moreover, for a connected graph $\Gamma'(R)$ and $a, b \in V(\Gamma'(R))$, we have

$$d_{\Gamma'(R)}(a,b) = \begin{cases} 2 & \text{if } a,b \in X_i \text{ for some } i, \\ d_{\Upsilon'(R)}(x_i,x_j) & \text{if } a \in X_i, b \in X_j \text{ and } i \neq j. \end{cases}$$

Proof. First suppose that the graph $\Upsilon'(R)$ is connected. Let a,b be two arbitrary vertices of $\Gamma'(R)$. Suppose that $a \in X_i$ and $b \in X_j$. If i = j, then $a \not\sim b$ in $\Gamma'(R)$. Since $\Upsilon'(R)$ is connected, we have $x_t \in X_t$ such that $x_i \sim x_t$ in $\Gamma'(R)$. Consequently, $a \sim x_t \sim b$ in $\Gamma'(R)$ and $d_{\Gamma'(R)}(a,b) = 2$. We may now suppose that $i \neq j$. If $a \sim b$, then there is nothing to prove. Further, suppose that $a \not\sim b$ in $\Gamma'(R)$. Connectedness of $\Upsilon'(R)$ implies that there exists a path $x_i \sim x_{i_1} \sim x_{i_2} \sim \cdots \sim x_{i_t} \sim x_j$, where $i \neq j$. It follows that $a \sim x_{i_1} \sim x_{i_2} \sim \cdots \sim x_{i_t} \sim b$ in $\Gamma'(R)$ and $d_{\Gamma'(R)}(a,b) = d_{\Upsilon'(R)}(x_i,x_j)$. Therefore, $\Gamma'(R)$ is connected. The converse is straightforward. \square

Let *R* be a finite commutative ring with unity. As a consequence of Proposition 2.3 and Lemma 2.4, we have the following theorem.

Theorem 2.5. The Wiener index of the cozero-divisor graph $\Gamma'(R)$ of a finite commutative ring with unity is given by

$$W(\Gamma'(R)) = 2\sum_{i} \binom{|X_i|}{2} + \sum_{1 \le i < j \le k} |X_i| |X_j| d_{\Upsilon'(R)}(x_i, x_j),$$

where x_i is a representative of the equivalence class X_i under the relation \equiv .

In the subsequent sections, we use Theorem 2.5 to derive the Wiener index of the cozero-divisor graph $\Gamma'(R)$ of various classes of rings.

3. Wiener index of the cozero-divisor graph of the product of ring of integers modulo n

First note that the cozero-divisor graph $\Gamma'(\mathbb{Z}_4)$ is a graph with exactly one vertex. Observe that the graph $\Gamma'(\mathbb{Z}_p)$, where p is a prime, is a graph without any vertices. Moreover, for $\alpha \geq 2$, the cozero-divisor graph of the ring $\mathbb{Z}_{p^{\alpha}}$, where $p^{\alpha} \neq 4$, is a graph with $p^{\alpha-1}-1$ vertices without any edge. Consequently, except the ring $\mathbb{Z}_{p^{\alpha}}$, we obtain the Wiener index of the cozero-divisor graph of the ring R such that $R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ or $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$. In this connection, first we obtain all the possible distances d(x, y) of any two vertices x, y of the graph $\Gamma'(R)$. We begin with the following lemma.

Lemma 3.1. Let $R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ and let $x = (x_1, x_2, \dots, x_r, \dots, x_k)$, $y = (y_1, y_2, \dots, y_r, \dots, y_k) \in R$. Define $S_r = \{(x, y) : x_r, y_r \in \mathbb{Z}(\mathbb{Z}_{n_r})^* \text{ and } (x_r) \subseteq (y_r), x_i = 0, y_i \in U(\mathbb{Z}_{n_i}) \text{ for each } i \neq r\}$. Then

$$d_{\Gamma'(R)}(x,y) = \begin{cases} 1 & \text{if } x \sim y, \\ 2 & \text{if } x \not\sim y \text{ and } (x,y) \notin S_r \text{ for all } r, \\ 3 & \text{if } (x,y) \in S_r \text{ for some } r. \end{cases}$$

Proof. Recall that all the elements of the ring \mathbb{Z}_{n_i} are either units or zero-divisors. For $R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$, the definition of $\Gamma'(R)$ implies that for $x = (x_1, x_2, \dots, x_k) \in V(\Gamma'(R))$, all x_i 's $(1 \le i \le k)$ are neither units nor zero elements. Clearly, if $x \sim y$, then d(x, y) = 1. Consequently, to compute the distances d(x, y) between any two non-adjacent vertices x and y of $\Gamma'(R)$, we consider the following cases on the possibilities of x_i 's such that $x \in V(\Gamma'(R))$, that is, x is a non-unit and non-zero element of the ring R.

Case-1. $x_i \in Z(\mathbb{Z}_{n_i})^*$ for each $i \in [k]$. First suppose that $y_i \in Z(\mathbb{Z}_{n_i})^*$ for each $i \in [k]$. Then consider $z = (1,0,\ldots,0) \in R$. Note that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Similarly, $(y) \nsubseteq (z)$ and $(z) \nsubseteq (y)$. It follows that $x \sim z \sim y$ in $\Gamma'(R)$ and so d(x,y) = 2. Now let $y_j = 0$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. Since $x \not\sim y$, it implies that $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Choose $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i = 0$ if $y_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j \in U(\mathbb{Z}_{n_j})$ if $y_j = 0$. Note that $(z) \nsubseteq (x)$ and $(z) \nsubseteq (y)$. Also, $(x) \nsubseteq (z)$ and $(y) \nsubseteq (z)$. Therefore, $x \sim z \sim y$ and so d(x,y) = 2. Further, note that if $y_j = 0$ for some $j \in [k]$ and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$, then one can observe that $x \sim y$ and so d(x,y) = 1. Now, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $y_j \in Z(\mathbb{Z}_{n_j})^*$ for remaining $j \in [k]$. Since $x \not\sim y$, we obtain $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Thus, consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i = 0$ if $y_i \in U(\mathbb{Z}_{n_i})$, and $z_j \in U(\mathbb{Z}_{n_j})$ if $y_j \in Z(\mathbb{Z}_{n_j})^*$. It follows that $x \sim z \sim y$ in $\Gamma'(R)$ and so d(x,y) = 2. Finally, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j,l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. With this possibility, we have $(x) \not\subseteq (y)$ and $(y) \not\subseteq (x)$. Thus, (x,y) = 1.

Case-2. $x_j = 0$ for some $j \in [k]$ and $x_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since d(x, y) = d(y, x), then by **Case-1**, for $y = (y_1, y_2, \dots, y_k)$ such that $y_i \in Z(\mathbb{Z}_{n_i})^*$ for each $i \in [k]$, we get d(x, y) = 1. Now let $y_j = 0$ for some $j \in [k]$ and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For $x \not\sim y$, consider $z = (z_1, z_2, \dots, z_k) \in R$ such that

$$z_i = \begin{cases} 1 & \text{when both } x_i = y_i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

With this choice of z, note that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Similarly, $(y) \nsubseteq (z)$ and $(z) \nsubseteq (y)$. It follows that $x \sim z \sim y$ and so d(x,y) = 2. Further, suppose that $y_j = 0$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. Since $x \not\sim y$, we obtain $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Consider $z = (z_1, z_2, \ldots, z_k)$ such that $z_i \in U(\mathbb{Z}_{n_i})$ if $y_i = 0$, and $z_j = 0$ if $y_j \in Z(\mathbb{Z}_{n_j})^*$. It follows that $x \sim z \sim y$. Consequently, d(x, y) = 2. Next, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $y_j \in Z(\mathbb{Z}_{n_j})^*$ for remaining $j \in [k]$. Since $x \not\sim y$, we have $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Then consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that

$$z_i = \begin{cases} 0 & \text{if } y_i \in U(\mathbb{Z}_{n_i}), \\ 1 & \text{if } y_i \in Z(\mathbb{Z}_{n_i})^*. \end{cases}$$

It follows that $x \sim z \sim y$ in $\Gamma'(R)$ and so d(x,y) = 2. Finally, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j,l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For $x \not\sim y$, consider $z = (z_1, z_2, \dots, z_k) \in R$ such that $z_i \in U(\mathbb{Z}_{n_i})$ if $x_i = 0$, and $z_j = 0$ if $x_j \in U(\mathbb{Z}_{n_j})$. Consequently, $x \sim z \sim y$ and so d(x,y) = 2.

Case-3. $x_j = 0$ for some $j \in [k]$ and $x_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. If $y = (y_1, y_2, ..., y_k)$ is such that $y_i \in Z(\mathbb{Z}_{n_i})^*$ for each $i \in [k]$, then by **Case-1** and the fact d(x, y) = d(y, x), we have d(x, y) = 2. Similarly, if $y_j = 0$ for some $j \in [k]$ and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$, then by **Case-2**, we obtain d(x, y) = 2.

Now let $y_j = 0$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. Then consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i = 0$ if $x_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j = 1$ if $x_j = 0$. It follows that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Also, $(y) \nsubseteq (z)$ and $(z) \nsubseteq (y)$. Consequently, $x \sim z \sim y$ and so d(x,y) = 2. Next, assume that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since $x \not\sim y$, it implies that $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Consider $z = (z_1, z_2, \ldots, z_k)$ such that $z_i = 1$ if $x_i = 0$, and $z_j = 0$ if $x_j \in Z(\mathbb{Z}_{n_j})^*$. Consequently, we have $x \sim z \sim y$ in $\Gamma'(R)$. Therefore, d(x,y) = 2. Further, let $y_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $y_j \in Z(\mathbb{Z}_{n_j})^*$ for remaining $j \in [k]$. Since $x \not\sim y$ in $\Gamma'(R)$, we get $(x_i) \subseteq (y_i)$ for each $i \in [k]$. Suppose that there exists exactly one $r \in [k]$ such that $x_r \in Z(\mathbb{Z}_{n_r})^*$ and $x_i = 0$ for each $i \in [k] \setminus \{r\}$. Also, $y_r \in Z(\mathbb{Z}_{n_r})^*$ and $y_i \in U(\mathbb{Z}_{n_i})$ for each $i \in [k] \setminus \{r\}$. Then $(x_r) \subseteq (y_r)$. It follows that $(x,y) \in S_r$. Let $a = (a_1, a_2, \ldots, a_r, \ldots, a_k) \in V(\Gamma'(R))$ such that $a \sim y$. Then $(y_r) \subseteq (a_r)$ and it follows that $(x_r) \subseteq (y_r) \subseteq (a_r)$. Consequently, $(x_i) \subseteq (a_i)$ for each $i \in [k]$ and so $a \not\sim x$ in $\Gamma'(R)$. Therefore, d(x,y) > 2. Consider $z = (z_1, z_2, \ldots, z_k)$ and $z' = (z'_1, z'_2, \ldots, z'_k) \in R$ such that

$$z_i = \begin{cases} 1 & \text{if } x_i = 0, \\ 0 & \text{if } x_i \in Z(\mathbb{Z}_{n_i})^* \end{cases}$$

and

$$z_i' = \begin{cases} 0 & \text{if } y_i \in U(\mathbb{Z}_{n_i}), \\ 1 & \text{if } y_i \in Z(\mathbb{Z}_{n_i})^*. \end{cases}$$

Then note that $(z) \nsubseteq (z')$ and $(z') \nsubseteq (z)$. Also, $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Moreover, $(y) \nsubseteq (z')$ and $(z') \nsubseteq (y)$. It follows that $x \sim z \sim z' \sim y$ in $\Gamma'(R)$. Therefore, d(x,y) = 3.

Next, we claim that if there exist t and $r \in [k]$ such that $x_t \in Z(\mathbb{Z}_{n_t})^*$ and $x_r \in Z(\mathbb{Z}_{n_r})^*$, then $d(x, y) \leq 2$. Since $x \not\sim y$, we obtain $(x) \subseteq (y)$. If there exists $i_1 \in [k]$ such that $x_{i_1}, y_{i_1} \in Z(\mathbb{Z}_{n_{i_1}})^*$, then take $r = i_1$. Now consider $z = (z_1, z_2, \dots, z_k) \in R$ such that

$$z_{i} = \begin{cases} 0 & \text{if } i = t, \\ 1 & \text{if } i = r, \\ 0 & \text{if } y_{i} \in U(\mathbb{Z}_{n_{i}}) \text{ and } i \neq \{t, r\}, \\ 1 & \text{if } y_{i} \in Z(\mathbb{Z}_{n_{i}})^{*} \text{ and } i \neq \{t, r\}. \end{cases}$$

Then note that $x \sim z \sim y$ in $\Gamma'(R)$. Therefore, d(x, y) = 2.

Case-4. $x_i \in U(\mathbb{Z}_{n_i})$ for some $i \in [k]$ and $x_j \in Z(\mathbb{Z}_{n_j})^*$ for remaining $j \in [k]$. Let $y_j \in U(\mathbb{Z}_{n_j})$ for some $j \in [k]$ and $y_i \in Z(\mathbb{Z}_{n_i})^*$ for remaining $i \in [k]$. For $x \not\sim y$ in $\Gamma'(R)$, consider $z = (z_1, z_2, \ldots, z_k) \in R$ such that $z_i = 0$ if $x_i \in U(\mathbb{Z}_{n_i})$, and $z_j = 1$ if $x_j \in Z(\mathbb{Z}_{n_j})^*$. Note that $(z) \not\subseteq (x)$ and $(z) \not\subseteq (y)$. Also, $(x) \not\subseteq (z)$ and $(y) \not\subseteq (z)$. Therefore, $x \sim z \sim y$ and so d(x, y) = 2. Next, let $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. Since $x \not\sim y$ in $\Gamma'(R)$, we get $(y_i) \subseteq (x_i)$ for each $i \in [k]$. Thus, consider $z = (z_1, z_2, \ldots, z_k)$ such that $z_i = 1$ if $x_i \in Z(\mathbb{Z}_{n_i})^*$, and $z_j = 0$ if $x_j \in U(\mathbb{Z}_{n_j})$. Notice that $(x) \not\subseteq (z)$ and $(z) \not\subseteq (x)$. Similarly, $(y) \not\subseteq (z)$ and $(z) \not\subseteq (y)$. Therefore, $x \sim z \sim y$ and so d(x, y) = 2.

Case-5. $x_j \in Z(\mathbb{Z}_{n_i})^*$ and $x_l = 0$ for some $j, l \in [k]$, and $x_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. In view of the earlier cases and d(x, y) = d(y, x), in this case we require to compute d(x, y) only when $y = (y_1, y_2, \dots, y_k) \in R$ such that $y_j \in Z(\mathbb{Z}_{n_j})^*$ and $y_l = 0$ for some $j, l \in [k]$, and $y_i \in U(\mathbb{Z}_{n_i})$ for remaining $i \in [k]$. For non-adjacent vertices x and y, choose $z = (z_1, z_2, \dots, z_k) \in R$ such that

$$z_i = \begin{cases} 0 & \text{if } x_i \in Z(\mathbb{Z}_{n_i})^* \text{ and } x_i \in U(\mathbb{Z}_{n_i}), \\ 1 & \text{if } x_i = 0. \end{cases}$$

Then observe that $(x) \nsubseteq (z)$ and $(z) \nsubseteq (x)$. Moreover, $(y) \nsubseteq (z)$ and $(z) \nsubseteq (y)$. Consequently, $x \sim z \sim y$. It follows that d(x,y) = 2.

Thus, the result holds. \Box

Now for a positive integer n, let d_1, d_2, \ldots, d_t be all the proper divisors of n. Then define

$$\mathcal{A}_{d_i} = \{x \in \mathbb{Z}_n : \gcd(x, n) = d_i\}.$$

We shall use the following facts and observations without referring them explicitly.

- (i) $|\mathcal{A}_{d_i}| = \phi(\frac{n}{d_i})$ (cf. [33]), where ϕ is the Euler-totient function.
- (ii) For each d_i , where $1 \le i \le t$, $\mathcal{A}_{d_i} \subsetneq Z(\mathbb{Z}_n)^*$.
- (iii) For $u, v \in \mathcal{A}_{d_i}$, we have $(u) = (v) = (d_i)$.

Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ $(k \ge 2)$, where each p_i is a prime. For each $i \in [k]$, consider $X_i^0 = \{0\}$, $X_i^1 = U(\mathbb{Z}_{p_i^{m_i}})$ and $X_i^j = \mathcal{H}_{p_i^{j-1}}$ for $2 \le j \le m_i$. Then

$$|X_i^j| = \begin{cases} 1 & \text{if } j = 0, \\ p_i^{m_i} - p_i^{m_i - 1} & \text{if } j = 1, \\ p_i^{m_i - j + 1} - p_i^{m_i - j} & \text{if } 2 \le j \le m_i. \end{cases}$$

Let $x=(x_1,x_2,\ldots,x_k)$ and $y=(y_1,y_2,\ldots,y_k)\in R$. One can observe that (x)=(y) if and only if $(x_i)=(y_i)$ for each i. Consequently, each equivalence class of $V(\Gamma'(R))$, under the relation \equiv , is of the form $X_1^{j_1}\times X_2^{j_2}\times\cdots\times X_k^{j_k}$, where $0\leq j_r\leq m_r$. Moreover, $|X_1^{j_1}\times X_2^{j_2}\times\cdots\times X_k^{j_k}|=\prod_{i=1}^k|X_i^{j_i}|$. In view of Lemma 3.1, now we calculate the Wiener index of $\Gamma'(R)$, where $R\cong \mathbb{Z}_{p_1^{m_1}}\times \mathbb{Z}_{p_2^{m_2}}\times\cdots\times \mathbb{Z}_{p_k^{m_k}}$

In view of Lemma 3.1, now we calculate the Wiener index of $\Gamma'(R)$, where $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ and $k \geq 2$. Let $x = (x_1^{j_1}, x_2^{j_2}, \dots, x_k^{j_k})$ and $y = (y_1^{l_1}, y_2^{l_2}, \dots, y_k^{l_k})$ be the representatives of two distinct equivalence classes $X_1^{j_1} \times X_2^{j_2} \times \cdots \times X_k^{j_k}$ and $X_1^{l_1} \times X_2^{l_2} \times \cdots \times X_k^{l_k}$, respectively.

Theorem 3.2. Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$ and S_r be the set defined in Lemma 3.1. Then the Wiener index of the cozero-divisor graph $\Gamma'(R)$ is given by

$$\begin{split} W(\Gamma'(R)) &= 2 \sum_{\substack{(x_1^{j_1}, x_2^{j_2}, \dots x_k^{j_k}) \in \Upsilon' \\ (y, x) \notin S_r}} \binom{\prod_{i=1}^k (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i})}{2} + \sum_{x \sim y} \left(\prod_{i=1}^k (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i}) \right) \left(\prod_{i=1}^k (p_i^{m_i - j_i + 1} - p_i^{m_i - l_i}) \right) \\ &+ 2 \sum_{\substack{x \sim y \\ (x, y) \notin S_r}} \left(\prod_{i=1}^k (p_i^{m_i - j_i + 1} - p_i^{m_i - j_i}) \right) \left(\prod_{i=1}^k (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right) \\ &+ 3 \sum_{(x, y) \in S_r} \left(\prod_{i=1}^k (p_i^{m_i - j_i + 1} - p_i^{n_i - j_i}) \right) \left(\prod_{i=1}^k (p_i^{m_i - l_i + 1} - p_i^{m_i - l_i}) \right). \end{split}$$

Example 3.3. Let $R \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9$. Then note that $X_1^0 = X_2^0 = X_3^0 = \{0\}$, $X_1^1 = U(\mathbb{Z}_2) = \{1\}$, $X_2^1 = U(\mathbb{Z}_4) = \{1,3\}$, $X_3^1 = U(\mathbb{Z}_9) = \{1,2,4,5,7,8\}$, $X_2^2 = \mathcal{A}_2 = \{2\}$ and $X_3^2 = \mathcal{A}_3 = \{3,6\}$. Thus, the set of all equivalence classes of $V(\Gamma'(R))$ is $\{X_1^{j_1} \times X_2^{j_2} \times X_3^{j_3} : 0 \le j_1 \le 1, 0 \le j_2, j_3 \le 2\} \setminus \{X_1^0 \times X_2^0 \times X_3^0, X_1^1 \times X_2^1 \times X_3^1\}$. Consequently, we have

the following 16 equivalence classes of $V(\Gamma'(R))$, viz. $Y_1 = X_1^0 \times X_2^0 \times X_3^1$, $Y_2 = X_1^0 \times X_2^0 \times X_3^2$, $Y_3 = X_1^0 \times X_2^1 \times X_3^0$, $Y_4 = X_1^0 \times X_2^2 \times X_3^0$, $Y_5 = X_1^0 \times X_2^1 \times X_3^1$, $Y_6 = X_1^0 \times X_2^2 \times X_3^1$, $Y_7 = X_1^0 \times X_2^1 \times X_3^2$, $Y_8 = X_1^0 \times X_2^2 \times X_3^2$, $Y_9 = X_1^1 \times X_2^0 \times X_3^0$, $Y_{10} = X_1^1 \times X_2^0 \times X_3^1$, $Y_{11} = X_1^1 \times X_2^0 \times X_3^2$, $Y_{12} = X_1^1 \times X_2^1 \times X_3^0$, $Y_{13} = X_1^1 \times X_2^1 \times X_3^2$, $Y_{14} = X_1^1 \times X_2^2 \times X_3^0$, $Y_{15} = X_1^1 \times X_2^2 \times X_3^1$ and $Y_{16} = X_1^1 \times X_2^2 \times X_3^2$. Let y_i be the representative of the equivalence class Y_i , where $Y_i = Y_i$ is an empty set and $Y_1 = Y_1$ and $Y_2 = Y_1$ is an empty set and $Y_3 = Y_1$ and $Y_4 = Y_1$ is an empty set and $Y_4 = Y_1$ and $Y_4 = Y_1$ and $Y_4 = Y_1$ are $Y_4 = Y_1$ and $Y_4 = Y_2$ are $Y_4 = Y_4$. Now, the pair of equivalence classes whose elements are at distance two in Y_i are

 $\{\{Y_1,Y_2\}, \ \{Y_1,Y_5\}, \ \{Y_1,Y_6\}, \ \{Y_1,Y_{10}\}, \ \{Y_1,Y_{15}\}, \ \{Y_2,Y_5\}, \ \{Y_2,Y_6\}, \ \{Y_2,Y_7\}, \ \{Y_2,Y_8\}, \ \{Y_2,Y_{10}\}, \ \{Y_2,Y_{11}\}, \ \{Y_2,Y_{15}\}, \ \{Y_2,Y_{16}\}, \ \{Y_3,Y_4\}, \ \{Y_3,Y_5\}, \ \{Y_3,Y_{12}\}, \ \{Y_3,Y_{13}\}, \ \{Y_4,Y_5\}, \ \{Y_4,Y_6\}, \ \{Y_4,Y_7\}, \ \{Y_4,Y_{12}\}, \ \{Y_4,Y_{13}\}, \ \{Y_4,Y_{14}\}, \ \{Y_4,Y_{16}\}, \ \{Y_5,Y_6\}, \ \{Y_5,Y_7\}, \ \{Y_5,Y_8\}, \ \{Y_6,Y_{15}\}, \ \{Y_7,Y_8\}, \ \{Y_7,Y_{13}\}, \ \{Y_8,Y_{13}\}, \ \{Y_8,Y_{15}\}, \ \{Y_9,Y_{16}\}, \ \{Y_9,Y_{11}\}, \ \{Y_9,Y_{12}\}, \ \{Y_9,Y_{13}\}, \ \{Y_9,Y_{14}\}, \ \{Y_9,Y_{15}\}, \ \{Y_9,Y_{16}\}, \ \{Y_{10},Y_{11}\}, \ \{Y_{10},Y_{15}\}, \ \{Y_{11},Y_{13}\}, \ \{Y_{11},Y_{12}\}, \ \{Y_{12},Y_{13}\}, \ \{Y_{12},Y_{14}\}, \ \{Y_{13},Y_{14}\}, \ \{Y_{13},Y_{16}\}, \ \{Y_{14},Y_{15}\}, \ \{Y_{14},Y_{16}\}, \ \{Y_{15},Y_{16}\}\}.$

Thus, the Wiener index of the cozero-divisor graph of the ring $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9$ is given by

$$\begin{split} W(\Gamma'(\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9)) &= 2 \times \frac{1}{2} \left[30 + 2 + 2 + 0 + 132 + 30 + 12 + 2 + 0 + 30 + 2 + 2 + 12 + 0 + 30 + 2 \right] \\ &+ \left[6(2+1+4+2+1+2+2+4+1+2) + 2(2+1+1+2+1) \right. \\ &+ 2(6+2+1+6+2+1+6+2) + (1+6+2) + 12(1+6+2+2+4+1+6+2) \\ &+ 6(4+1+6+2+2+4+1+2) + 4(1+6+2+2+1+6+2) + 2(1+6+2+2+1) \\ &+ (0) + 6(2+4+1+2) + 2(2+1) + 2(6+2) + 4(6) + (0) \right] \\ &+ 2 \left[6(2+12+6+6+6) + 2(12+6+4+2+6+2+6+2) + 2(1+12+4+2+4) \right. \\ &+ (12+6+4+2+2+4+1+2) + 12(6+4+2) + 6(2+6) + 4(2+4) + 2(4+6+2) \\ &+ (6+2+2+4+1+6+2) + 6(2+6) + 2(4+6+2) + 2(4+1) + 4(1+2) + (6+2) + 6(2) \right] \\ &+ 3 \left[(1\times6) + (2\times4) \right] \\ &= 2611. \end{split}$$

4. The Wiener index of the cozero-divisor graph of reduced ring

In this section, we obtain the Wiener index of the cozero-divisor graph of a finite commutative reduced ring. Let R be a reduced ring i.e. $R \cong F_{q_1} \times F_{q_2} \times \cdots \times F_{q_k}$ with $k \ge 2$, where F_{q_i} is a finite field with q_i elements. Notice that, for $x = (x_1, x_2, \dots, x_k)$ and $y = (y_1, y_2, \dots, y_k) \in R$ such that (x) = (y), we have $x_i = 0$ if and only if $y_i = 0$ for each i. For $i_1, i_2, \dots, i_r \in [k]$, define

$$X_{\{i_1,i_2,\dots,i_r\}} = \{(x_1,x_2,\dots,x_k) \in R : \text{only } x_{i_1},x_{i_2},\dots,x_{i_r} \text{ are non-zero}\}.$$

Note that the sets X_A , where A is a non-empty proper subset of [k], are the equivalence classes of $V(\Gamma'(R))$ under the relation \equiv . Let x_A be the representative of equivalence class X_A . Now we obtain the possible distances between the vertices of $\Upsilon'(R)$.

Lemma 4.1. For the distinct vertices x_A and x_B of $\Upsilon'(R)$, we have

$$d_{\Upsilon'(R)}(x_A, x_B) = \begin{cases} 1 & \text{if } A \nsubseteq B \text{ and } B \nsubseteq A, \\ 2 & \text{otherwise.} \end{cases}$$

Proof. First assume that $A \nsubseteq B$ and $B \nsubseteq A$. Then $(x_A) \nsubseteq (x_B)$ and $(x_B) \nsubseteq (x_A)$. It follows that $d_{\Upsilon'(R)}(x_A, x_B) = 1$. Now, without loss of generality, let $A \subsetneq B$. Then there exists $i \in [k]$ such that $i \notin B$ and so $i \notin A$. By Lemma 2.1, we have $x_A \sim x_{\{i\}} \sim x_B$. Thus, $d_{\Upsilon'(R)}(x_A, x_B) = 2$. □

For distinct subsets $A, B \subseteq [k]$, define $D_1 = \{\{A, B\} : A \subseteq B\}$ and $D_2 = \{\{A, B\} : A \subseteq B\}$. Using Theorem 2.5 and the sets D_1 and D_2 , we obtain the Wiener index of the cozero-divisor $\Gamma'(R)$ of a reduced ring R in the following theorem.

Theorem 4.2. The Wiener index of the cozero-divisor graph of a finite commutative reduced ring $R \cong F_{q_1} \times F_{q_2} \times \cdots \times F_{q_k}$, where $k \geq 2$, is given by

$$W(\Gamma'(R)) = 2 \sum_{A \subseteq [k]} \left(\prod_{i \in A} (q_i - 1) \right) + \sum_{\{A, B\} \in D_1} \left(\prod_{i \in A} (q_i - 1) \right) \left(\prod_{j \in B} (q_j - 1) \right) + 2 \sum_{\{A, B\} \in D_2} \left(\prod_{i \in A} (q_i - 1) \right) \left(\prod_{j \in B} (q_j - 1) \right).$$

Proof. The proof follows from Lemma 4.1.

Example 4.3. [23, Corollary 6.2] Let $R = \mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q$, where p and q are distinct primes. Then we have two distinct equivalence classes, $X_{\{1\}} = \{(a,0): a \in \mathbb{Z}_p \setminus \{0\}\}$ and $X_{\{2\}} = \{(0,b): b \in \mathbb{Z}_q \setminus \{0\}\}$, of the equivalence relation \equiv . Moreover, $D_1 = \{\{\{1\}, \{2\}\}\}$ and D_2 is an empty set. Note that $|X_{\{1\}}| = p - 1$ and $|X_{\{2\}}| = q - 1$. Consequently, by Theorem 4.2, we get $W(\Gamma'(\mathbb{Z}_{pq})) = (p-1)(p-2) + (q-1)(q-2) + (p-1)(q-1) = p^2 + q^2 - 4p - 4q + pq + 5$.

Example 4.4. Let $R = \mathbb{Z}_{pqr} \cong \mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_r$, where p,q,r are distinct primes. For $a \in \mathbb{Z}_p \setminus \{0\}$, $b \in \mathbb{Z}_q \setminus \{0\}$ and $c \in \mathbb{Z}_r \setminus \{0\}$, we have the equivalence classes : $X_{\{1\}} = \{(a,0,0)\}$, $X_{\{2\}} = \{(0,b,0)\}$, $X_{\{3\}} = \{(0,0,c)\}$, $X_{\{1,2\}} = \{(a,b,0)\}$, $X_{\{1,3\}} = \{(a,0,c)\}$, $X_{\{2,3\}} = \{(0,b,c)\}$. Moreover, $D_1 = \{\{\{1\},\{2\}\},\{\{1\},\{3\}\},\{\{2\},\{3\}\},\{\{1,2\},\{1,3\}\},\{\{2\},\{1,3\}\},\{\{2\},\{1,3\}\},\{\{3\},\{1,2\}\}\}\}$ and $D_2 = \{\{\{1\},\{1,2\}\},\{\{1\},\{1,3\}\},\{\{2\},\{1,2\}\},\{\{2\},\{2,3\}\},\{\{3\},\{1,3\}\},\{\{3\},\{2,3\}\}\}$. Also, $|X_{\{1\}}| = p - 1$, $|X_{\{2\}}| = q - 1$, $|X_{\{3\}}| = r - 1$, $|X_{\{1,2\}}| = (p - 1)(q - 1)$, $|X_{\{1,3\}}| = (p - 1)(r - 1)$. Then, by Theorem 4.2, the Wiener index of $\Gamma'(R)$ is given by

$$\begin{split} W(\Gamma'(\mathbb{Z}_{pqr})) &= 2\binom{p-1}{2} + 2\binom{q-1}{2} + 2\binom{r-1}{2} + 2\binom{(p-1)(q-1)}{2} + 2\binom{(p-1)(r-1)}{2} + 2\binom{(p-1)(r-1)}{2} + 2\binom{(q-1)(r-1)}{2} \\ &+ (p-1)(q-1) + (p-1)(r-1) + (q-1)(r-1) + (p-1)(q-1)(p-1)(r-1) \\ &+ (p-1)(q-1)(q-1)(r-1) + (p-1)(r-1)(q-1)(r-1) + (p-1)(q-1)(r-1) \\ &+ (q-1)(p-1)(r-1) + (r-1)(p-1)(q-1) + 2(p-1)\left[(p-1)(q-1)\right] \\ &+ 2(p-1)\left[(p-1)(r-1)\right] + 2(q-1)\left[(p-1)(q-1)\right] + 2(q-1)\left[(q-1)(r-1)\right] \end{split}$$

Simplifying this expression, we get

$$W(\Gamma'(\mathbb{Z}_{var})) = pqr(p+q+r-3) + p^2q^2 + p^2r^2 + q^2r^2 - p^2(q+r) - q^2(p+r) - r^2(p+q) - 2(pq+pr+qr) + 4(p+q+r) - 3.$$

Let $\tau(n)$ be the number of divisors of n and let $D = \{d_1, d_2, \dots, d_{\tau(n)-2}\}$ be the set of all proper divisors of $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \cdots p_k^{n_k}$, where $k \ge 2$. If $d_i \mid d_j$, then define

$$A = \{ (d_i, d_j) \in D \times D \mid d_i \neq p_r^s \};$$

$$B = \{ (d_i, d_j) \in D \times D \mid d_i = p_r^s \text{ and } \frac{n}{d_j} \neq p_r^t \};$$

$$C = \{ (d_i, d_j) \in D \times D \mid d_i = p_r^s \text{ and } \frac{n}{d_j} = p_r^t \}.$$

Using the notations defined above, the following theorem which was proved in [23], by using different approach, can also be obtained by using Lemma 3.1 and Theorem 3.2.

Theorem 4.5. [23, Theorem 6.3] For $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \cdots p_k^{n_k}$ with $k \ge 2$ and p_i 's are distinct primes, we have

$$W(\Gamma'(\mathbb{Z}_n)) = \sum_{i=1}^{\tau(n)-2} \phi\left(\frac{n}{d_i}\right) \left(\phi\left(\frac{n}{d_i}\right) - 1\right) + \frac{1}{2} \sum_{\substack{d_i \nmid d_j \\ d_j \nmid d_i}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_j}\right) + 2 \sum_{\substack{(d_i, d_j) \in A}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_j}\right)$$
$$+ 2 \sum_{\substack{(d_i, d_j) \in B}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_j}\right) + 3 \sum_{\substack{(d_i, d_j) \in C}} \phi\left(\frac{n}{d_i}\right) \phi\left(\frac{n}{d_j}\right).$$

5. SageMath Code

In this section, we produce a SAGE code to compute the Wiener index of the cozero-divisor graph of ring classes considered in this paper including the ring \mathbb{Z}_n of integers modulo n. On providing the value of integer n, the following SAGE code computes the Wiener index of the graph $\Gamma'(\mathbb{Z}_n)$.

```
cozero_divisor_graph=Graph()
E = []
n=72
for i in range(n):
     for j in range(n):
         if(i!=j):
             p=\gcd(i,n)
             q = \gcd(j, n)
             if (p\%q!=0 \text{ and } q\%p!=0):
                  E.append((i,j))
cozero_divisor_graph.add_edges(E)
if(E = = []):
    V=[]
     for i in range (1,n):
         if (gcd(i,n)!=1):
             V.append(i)
     cozero_divisor_graph.add_vertices(V)
W=cozero_divisor_graph.wiener_index();
if (W==00):
     print("Wiener Index undefined for Null Graph")
else :
     print("Wiener-Index:", W)
```

n	100	500	1000	1500	2000	2500
$W(\Gamma'(\mathbb{Z}_n))$	2954	77174	306202	930248	1222530	1946274

Using the given code, in Table 1, we obtain the Wiener index of $\Gamma'(\mathbb{Z}_n)$ for some values of n.

Table 1: Wiener index of $\Gamma'(\mathbb{Z}_n)$

Let *R* be a reduced ring i.e. $R \cong F_{q_1} \times F_{q_2} \times \cdots \times F_{q_n}$, where F_{q_i} is a field with q_i elements. The following code determines the Wiener index of $\Gamma'(R)$ by providing the values of the field size q_i ($1 \le i \le n$).

```
field_orders = [3,5,7]
P=Subsets (range (len (field_orders)))[1:-1]
P=[Set(i) for i in P]
D1=[]
D2=[]
for i in P:
    for j in P:
         if (not(i.issubset(j) or j.issubset(i)) and P.index(i) > P.index(j)):
            D1.append([i,j])
         if (i.issubset(j) and i!=j):
            D2.append([i,j])
partial_sum=0
for i in P:
    sum_pp=1
    for j in i:
        sum_pp *= field_orders[j]-1
    partial\_sum +=((sum\_pp*(sum\_pp-1))/2)
D1_sum=0
for i in D1:
    D1_pp=1
    for j in i[0]:
        D1_pp *= field_orders[j]-1
    for k in i[1]:
        D1_pp *= field_orders[k]-1
    D1_sum += D1_pp
D2_sum=0
for i in D2:
    D2_pp=1
    for j in i[0]:
        D2_pp *= field_orders[j]-1
    for k in i[1]:
        D2_pp *= field_orders[k]-1
    D2_sum += D2_pp
W = 2*partial_sum + D1_sum + 2*D2_sum
print("Wiener-Index:", W)
```

Using the given code, in the following tables, we obtain the Wiener index of the cozero-divisor graphs of the reduced rings $F_{q_1} \times F_{q_2}$ (see Table 2) and $F_{q_1} \times F_{q_2} \times F_{q_3}$ (see Table 3), respectively.

(q_1, q_2)	(9, 25)	(49, 81)	(101, 121)	(125, 139)	(163, 169)	(289, 343)
$W(\Gamma'(F_{q_1} \times F_{q_2}))$	800	12416	36180	51270	81354	297774

Table 2: Wiener index of $\Gamma'(F_{q_1} \times F_{q_2})$

(q_1, q_2, q_3)	(7, 8, 13)	(9, 25, 49)	(53, 64, 81)	(83, 101, 121)	(125, 131, 169)	(289, 343, 361)
$W(\Gamma'(F_{q_1} \times F_{q_2} \times F_{q_3}))$	35196	2500400	108637254	620456582	2355211790	71251552134

Table 3: Wiener index of $\Gamma'(F_{q_1} \times F_{q_2} \times F_{q_3})$

Let $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_k^{m_k}}$. Then the following SAGE code gives the value of $W(\Gamma'(R))$ after providing the values of $p_i^{m_i} (1 \le i \le k)$, where each p_i is a prime.

```
orders = [2,4,9]
A = cartesian_product([range(i) for i in orders]).list()
units = [\{i \text{ for } i \text{ in } range(1,j) \text{ if } gcd(i,j) == 1\} \text{ for } j \text{ in } orders]
def contQ(lst1, lst2):
     flag = True
     for i in range(len(orders)):
         p=gcd(lst1[i],orders[i])
         q=gcd(lst2[i],orders[i])
         if(not(lst1[i]==0 or \{lst2[i]\}.issubset(units[i]) or p%q==0)):
              flag = False
     return flag
E = []
for i in A:
     for j in A:
         if(not(contQ(i,j) or contQ(j,i)) and A.index(i) > A.index(j)):
             E.append([i,j])
G = Graph()
G. add_edges(E)
W=G. wiener_index ()
print("Wiener_Index:", W)
```

Using the given code, we obtain the Wiener index of the cozero-divisor graph of the ring $R \cong \mathbb{Z}_{p_1^{m_1}} \times \mathbb{Z}_{p_2^{m_2}} \times \cdots \times \mathbb{Z}_{p_r^{m_k}}$, where $k \geq 2$, in Table 4.

R	$W(\Gamma'(R))$
$\mathbb{Z}_4 \times \mathbb{Z}_9$	420
$\mathbb{Z}_9 \times \mathbb{Z}_{25}$	8808
$\mathbb{Z}_{16} \times \mathbb{Z}_{25}$	48870
$\mathbb{Z}_{27} \times \mathbb{Z}_{49}$	268022
$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$	521
$\mathbb{Z}_5 \times \mathbb{Z}_7 \times \mathbb{Z}_{11}$	14948
$\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_{16}$	167769
$\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_{25}$	327394
$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_9$	232937
$\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_8$	333963

Table 4: Wiener index of $\Gamma'(R)$

Acknowledgement: We would like to thank the referee for his/her valuable suggestions which helped us to improve the presentation of the paper.

Declarations

Conflicts of interest/Competing interests: There is no conflict of interest regarding the publishing of this paper.

Availability of data and material (data transparency): Not applicable.

References

- [1] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011),753–762.
- [2] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. (2). 35 (2012),935–944.
- [3] M. Afkhami and K. Khashyarmanesh, *Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring*, J. Algebra Appl. **11** (2012):1250103.
- [4] M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013):1250173.
- [5] S. Akbari, F. Alizadeh, and S. Khojasteh, Some results on cozero-divisor graph of a commutative ring, J. Algebra Appl. 13 (2014):1350113.
- [6] S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra. 42(2014),1594–1605.
- [7] D. F. Anderson, M. C. Axtell, and J. A. Stickles, *Zero-divisor graphs in commutative rings*, Commutative algebra: Noetherian and non-Noetherian perspectives, 23–45, 2011.
- [8] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999),434-447.
- [9] T. Asir and V. Rabikka, The Wiener index of the zero-divisor graph of Z_n, Discrete Appl. Math. 319 (2022),461–471.
- [10] T. Asir, V. Rabikka, and H. Su, On Wiener index of unit graph associated with a commutative ring, Algebra Colloq. 29 (2022),221–230.
- [11] M. Bakhtyiari, R. Nikandish, and M. J. Nikmehr, Coloring of cozero-divisor graphs of commutative von Neumann regular rings, Proc. Indian Acad. Sci. Math. Sci. 130 (2020):49.
- [12] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1988),208–226.
- [13] D. Bonchev, The Wiener number–some applications and new developments, In Topology in Chemistry, 58–88, Elsevier, 2002.
- [14] J. Dinar, Z. Hussain, S. Zaman, and S. U. Rehman, Wiener index for an intuitionistic fuzzy graph and its application in water pipeline network, Ain Shams Eng. J. 14 (2023),101826.
- [15] A. A. Dobrynin, R. Entringer, and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001),211–249.
- [16] I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993),651–661.
- [17] H. Hosoya, Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971),2332–2339.
- [18] D. Janežič, A. Miličević, S. Nikolić, and N. Trinajstić, *Graph-theoretical matrices in chemistry*, (second edition), CRC Press, Boca Raton, FL, 2015.
- [19] M. Karelson, Molecular descriptors in QSAR/QSPR, Wiley-Interscience, 2000.
- [20] L. Lu, L. Feng, and W. Liu, Signed zero-divisor graphs over commutative rings, Commun. Math. Stat. 2022 (2022), 1–15.
- [21] L. Lu, L. Feng, W. Liu, and G. Yu, Zero-divisor graphs of rings and their Hermitian matrices, Bull. Malays. Math. Sci. Soc. 46 (2023):130.
- [22] A. Mallika and R. Kala, Rings whose cozero-divisor graph has crosscap number at most two, Discrete Math. Algorithms Appl. 9 (2017):1750074.
- [23] P. Mathil, B. Baloda, and J. Kumar, On the cozero-divisor graphs associated to rings, AKCE Int. J. Graphs Comb. 19 (2022),238–248.
- [24] K. Mönius, Eigenvalues of zero-divisor graphs of finite commutative rings, J. Algebraic Combin. 54 (2021),787–802.
- [25] R. Nikandish, M. J. Nikmehr, and M. Bakhtyiari, Metric and strong metric dimension in cozero-divisor graphs, Mediterr. J. Math. 18 (2021):112.
- [26] S. Nikolić and N. Trinajstić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995),105–129.
- [27] A. J. Schwenk, Computing the characteristic polynomial of a graph, In Graphs and combinatorics, Lecture Notes in Math., 406,153–172, Springer, Berlin, 1974.
- [28] K. Selvakumar, P. Gangaeswari, and G. Arunkumar, The Wiener index of the zero-divisor graph of a finite commutative ring with unity, Discrete Appl. Math. 311 (2022),72–84.
- [29] P. Singh and V. K. Bhat, Adjacency matrix and Wiener index of zero divisor graph $\Gamma(Z_n)$, J. Appl. Math. Comput. **66** (2021),717–732.
- [30] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- [31] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947),17–20.
- [32] K. Xu, M. Liu, K. C. Das, I. Gutman, and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014),461–508.
- [33] M. Young, Adjacency matrices of zero-divisor graphs of integers modulo n, Involve. 8 (2015),753–761.