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Abstract. For a graph G, the Mostar index of G is the sum of |nu − nv| over all edges e = uv of G, where nu

denotes the number of vertices of G that have a smaller distance in G to u than to v, and analogously for nv.
In this paper, we obtain a lower bound for the Mostar index on tricyclic graphs and identify those graphs
that attain the lower bound.

1. Introduction

Let G = (V,E) be a simple, connected and finite graph with vertex set V(G) and edge set E(G). The order
and size of G are the cardinality of V(G) and E(G), respectively. For v ∈ V(G), let NG(v) be the set of vertices
that are adjacent to v in G. The degree of v ∈ V(G), denoted by dG(v), is the cardinality of NG(v). A vertex
with degree one is called a pendent vertex and an edge incident to a pendent vertex is called a pendent
edge. The distance between u and v in G is the least length of the path connecting u and v and is denoted
by dG(u, v). A graph G with n vertices is a tricyclic graph if |E(G)| = n + 2.

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the
bonds of a molecule. A topological index of G is a real number related to G. They are widely used for char-
acterizing molecular graphs, establishing relationships between the structure and properties of molecules,
predicting the biological activity of chemical compounds, and making their chemical applications [9, 10, 20].
Let e = uv ∈ E(G), and define three subsets of V(G) as follows:

Nu(e) = {x ∈ V(G) : dG(u, x) < dG(v, x)},
Nv(e) = {x ∈ V(G) : dG(v, x) < dG(u, x)},
N0(e) = {x ∈ V(G) : dG(v, x) = dG(u, x)}.

Let ni(e) = |Ni(e)| (or put ni := ni(e) for short ), for i = u, v. A graph G is distance-balanced if nu = nv for each
edge uv ∈ E(G) [14].

Doslić et al. [6] introduced a bond-additive structural invariant as a quantitative refinement of the
distance non-balancedness and also a measure of peripherality in graphs, named the Mostar index. For a
graph G, the Mostar index is defined as

Mo(G) =
∑

e=uv∈E(G)

ψ(uv),
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Figure 1: The Graphs for Theorem 1.1.

where ψ(uv) = |nu − nv|.
Doslić et al. [6] studied the Mostar index for acyclic and unicyclic graphs, and provided a cut method

for calculating the Mostar index of benzenoid systems. The extremal Bicyclic graphs with respect to Mostar
index has been studied by Tepeh [17]. Hayat and Zhou [11] obtained the upper bound for the Mostar index
among cacti with fixed order and cycles, and characterized all the cacti that attain the bound. Hayat and
Zhou [12] identified those trees with the largest and/or smallest Mostar index in the class of trees of order
n with fixed parameters like diameter, maximum degree and the number of pendent vertices. Deng and
Li [3] identified the trees with a fixed degree sequence having the largest Mostar index. Deng and Li [4]
also studied the extremal problem for the Mostar index of trees with a given number of segments sequence.
Gao et al. [7] studied the difference of Mostar index and irregularity of graphs. Ali and Doslić [1] gave
more modifications to the Mostar index. One can refer [2, 5, 8, 13, 15, 16, 18, 19] for more studies about the
Mostar index.

To have a full understanding of the relationship between the Mostar index and the structural properties
of the graphs, in this paper, we consider the Mostar index among tricyclic graphs, and more precisely, we
give a lower bound for the Mostar index on tricyclic graphs of order n, and identify those graphs that
achieve the lower bound.

Theorem 1.1. Let G be a tricyclic graph of order n ≥ 29. Then

Mo(G) ≥
{

8, if n is even,
10, if n is odd

with equality if and only if G � An, where An is depicted in Fig 1.

2. Proof of Theorem 1.1

LetA1
n be the set of tricyclic graphs of order n with exactly one cut vertex. LetA2

n be the set all tricyclic
graphs of order n with connectivity of at least 2. Moreover, if G ∈ A2

n, then it must be one of the graphs
α1, α2, α3, α4 depicted in Fig 2. Set ai (i = 1, 2, . . . , 6) as the lengths of the corresponding paths between
vertices of degree at least 3. We mark these paths as P(ai) (i = 1, 2, . . . , 6).

By simple calculation, it is easy to check that

Mo(An) =
{

8, if n is even ,
10, if n is odd

i.e., An satisfies the equality of Theorem 1.1.
To complete the proof it suffices to show that, for any graph G (G � An) of order n ≥ 29, Mo(An) < Mo(G).
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Figure 2: Graphs α1, α2, α3 and α4.

Lemma 2.1. Let G ∈ A1
n of order n ≥ 13 with at least one pendent edge. Then Mo(G) > Mo(An).

Proof. Let e′ be a pendent edge in G. Then, for n ≥ 13, we have Mo(G) =
∑

e∈E(G) ψ(e) ≥ ψ(e′) = n − 2 > 10,
i.e., Mo(G) > Mo(An).

Lemma 2.2. Let G ∈ A1
n of order n ≥ 13 such that G contains no pendent edge. Then Mo(G) > Mo(An).

Proof. Note that G ∈ A1
n such that G contain no pendent edge, then there must be a cut vertex say w, that is

to say, G is composed of a bicyclic graph H and a cycle U with a common vertex w. Clearly, the order of H
is at least 4. If U is even, then for each e ∈ U, we have ψ(e) = |V(H)| − 1 = n − |V(U)|. Thus,

Mo(G) =
∑

e∈E(G)

ψ(e) ≥
∑

e∈E(U)

ψ(e) = |E(U)|(|V(H)| − 1) ≥ 4 × 3 > 10.

If U is odd, then for each e ∈ U but the edge xy such that d(w, x) = d(w, y), we have ψ(e) = |V(H)| − 1 =
n − |V(U)|. Thus,

Mo(G) =
∑

e∈E(G)

ψ(e) ≥
∑

e∈E(U)

ψ(e) = (|E(U)| − 1)(|V(H)| − 1),

if the size of U is at leat 5, then Mo(G) > 10; if the size of U is 3, then ψ(e) = |V(H)| − 1 = n − |V(U)| ≥ 10, we
have Mo(G) > 10. Hence, Mo(G) > Mo(An).

Lemma 2.3. Let G ∈ A2
n such that G � α1 (see Fig 2), and e = uv ∈ E(G). Then ψ(uv) ≤ 1 if and only if e is the

middle edge of an odd path of P(ai) (i = 1, 2, 3, 4).

Proof. Let P(ai) (i = 1, 2, 3, 4) be the paths connecting x and y, and e = uv ∈ P(ai). We consider the following
three possible cases.
Case 1. One of the x, y is in Nu(e) and the other is in Nv(e).

Let dx (resp. dy) be the distance between x (resp. y) and the edge e. Without loss of generality,
we assume that x ∈ Nu(e), y ∈ Nv(e) and dx > dy. Then dx − dy vertices more in Nu(e) than in Nv(e)
on the path P(ai), but on each path P(a j) ( j , i), dx − dy vertices more in Nv(e) than in Nu(e). We have
ψ(uv) = |(dx − dy) − 3(dx − dy)| = 2|dy − dx|.
Case 2. Both the x, y are in Nu(e) or Nv(e).

Assume that x, y ∈ Nu(e). Then all vertices from the paths P(a j) ( j , i) are in Nu(e). Let c be the length
of the shortest cycle of G that contain e, we have nv(e) = ⌊ c

2 ⌋, and nu(e) = ⌊ c
2 ⌋ + |V(G)| − c. Therefore,

ψ(uv) = |V(G)| − c ≥ 2.
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Case 3. One of x, y is in N0(e).
Assume that x ∈ Nu(e) and y ∈ N0(e). Then the shortest cycle C of G that contains e is odd. Let zi ∈ P(ai)

(P(ai) ⊈ C) be the furthest vertex from e such that zi ∈ N0(e). Let k be the length of the shortest path of the
four paths P(ai) (i = 1, 2, 3, 4). Then ψ(uv) =

∑
i(d(x, zi) − 1) ≥

∑
i(k + d(y, zi) − 1) ≥ 2((k − 1), with equality if

and only if two paths of P(ai) (i = 1, 2, 3, 4) have length k.
From the above three cases, we conclude that ψ(uv) ≤ 1 if and only if either the two paths of P(ai)

(i = 1, 2, 3, 4) have length one or |dy − dx| = 0. The former is impossible as G is a simple graph, the latter is
possible only when e is the middle edge of an odd path of P(ai) (i = 1, 2, 3, 4).

Lemma 2.4. Let G ∈ A2
n of order n ≥ 13 such that G � α1 (see Fig 2). Then Mo(G) > Mo(An).

Proof. Assume that a1 ≤ a2 ≤ a3 ≤ a4, then a2 ≥ 2. We take the six edges that are incident to x or y but not
belongs to P(a1). Let e′ be one of the six edges, then by Lemma 2.3, ψ(e′) ≥ 2. We have, Mo(G) ≥ 6 × 2 > 10.
Hence, Mo(G) > Mo(An).

Lemma 2.5. Let G ∈ A2
n of order n ≥ 13 such that G � α2 (see Fig 2). Then Mo(G) > Mo(An).

Proof. Assume that a2 ≤ a4, a3 ≤ a5. We proceed with the following four possible cases.
Case 1. a2 = a4, a3 = a5.
Subcase 1.1. a2 = a4 = a3 = a5 ≥ 2.

Let e1 be one of the four edges that are incident to x. Then ψ(e1) = 2(a5 − 1). If a5 = 2, then a1 ≥ 7, as
n ≥ 13. Let e2 be one of the two edges which are incident to y or z in P(a1). Then ψ(e2) ≥ 2, implying that
Mo(G) ≥ 4 × 2 + 2 × 2 > 10. If a5 ≥ 3, then Mo(G) ≥ 4 × 4 > 10.
Subcase 1.2. a2 = a4 > a3 = a5 ≥ 2.

Let e′ (resp. e′′) be the edges incident to x or y in the paths P(a2) (resp. P(a4)). Then ψ(e′) = ψ(e′′) =
a4 + a5 − 2. If a4 + a5 ≥ 6, then Mo(G) ≥ 4× 4 > 10. If a4 + a5 = 5, i.e., a4 = 3, a5 = 2, then a1 ≥ 5. Now consider
xx′ ∈ P(a3), then ψ(xx′) ≥ 4, implying that Mo(G) > 10.
Case 2. a2 + 1 = a4, a3 + 1 = a5.
Subcase 2.1. a1 + a3 − 1 ≥ a2.

We choose five edges xx′ (resp. xx′′, zz′′) from P(a3) (resp. P(a5)) and xx1, yy1 from P(a4). We have
ψ(xx′) = a4 − 1 + a5 − 2 = a2 + a5 − 2, ψ(xx′′) = ψ(zz′′) = a4 + a2 − 1 = 2a2, ψ(xx1) = ψ(yy1) ≥ 4. So
Mo(G) ≥ 3a2 + a5 − 2 + 8 > 10.
Subcase 2.2. a2 ≥ a1 + a3 + 1.

We consider four edges xx1, yy1 (resp. xx2, zz2) from P(a2) (resp. P(a5)). We have ψ(xx1) = ψ(yy1) =
ψ(xx2) = ψ(zz2) ≥ 4. So Mo(G) ≥ 4 × 4 > 10.
Subcase 2.3. a2 = a1 + a3

Let e be one of the two edges incident to x or z in P(a5). Then ψ(e) = a4 − 1+ a2 − 1 = 2a2 − 1. Since n ≥ 13,
we get b ≥ 4, implying that Mo(G) ≥ 2 × 7 > 10.
Case 3. a2 + 1 = a4, a3 = a5 ≥ 2.
Subcase 3.1. a1 + a3 − 1 ≥ a2.

Let e be one of the four edges incident to x or z in P(a3) and P(a5). Then ψ(e) = a4 − 1+ a5 − 1 = a4 + a5 − 2.
Since, a4 + a5 ≥ 4. If a4 + a5 ≥ 5, then Mo(G) ≥ 4 × 3 > 10.

If a4 + a5 = 4, we consider xx′ ∈ P(a4). If a4 = 2, a5 = 2, then a2 = 1, a3 = 2, a1 ≥ 8, ψ(xx′) ≥ 4. Thus,
Mo(G) ≥ 4 × 2 + 4 > 10.
Subcase 3.2. a2 > a1 + a3 − 1.

Let e (resp. e’) be one of the four edges incident to x or z in P(a3) (resp. P(a5)). Then ψ(e) = ψ(e′) =
a1 + 2a3 − 2 = a4 + a5 − 2. Since, a1 + 2a3 ≥ 5, then Mo(G) ≥ 4 × 3 > 10.
Case 4. a4 ≥ b2 + 2.

Let e be one of the two edges incident to x or y in P(a4). Then ψ(e) ≥ a1 + a3 + a5 − 2. Since a3 + a5 ≥ 3,
a1 + a3 + a5 ≥ 4. If a1 + a3 + a5 ≥ 8, then ψ(e) ≥ 6. We have, Mo(G) ≥ 2 × 6 > 10.

If 6 ≤ a1+ a3+ a5 ≤ 7, then a5 ≥ 2. Let e′ be one of the two edges incident to x or z in P(a5). Then ψ(e′) ≥ 2,
we have Mo(G) ≥ 2 × 4 + 2 × 2 > 10.
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If a1 + a3 + a5 = 5, a5 = 3. Since n ≥ 13, then a2 + a4 − 1 ≥ 9, we have ψ(e′) ≥ a2 + a4 − 1 ≥ 9, so
Mo(G) ≥ 2 × 9 > 10.

If a1 + a3 + a5 = 4, a5 = 2, then ψ(e′) ≥ 4, i.e., Mo(G) ≥ 2 × 2 + 2 × 4 > 10.
Hence, from the above cases, it follows that Mo(G) > Mo(An).

Lemma 2.6. Let G ∈ A2
n of order n ≥ 13 such that G � α3 (see Fig 2). Then Mo(G) > Mo(An).

Proof. Without loss of generality, we assume that a4 ≤ a6, a3 ≤ a5. We proceed with the following four
possible cases.
Case 1. a4 = a6, a3 = a5.

We may assume that a1 ≤ a2.
Subcase 1.1. a4 = a6 = a3 = a5 = 2.

If a2 ≥ a1 + 4. Let e1 be one of the two edges incident to w in P(a3) and P(a5), e2 be one of the two edges
incident to x in P(a4) and P(a6), e3 be one of the two edges incident to y or z in P(a2). Then ψ(e1) = ψ(e2) = 2,
and ψ(e3) ≥ 2. Thus, Mo(G) ≥ 4 × 2 + 2 × 2 > 10.

If a1 ≤ a2 ≤ a1 + 1. Let e4 be one of the two edges incident to w or x in P(a1). Then ψ(e1) = ψ(e2) = 2,
ψ(e3) = ψ(e4) ≥ 1. Hence, Mo(G) ≥ 4 × 2 + 4 × 1 > 10.
Subcase 1.2. a4 = a6 = a3 = a5 ≥ 3.

Let e be one of the four edges incident to w or y in P(a3),P(a5). Then ψ(e) = a6 − 1+ a3 − 1 = 2(a3 − 1) ≥ 4.
We have, Mo(G) ≥ 4 × 4 > 10.
Subcase 1.3. 2 ≤ a4 = a6 < a3 = a5.

Let e be one of the four edges incident to w or y in P(a3),P(a5). Then ψ(e) = a6 − 1 + a3 − 1 = a3 + a6 − 2.
Since a3 + a6 ≥ 5, we have Mo(G) ≥ 4 × 3 > 10.
Case 2. a4 + 1 = a6, a3 + 1 = a5.
Subcase 2.1. a1 + a3 − 1 ≥ a4 + a6.

Let e1 be one of the two edges incident to w or y in P(a5). Then ψ(e1) ≥ a2 + a4 + a6 − 1 = a2 + 2a4. If a4 ≥ 2
or a2 ≥ 3, then Mo(G) > 10. If a4 = 1, a2 ≤ 3, then we consider two edges incident to z or x in P(a6), let e2 be
one of the two. We have, ψ(e2) ≥ 3, implying that, Mo(G) ≥ 2 × 3 + 2 × 3 > 10.
Subcase 2.2. a1 + a3 ≤ a4 + a6 − 1.

It is the same to Subcase 2.1.
Subcase 2.3. a1 + a3 = a4 + a6. We choose two edges yy′ ∈ P(a5), xx′ ∈ P(a6), then ψ(yy′) = a2 + a4 + a6 − 2 =
a2 + 2a4 − 1, ψ(xx′) = a1 + a3 + a5 − 2 = a1 + 2a3 − 1. Since n = a1 + a2 + a3 + a4 + a5 + a6 ≥ 13, so
(a1 + 2a3 − 1) + (a2 + 2a4 − 1) ≥ 11, implying that Mo(G) > 10.
Case 3. a4 = a6, a3 + 1 = a5.
Subcase 3.1. a1 + a4 − 1 ≥ a2 + a5.

Let e be one of the four edges incident to z or x in P(a4),P(a6). Then ψ(e) ≥ a5 − 1+ a6 − 1 = a3 + a4 − 1 ≥ 4.
Since a3 + a4 ≥ 3. If a3 + a4 ≥ 4, then Mo(G) ≥ 4× 3 > 10. If a3 + a4 = 3, then we choose yy′ ∈ P(a5), ψ(yy′) ≥ 4,
so Mo(G) ≥ 4 × 2 + 4 > 10.
Subcase 3.2. a1 + a4 ≤ a2 + a5.

Let e be one of the two edges incident to w or y in P(a5). Then ψ(e) = a1 + 2a4 − 1. Since a1 + 2a4 ≥ 5.
If a1 + 2a4 ≥ 7, then Mo(G) ≥ 2 × 6 > 10. If a1 + 2a4 ≤ 6, then we choose yy′ ∈ P(a3), ψ(yy′) ≥ 3, so
Mo(G) ≥ 2 × 4 + 3 > 10.
Case 4. a5 ≥ a3 + 2.

Let e be one of the two edges incident to w or y in P(a5). Then ψ(e) = a1 + a2 + a4 + a6 − 1. Since a4 + a6 ≥ 3,
a1 + a2 + a4 + a6 ≥ 5. If a1 + a2 + a4 + a6 ≥ 7, then Mo(G) ≥ 2 × 6 > 10. If 5 ≤ a1 + a2 + a4 + a6 ≤ 6, then we
consider two edges incident to z in P(a4), P(a6), let e′ be one of the two edges. Then ψ(e′) ≥ 2, implying that,
Mo(G) ≥ 2 × 4 + 2 × 2 > 10.

Lemma 2.7. Let G ∈ A2
n of order n ≥ 29 such that G � α4 (see Fig 2). Then Mo(G) > Mo(An).

Proof. Without loss of generality, we assume that a1 = max{a1, a2, a3, a4, a5, a6}. Since n ≥ 29, then a1 ≥ 6.
We consider the edge uu′ ∈ P(a1). Since dG(z,u) ≤ dG(z,u′) by the choice of a1, we have z ∈ Nu(uu′) or
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z ∈ N0(uu′). Also, z ∈ N0(uu′) if and only if a1 = a3 ≤ a2 + a4 and a5 = 1. The same is true for y. Suppose C is
the shortest cycle containing uu′, and let |C| = k.

We consider the following three possible cases.
Case 1. a1 > k+1

2 .
In this case, x, y, z ∈ Nu(uu′). Let e ∈ P(a1) such that the distance between e and x or u is no more than

one. Then, we have ψ(e) = n − k.
If n − k ≥ 4, then Mo(G) ≥ 4 × 4 > 10.
If n − k = 3 and C is composed of paths P(a1),P(a2) and P(a6), then a3 + a4 + a5 ≤ 5, a2 + a6 ≤ 4. Let e be

one of the four edges in P(a1) such that the distance between e and x or u is no more than one. Then we
have ψ(e) = 3, implying that, Mo(G) ≥ 4 × 3 > 10.

If n − k = 3 and C is composed of paths P(a1),P(a3),P(a4) and P(a6), then either one of the two vertices
is in P(a2), another two vertices are in P(a6), or one of the two vertices in P(a6) another two vertices are in
P(a2). It is the case when C is composed of paths P(a1),P(a2) and P(a6).

If n − k = 2 and C is composed of paths P(a1),P(a2) and P(a6), then a3 + a4 + a5 ≤ 4, a2 + a6 ≤ 3. Let e be
one of the six edges in P(a1) such that the distance between e and x or u is no more than two. Then we have
ψ(e) = 2, implying that Mo(G) ≥ 6 × 2 > 10.

If n − k = 2 and C is composed of paths P(a1),P(a3),P(a4) and P(a6), then one of the two vertices is in
P(a2), another two vertices are in P(a6). It is the case when C is composed of paths P(a1),P(a2) and P(a6).

If n−k = 2 and C is composed of paths P(a1),P(a2) and P(a6), then V(G)−V(C) = {z}, and a3 = a4 = a5 = 1.
Since P(a1)∪P(a2)∪P(a6) is the shortest cycle, we have a2 = a6 = 1 and a1 ≥ 26, by n ≥ 29. We consider all the
edges in P(a1) except the middle one when a1 is odd. Therefore, ψ(e) = 1, implying that Mo(G) ≥ a1−1 > 10.

If n− k = 1 and C is composed of paths P(a1),P(a3),P(a4) and P(a6), then it is not possible because such a
cycle does not exist.
Case 2. a1 < k+1

2 .
Subcase 2.1. One of the y, z is in N0(uu′).

Assume that z ∈ N0(uu′), then a1 = a3 ≤ a2 + a4 and a5 = 1.
If z ∈ V(C), for y ∈ Nu(uu′), then C = P(a1) ∪ P(a2) ∪ P(a6). Let w be the furthest vertex in P(a6) such that

w ∈ Nu(uu′), w′ be the vertex adjacent to w but not in Nu(uu′). If the cycle P(a1) ∪ P(a2) ∪ P(a6) is even, then
dG(w, y)+a2 = dG(w′, x)+a1−1, i.e., dG(w, y)−dG(w′, x) = a1−b2−1. If the cycle P(a1)∪P(a2)∪P(a6) is odd, then
dG(w, y)+ a2 + 1 = dG(w′, x)+ a1 − 1, i.e., dG(w, y)− (dG(w′, x)− 1) = a1 − b2 − 1. Let w1 be the furthest vertex in
P(a4) such that w1 ∈ Nu(uu′), w′1 be the vertex adjacent to w1 but not in Nu(uu′). If the cycle P(a1)∪P(a2)∪P(a6)
is even, then dG(w1, y) + a2 = dG(w′1, z) + a3 = dG(w′1, z) + a1, i.e., dG(w1, y) = a1 − b2 + dG(w′1, z). If the cycle
P(a1) ∪ P(a2) ∪ P(a6) is odd, then dG(w1, y) + a2 + 1 = dG(w′1, z) + a1, i.e., dG(w1, y) = a1 − b2 − 1 + dG(w′1, z). So
ψ(uu′) = a2 + 2(a1 − a2 − 1) ≥ 2a1 − a2 − 2 ≥ a1 − 2 ≥ 4. A similar result can be obtained for the remaining
edges in P(a1). Thus, Mo(G) ≥ a1 × 4 > 10.

If z < V(C), then C = P(a1)∪P(a2)∪P(a6). So ψ(uu′) = a3−1 = a1−1 ≥ 5. A similar result can be obtained
for the remaining edges in P(a1). Thus, Mo(G) ≥ a1 × 5 > 10.
Subcase 2.2. Both of y and z are in N0(uu′).

We have a1 = a2 = a3, a5 = a6 = 1. Therefore, ψ(uu′) = a3 − 1 = a1 − 1 ≥ 5. We can obtain a similar result
for other edges in P(a1). Thus, Mo(G) ≥ a1 × 5 > 10.
Subcase 2.3. Both of y and z are in Nu(uu′).

In this case, we have ψ(uu′) ≥ a1 + a4 − 2 ≥ a1 − 1 ≥ 5. We can obtain a similar result for other edges in
P(a1). Thus, Mo(G) ≥ a1 × 5 > 10.
Case 3. a1 =

k+1
2 .

Subcase 3.1. C is composed of the paths P(a1),P(a3),P(a4) and P(a6).
Clearly, y, z ∈ Nu(uu′) and b2 > a3 + a4. Let w be the furthest vertex in P(a5) such that w ∈ Nu(uu′),

w′ be the vertex adjacent to w but not in Nu(uu′). Then dG(w, z) = a1 − a3 − 1 + dG(x,w′). We have
ψ(uu′) ≥ a2 − 1 + dG(w, z) ≥ a1 + a2 − a3 − 3 ≥ a1 − 1 ≥ 5. A similar result can be obtained for the remaining
edges in P(a1). Thus, Mo(G) ≥ a1 × 5 > 10.
Subcase 3.2. C is composed of the paths P(a1),P(a2) and P(a6).

Clearly, y ∈ Nu(uu′) and b2 ≤ a3 + a4.
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If z ∈ N0(uu′), then a1 = a3 ≤ a2 + a4 and a5 = 1. We have ψ(uu′) ≥ a3 − 1 = a1 − 1 ≥ 5. We can obtain a
similar result for other edges in P(a1). Thus, Mo(G) ≥ a1 × 5 > 10.

If z ∈ Nu(uu′), similar to Subcase 3.1, we have dG(w, z) ≥ a1−a3−2, if a3 ≤ a2+a4; dG(w, z) ≥ a1−(a2+a4)−2,
if a3 ≥ a2 + a4. So ψ(uu′) ≥ a4 − 1 + a3 + dG(w, z) ≥ a1 + a4 − 3 ≥ a1 − 2 ≥ 4. A similar result can be obtained
for the remaining edges in P(a1). Thus, Mo(G) ≥ a1 × 4 > 10.

The proof of Theorem 1.1 follows from Lemmas 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7.

3. Concluding remarks

We obtained a lower bound for the Mostar index on tricyclic graphs for n ≥ 29 and identified the graphs
that attain the lower bound. In fact, Theorem 1.1 can be improved to n ≥ 10, which needs more details of
the proof, therefore we put the following conjecture.

Conjecture 3.1. Let G be a tricyclic graph of order n ≥ 10. Then

Mo(G) ≥
{

8, if n is even,
10, if n is odd

with equality if and only if G � An, where An is depicted in Fig 1.
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