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Abstract. This paper investigates a new weighted version of the standard Hermite-Hadamard inequalities
for operator convex functions and highlights certain related properties. As an application, new weighted
operator means have been pointed out and some refinements to several operator mean inequalities have
been discussed.

1. Introduction and preliminaries

Let (H, ⟨., .⟩) be a complex Hilbert space. The notationB(H) refers to the C∗-algebra of all bounded linear
operators acting on H. An operator S ∈ B(H) is positive if ⟨Sx, x⟩ ≥ 0 for all x ∈ C. This induces a partial
ordering on the sub-space of self-adjoint operators. Thus, for S,T ∈ B(H) self-adjoint, we write S ≤ T to
mean that T − S is positive. The notation B+(H) stands for the closed cone of positive operators and B+∗(H)
refers to the open cone of positive invertible operators of B(H).

With this regard, we recall that if f and 1 are two analytic real-valued functions defined on a nonempty
interval J ⊂ R such that f (t) ≤ 1(t) for all t ∈ J, then for any operators S ∈ B(H), with spectra in J, we have
f (S) ≤ 1(S), where f (S) is defined using the functional calculus techniques as usual.

Let CJ(H) be the class of all self-adjoint operators with spectra in J. For S,T ∈ CJ(H), we define the
segment [S,T] :=

{
(1 − t) S + t T; t ∈ [0, 1]

}
⊂ CJ(H).

The function f : J→ R is said to be operator monotone if S ≤ T implies f (S) ≤ f (T), where S,T ∈ CJ(H).
We say that f is operator convex (resp. operator concave) on J if the following inequality

f
(
(1 − λ)S + λT

)
≤ (≥)(1 − λ) f (S) + λ f (T) (1)

holds for all S,T ∈ CJ(H) and λ ∈ [0, 1].
Otherwise, the following inequalities

f
(S + T

2

)
≤

∫ 1

0
f
(
(1 − t)S + tT

)
dt ≤

f (S) + f (T)
2

(2)
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hold, whenever f : J → R is operator convex and S,T ∈ CJ(H). If f is operator concave on J then (2) are
reversed. Inequalities (2) represent an efficient tool in generalizing and refining several classical operator
inequalities. See [2, 5, 6, 14] for instance and the related references cited therein.

An important result concerning convex operator functions is the extension of integral Jensen inequality
pointed out in [8]. Namely, for f : J → R convex, let

(
ϕt

)
t∈J

be the unital field of positive linear mappings
from A to B, two unital C∗-algebras, and ν be a bounded Radon measure. The following Jensen operator
inequality

f
(∫

J
ϕt(At)dν(t)

)
≤

∫
J
ϕt

(
f (At)

)
dν(t), (3)

holds for any bounded field (At)t∈J ⊂ CJ(H) such that t 7−→ At is norm continuous on J.
Otherwise, if f is an operator convex function of class C1 on J, then we have [7]

D f (S)(T − S) ≤ f (T) − f (S) ≤ D f (T)(T − S) (4)

for any S,T ∈ CJ(H), where D f (S)(X) is the directional derivative of f at S in the direction X ∈ B(H), namely

D f (S)(X) := lim
ϵ→0

f (S + ϵX) − f (S)
ϵ

.

The inequalities (2) are main tool for establishing many operator inequalities in mean-theory by using
either the representative function of the evoked operator mean or its integral representation. In fact, every
operator mean σ in the sense of Kubo-Ando [9], of two operators S,T ∈ B+∗(H) can be expressed via a
unique positive operator monotone function φσ defined on the interval (0,∞) by the following relationship

SσT = S1/2φσ
(
S−1/2TS−1/2

)
S1/2, (5)

with φσ(1) = 1. Such φσ is called the representative function of the operator mean σ. The mean σ is
symmetric if σ(S,T) = σ(T,S) for any S,T ∈ B+∗(H), or equivalently, φσ(x) = xφσ

(
x−1

)
for all x > 0.

An operator mean σ is said to be λ-weighted [17] if its representative function φσ is derivable at 1 with
the condition φ′σ(1) = λ. Examples of some standard weighted operator means are the weighted arithmetic,
harmonic and geometric operator means defined, respectively, for S,T ∈ B∗+(H) and λ ∈ (0, 1) as follows

S∇λ T = (1 − λ)S + λT; S!λ T =
(
(1 − λ)S−1 + λT−1

)−1
; S♯λ T = S1/2

(
S−1/2TS−1/2

)λ
S1/2.

These weighted operator means satisfy the following inequalities

S!λT ≤ S♯λT ≤ S∇λT, (6)

and they are not symmetric unless λ = 1/2 case where they are simply denoted by T∇S, T!S and S♯T,
respectively.

Other symmetric operator means such as the logarithmic operator mean [1, 11, 13] and the (chaotic)
identric operator mean [15] are defined, respectively, by

L(S,T) :=
(∫ 1

0
S−1!tT−1 dt

)−1

=

∫ 1

0
S♯t T dt. (7)

I(S,T) := exp
(∫ 1

0
log

(
S∇tT

)
dt

)
. (8)
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We notice that L(S,T) is an operator mean in the sense of Kubo-Ando while I(S,T) is not, see [15] for more
details. A weighted version Lλ(S,T) of (7), the weighted logarithmic operator mean, was introduced in
[3, 10] by its representative function defined on (0,+∞) for any λ ∈ (0, 1) by

ϕλ(x) =
1

log x

(1 − λ
λ

(
xλ − 1

)
+

λ
1 − λ

xλ
(
x1−λ

− 1
))
. (9)

For an equivalent writing under another point of view of Lλ(S,T) see [13, 16]. Note that L1/2(S,T) = L(S,T)
for any S,T ∈ B+∗(H). For a weighted version Iλ(S,T) of the identric operator mean (8), we can consult [15].

The following chain of operator inequalities holds [10]

S!λ T ≤ S♯λT ≤ Lλ(S,T) ≤ S∇λT. (10)

Now, let us observe the following remark which is of interest.

Remark 1.1. (i) Let σλ, for λ ∈ [0, 1], be a given λ-weighted operator mean. Setting m := σ1/2, we then say that σλ
is the weighted m-operator mean.
(ii) If σλ, λ ∈ [0, 1], is a weighted m-operator mean then m := σ1/2 is of course unique. However, it is possible to have
more than one weighted m-operator mean. Section 4 of this paper explains more this latter situation.

This manuscript will be organized as follows: in Section 2, we investigate a new weighted variant of
(2). Section 3 is devoted to giving some refinements and reverses of this weighted inequality. Section 4 is
focused on applying the findings of the previous sections to introduce new weighted logarithmic operator
means. The comparison of these weighted logarithmic operator means with the above one Lλ(S,T) is also
discussed.

2. Weighted Hermite-Hadamard operator inequality

For the sake of simplicity, we extend the weighted operator arithmetic mean to operators in B(H) by
stating

S∇λT := (1 − λ)S + λT, for any S,T ∈ B(H) and λ ∈ [0, 1].

Our first main result reads as follows.

Theorem 2.1. Let f : J → R be an operator convex function. For any λ ∈ (0, 1) and S,T ∈ CJ(H), the following
inequalities hold

f
(
S∇λ T

)
≤

∫ 1

0
f
(
S∇t T

)
dνλ(t) ≤ f (S)∇λ f (T), (11)

where νλ is the probability measure defined on [0, 1] by

dνλ(t) =
(
(1 − λ)(1 − t)

1−2λ
λ + λt

2λ−1
1−λ

)
dt. (12)

If f : J→ R is operator concave then (11) are reversed.

Proof. Applying Jensen operator integral inequality (3), with At = S∇tT and J = [0, 1], we get

f
(∫ 1

0
S∇tTdνλ(t)

)
≤

∫ 1

0
f (S∇tT) dνλ(t).

Moreover, using (1), we obtain∫ 1

0
f (S∇tT) dνλ(t) ≤

∫ 1

0
f (S)∇t f (T)dνλ(t) = f (S)∇λ f (T),

where the last equality holds by (12) and real-integration. Thus, the proof is completed.



M. Raı̈ssouli et al. / Filomat 38:17 (2024), 5971–5982 5974

Remark 2.2. (i) In what follows, (11) will be called the weighted Hermite-Hadamard operator inequalities, (WHHOI)
in short. If λ = 1/2, dν1/2(t) = dt. Thus, (11) coincides with (2).
(ii) It is important to notice the following relation,

dν1−λ(1 − t) = dνλ(t) for any λ ∈ (0, 1). (13)

The (WHHOI) enable us to refine of the standard Hermite-Hadamard operator inequality (2) as recited
in the following corollary.

Corollary 2.3. Let f : J → R be operator convex. For any λ ∈ (0, 1) and S,T ∈ CJ(H), the following inequalities
hold

f
(
S∇T

)
≤

∫ 1

0
f
(
S∇tT

)
dt ≤ J f (S,T) ≤ f (S)∇ f (T), (14)

where we set

J f (S,T) :=
∫ 1

0

∫ 1

0
f
(
S∇tT

)
dνλ(t)dλ.

If f is operator concave then (14) are reversed.

Proof. Integrating (11) with respect to λ ∈ (0, 1) and using the left inequality in (2), we get (14).

Let λ ∈ (0, 1) and S,T ∈ CJ(H). We put

Mλ( f ; S,T) :=
∫ 1

0
f
(
S∇tT

)
dνλ(t). (15)

The operator map λ 7→ Mλ( f ; S,T) can be extended on the whole interval [0, 1] as justifying by the
following corollary.

Corollary 2.4. Let f : J→ R be operator convex (resp. operator concave). For any S,T ∈ CJ(H), there holds

lim
λ↓0
Mλ( f ; S,T) = f (S), lim

λ↑1
Mλ( f ; S,T) = f (T).

Proof. The desired results follow from (11) by using the fact that if f : C→ R is operator convex on J then
it is norm-continuous on J.

3. Refinements and reverses of (WHHOI)

The following lemma, which provides a refinement and a reverse of (1), will be needed in the sequel.
See [4, 12] for instance.

Lemma 3.1. Let f : J→ R be operator convex. Then the following inequalities

r(a, b)
(

f (S)∇a f (T) − f
(
S∇aT

))
≤ f (S)∇b f (T) − f

(
S∇bT

)
≤ R(a, b)

(
f (S)∇a f (T) − f

(
S∇aT

))
, (16)

hold for any S,T ∈ CJ(H) and a, b ∈ (0, 1), where we set

r(a, b) := min
(

b
a
,

1 − b
1 − a

)
, R(a, b) := max

(
b
a
,

1 − b
1 − a

)
. (17)

If f is operator concave then (16) are reversed.

We also need the following lemma.
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Lemma 3.2. For any a, λ ∈ (0, 1), the following relations hold∫ 1

0
r(a, b) dνλ(b) = αa,1−λ + α1−a,λ (18)

∫ 1

0
R(a, b) dνλ(b) =

λ
a
+

1 − λ
1 − a

− αa,1−λ − α1−a,λ, (19)

where, for x, y > 0, we set

αx,y := y2 1 − x
1−y

y

1 − x
.

Proof. It is obvious that 0 ≤ b ≤ a if and only if b
a ≤

1−b
1−a . Thus we can write∫ 1

0
r(a, b) dνλ(b) =

1
a

∫ a

0
b.dνλ(b) +

1
1 − a

∫ 1

a
(1 − b).dνλ(b).

The use of (12) leads to

b.dνλ(b) =
(
(1 − λ)(1 − b)

1−2λ
λ − (1 − λ)(1 − b)

1−λ
λ + λb

λ
1−λ

)
db.

By (13), it is easy to see that (1 − b)dνλ(b) = (1 − b)dν1−λ(1 − b). After some simple integral calculations, we
obtain ∫ a

0
b.dνλ(b) = −λ(1 − a)

1−λ
λ + λ(1 − λ)

[
(1 − a)

1
λ + a

1
1−λ

]
+ λ2,

∫ 1

a
(1 − b).dνλ(b) =

∫ 1

a
(1 − b).dν1−λ(1 − b)

=

∫ 1−a

0
t.dν1−λ(t)

= −(1 − λ)a
λ

1−λ + λ(1 − λ)
[
(1 − a)

1
λ + a

1
1−λ

]
+ (1 − λ)2.

Combining these latter results, we deduce (18). The relation (19) can be proved by making some algebraic
manipulations and using the following formula

R(a, b) + r(a, b) =
1

1 − a
+

1 − 2a
a(1 − a)

b.

The details are straightforward and therefore omitted here.

We can now state the following result which provides a refinement and a reverse of the right inequality
in (11).

Theorem 3.3. Let f : J → R be operator convex. For any a, λ ∈ [0, 1] and S,T ∈ CJ(H) the following inequalities
hold

m(a, λ)
(

f (S)∇a f (T) − f
(
S∇aT

))
≤ f (S)∇λ f (T) −

∫ 1

0
f
(
S∇tT

)
dνλ(t)

≤ M(a, λ)
(

f (S)∇a f (T) − f
(
S∇aT

))
, (20)

where we set

m(a, λ) := (1 − λ)2 1 − a
λ

1−λ

1 − a
+ λ2 1 − (1 − a)

1−λ
λ

a
, M(a, λ) :=

1 − λ
1 − a

+
λ
a
−m(a, λ).

If f is operator concave then (20) are reversed.
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Proof. Multiplying all sides of (16) by dνλ(b) and then integrating with respect to b ∈ [0, 1], we obtain the
desired inequalities by the use of (18) and (19). The details are simple and therefore omitted here for the
reader.

Taking a = 1/2 in Theorem 3.3 and administering some computations, we get the following corollary.

Corollary 3.4. For f : J→ R operator convex, λ ∈ [0, 1] and S,T ∈ CJ(H), there hold

l(λ)
(

f (S)∇ f (T) − f
(
S∇T

))
≤ f (S)∇λ f (T) −

∫ 1

0
f
(
S∇tT

)
dνλ(t) ≤ u(λ)

(
f (S)∇ f (T) − f

(
S∇T

))
, (21)

where,
l(λ) := 2

[
(1 − λ)2

(
1 − 2

λ
λ−1

)
+ λ2

(
1 − 2

λ−1
λ

)]
and u(λ) := 2 − l(λ).

If f is operator concave then (21) are reversed.

The following results focuses on refinement and reverse of the left inequality in (11).

Theorem 3.5. Let f : J→ R be operator convex, S,T ∈ CJ(H) and λ ∈ [0, 1]. Then there hold

f (S∇λT) ≤
∫ 1

0
f
(
(S∇λ T)∇λ (S∇x T)

)
dνλ(x) ≤

∫ 1

0
Mλ( f ; S∇λ T,S∇x T) dνλ(x)

≤ f
(
S∇λT

)
∇λMλ( f ; S,T) ≤

∫ 1

0
f
(
S∇x T

)
dνλ(x). (22)

If f is operator concave then (22) are reversed.

Proof. For any S,T ∈ CJ(H) and λ ∈ [0, 1], we have

f (S∇λT) = f ((S∇λT)∇λ (S∇λT))

= f
(
(S∇λT)∇λ

( ∫ 1

0
S∇xT dνλ(x)

))
= f

(∫ 1

0
(S∇λT)∇λ (S∇xT) dνλ(x)

)
≤

∫ 1

0
f
(

(S∇λT)∇λ (S∇xT)
)

dνλ(x) by convexity of f .

≤

∫ 1

0

{∫ 1

0
f ((S∇λT)∇t (S∇xT)) dνλ(t)

}
dνλ(x) by (11)

=

∫ 1

0
Mλ

(
f ; S∇λT,S∇xT

)
dνλ(x)

≤

∫ 1

0

[
f (S∇λT)∇λ f (S∇xT)

]
dνλ(x) by (11)

= f (S∇λT)∇λ

∫ 1

0
f (S∇xT) dνλ(x)

≤

∫ 1

0
f (S∇xT) dνλ(x) by (11).

Thus, the proof is completed.
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Theorem 3.6. Let f : J −→ R be operator convex. Assume that f is differentiable on J then for any S,T ∈ CJ(H)
and u ∈ [0, 1], we have

(1−u)
∫ 1

0
(λ−t)D f

(
(S∇λ T)∇u(S∇t T)

)
(S−T) dνλ(t) ≤

∫ 1

0
f (S∇t T)dνλ(t)−

∫ 1

0
f
(
(S∇λ T)∇t (S∇x T)

)
dνλ(x)

≤ (1 − u)
∫ 1

0
(λ − t)D f (S∇t T)(S − T) dνλ(t). (23)

Proof. According to (4) we can write

D f (A)(B − A) ≤ f (B) − f (A) ≤ D f (B)(B − A),

with A = (S∇λ T)∇u (S∇t T) ∈ [S,T] and B = S∇t T ∈ [S,T]. Therefore, we have

(1 − u)(λ − t)D f
(
(S∇λ T)∇u (S∇t T)

)
(S − T) ≤ f (S∇tT) − f

(
(S∇λT)∇u(S∇tT)

)
≤ (1 − u)(λ − t)D f

(
S∇t T

)
(S − T). (24)

Multiplying all sides of (24) by dνλ(t) and then integrating with respect to t ∈ [0, 1], we get the desired result
and the proof is achieved.

Making u = 0 in (23) and noticing that
∫ 1

0 (λ − t)dνλ(t) = 0, we may state the following corollary.

Corollary 3.7. With the same assumptions as in Theorem 3.6, there hold

0 ≤
∫ 1

0
f (S∇t T)dνλ(t) − f (S∇λ T) ≤

∫ 1

0
(λ − t)D f (S∇t T)(S − T)dνλ(t). (25)

4. Application: Two new weighted logarithmic operator means

As application of the previous results, we will introduce here some new weighted operator means and
we establish some related properties. We begin by pointing out the following lemma which will be needed.

Lemma 4.1. Let λ ∈ [0, 1]. The functions

x 7→ fλ(x) =
(∫ 1

0

(
1 − t + tx

)−1
dνλ(t)

)−1

, (26)

x 7→ 1λ(x) =
∫ 1

0
xtdνλ(t) (27)

are operator monotone on (0,+∞). Moreover, we have

fλ(1) = 1λ(1) = 1 and
d fλ
dx

(1) =
d1λ
dx

(1) = λ. (28)

Proof. The functions u : x 7→ x−1 and v : x 7→
∫ 1

0 u(1 − t + tx) dνλ(t) are operator monotone decreasing on
(0,∞), then fλ = uov is operator monotone. Also, the function x 7→ xt is operator monotone on (0,+∞) for
0 ≤ t ≤ 1 and then 1λ is as well.

The two first relations of (28) are immediate. We now prove the two other ones. For fixed λ ∈ [0, 1],

consider the function ψ(x) :=
∫ 1

0

(
1 − t + tx

)−1
dνλ(t) for x > 0. By the (WHHOI) applied in H = R for the
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convex function f (x) = 1/x on (0,∞) we have
(
1 − λ + λx

)−1
≤ ψ(x) ≤ 1 − λ + λx−1 for any x > 0. This, with

the fact that ψ(1) = 1, implies that for any x > 1 we have(
1 − λ + λx

)−1
− 1

x − 1
≤
ψ(x) − ψ(1)

x − 1
≤ −

λ
x
, (29)

with reversed inequalities if x < 1. It is easy to check that the two extremes sides of (29) both tend to −λ

when x goes to 1, and so ψ′(1) = −λ. Since fλ(x) =
(
ψ(x)

)−1
we then deduce that d fλ

dx (1) = λ.
On another part, the standard arithmetic-geometric-harmonic mean inequality implies that, for any

x > 0 and t ∈ [0, 1], we have
(
1 − t + tx−1

)−1
≤ xt

≤ 1 − t + tx. It follows that

ψ(x−1) =
∫ 1

0

(
1 − t + tx−1

)−1
dνλ(t) ≤ 1λ(x) :=

∫ 1

0
xtdνλ(t) ≤

∫ 1

0
(1 − t + tx)dνλ(t) = 1 − λ + λx.

This, with 1λ(1) = 1 and by the same way as previous, allows us to check that d1λ
dx (1) = λ, so completing the

proof.

Proposition 4.2. For S,T ∈ B+∗(H) and λ ∈ [0, 1], we set

Lλ(S,T) :=
(∫ 1

0

(
S∇tT

)−1
dνλ(t)

)−1

. (30)

and

Lλ(S,T) :=
∫ 1

0
S♯t Tdνλ(t). (31)

Then Lλ and Lλ are λ-weighted operator means. Furthermore, we have

L1/2(S,T) = L1/2(S,T) = L(S,T), (32)

where L(S,T) is the logarithmic operator mean defined by (7).

Proof. It is not hard to see that

Lλ(S,T) = S
1
2

[∫ 1

0

(
(1 − t)I + t

(
S−

1
2 TS−

1
2

))−1
dνλ(t)

]−1

S
1
2 = S

1
2 fλ

(
S−

1
2 TS−

1
2

)
S

1
2 (33)

and

Lλ(S,T) = S
1
2

[∫ 1

0

(
S−

1
2 TS−

1
2

)t
dνλ(t)

]
S

1
2 = S

1
2 1λ

(
S−

1
2 TS−

1
2

)
S

1
2 . (34)

By Lemma 4.1, Lλ and Lλ are λ-weighted operator means, with representative functions fλ and 1λ given,
respectively, by (26) and (27). This concludes the proof.

The following result gives a comparison between some of the previous weighted operator means.

Proposition 4.3. For any S,T ∈ B+∗(H) and λ ∈ [0, 1], there hold

S!λT ≤ Lλ(S,T) ≤ S∇λT, (35)

S!λ T ≤ L−1
λ (S−1,T−1) ≤ Lλ(S,T) ≤ S∇λT. (36)
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Proof. By applying (11) for the operator convex function x 7→ 1/x on (0,+∞), we get

(S∇λ T)−1
≤

∫ 1

0
(S∇t T)−1 dνλ(t) ≤ S−1

∇λ T−1,

hence (35). By (6), we have for any t ∈ [0, 1], S!t T ≤ S♯t T ≤ S∇t T. Multiplying all sides of this latter
inequalities by dνλ(t) and then integrating with respect to t ∈ [0, 1], we obtain

L
−1
λ (S−1,T−1) ≤ Lλ(S,T) ≤ S∇λT.

For the left inequality in (36), it suffices to notice that

L
−1
λ (S−1,T−1) ≥ (S−1

∇λ T−1)−1 = S!λ T.

This ends the proof.

We now notice the following remark which may be of interest for the reader.

Remark 4.4. (i) By virtue of (32), Lλ(S,T) and Lλ(S,T) are also called the weighted logarithmic operator means.
(ii) A question arises from the above: are Lλ(S,T), Lλ(S,T) and Lλ(S,T) equal or different? They are in fact different
as confirmed by the example below.

Example 4.5. Let us take λ = 1/3, S = I and T = 2I, where I is the identity operator of H. Using some simple real
integration tools and some numerical computations, we find

L1/3(S,T) = 3
(∫ 1

0

2 − 2t + t−1/2

1 + t
dt

)−1

I =
6

8 log 2 + π − 4
I ≃ 1.2801 I;

L1/3(S,T) =
1
3

∫ 1

0

(
2 − 2t + t−1/2

)
2tdt I =

4 log
3
2 (2)D(

√
log 2) + 2 − log(4)

3 log2(2)
I ≃ 1.2846 I;

L1/3(S,T) =
3 3√2 − 2
2 log 2

I ≃ 1.2838 I.

where D stands for the Dawson’s integral defined by D(x) =
∫ x

0 exp(t2
− x2)dt. Our claim is then confirmed.

To give another result about the comparison of the previous weighted operator means we need to state
the following lemma.

Lemma 4.6. Let λ ∈ (0, 1) and consider the real function Fλ defined on (0, 1) by

Fλ(t) = (1 − λ)(1 − t)
1−2λ
λ + λt

2λ−1
1−λ .

Then, we have
(i) F1/2(t) = 1 for all t ∈ (0, 1),
(ii) If λ < 1/2 then t 7→ Fλ(t) is strictly decreasing on (0, 1) and Fλ(t) ≥ λ for all t ∈ (0, 1),
(iii) If λ > 1/2 then t 7→ Fλ(t) is strictly increasing on (0, 1) and Fλ(t) ≥ 1 − λ for all t ∈ (0, 1).

Proof. It is a simple exercise of Real Analysis when studying the variations of the function t 7→ Fλ(t) on
(0, 1). We omit the details here.

Proposition 4.7. Let S,T ∈ B+∗(H) and λ ∈ [0, 1]. The following assertions hold:
(i) If λ < 1/2 then λ2

Lλ(S,T) ≤ λ L(S,T) ≤ Lλ(S,T).
(ii) If λ > 1/2 then (1 − λ)2

Lλ(S,T) ≤ (1 − λ) L(S,T) ≤ Lλ(S,T).
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Proof. We use Lemma 4.6 with definitions of L(S,T),Lλ(S,T) and Lλ(S,T) given, respectively, by (7), (30)
and (31). The details are straightforward and therefore omitted here for the reader.

In what follows, we provide some refinements and estimations of the inequalities (35).

Proposition 4.8. Let S,T ∈ B+∗(H). For any a, λ ∈ [0, 1], we have

m(a, λ)
(
(S!a T)−1

− (S∇a T)−1
)
≤ (S!λ T)−1

− L
−1
λ (S,T) ≤M(a, λ)

(
(S!a T)−1

− (S∇a T)−1
)
. (37)

Proof. The proof is based on applying (20) to the operator convex function f (x) = 1/x on (0,+∞).

Corollary 4.9. Let S,T ∈ B+∗(H). For any λ ∈ [0, 1] one has

(S!λ T)−1
∇M(λ,λ)(S∇λ T)−1

≤ L
−1
λ (S,T) ≤ (S!λ T)−1

∇m(λ,λ) (S∇λ T)−1. (38)

Proof. We take a = λ in (37), and by noticing that m(λ, λ) = 1 − (1 − λ)λ
λ

1−λ − λ
(
1 − λ

) 1−λ
λ
≤ 1, we obtain the

desired result.

Remark 4.10. Using the right inequality of (38), we get the following refinement of the inequalities proved in
Proposition 4.3.

S!λ T ≤ (S!λ T)!m(λ,λ) (S∇λ T) ≤ Lλ(S,T)

Proposition 4.11. For any S,T ∈ B+∗(H) and λ ∈ [0, 1], we have

Lλ(S,T) ≤ (S∇λ T)!λLλ(S,T) ≤
[∫ 1

0
L
−1
λ (S∇λ T,S∇x T)dνλ(x)

]−1

≤

[∫ 1

0

(
(S∇λ T)∇λ (S∇x T)

)−1
dνλ(x)

]−1

≤ S∇λ T.

Proof. We apply (22) for the operator convex function f (x) = 1/x on (0,+∞).

We end this section by stating more inequalities involving some of the previous weighted operator
means.

Theorem 4.12. Let S,T ∈ B+∗(H) and s, λ ∈ [0, 1] the following inequalities hold

S∇λ
(
S♯s T

)
≤

∫ 1

0
S♯s (S∇t T)dνλ(t) ≤ S♯s (S∇λ T). (39)

Proof. Applying Theorem 2.1 for the operator concave function f (x) = xs on (0,+∞) with s ∈ [0, 1], we get

As
∇λBs

≤

∫ 1

0
(A∇tB) dνλ(t) ≤ (A∇λB)s , (40)

for all A,B ∈ C(0,+∞)(H).
Since I,S−

1
2 TS−

1
2 ∈ C(0,∞)(H), we can therefore replace in (40) A and B respectively by I and S−

1
2 TS−

1
2 . This

leads to the following inequalities

I∇λ
(
S−

1
2 TS−

1
2

)s
≤

∫ 1

0

(
I∇t

(
S−

1
2 TS−

1
2

))
dνλ(t) ≤

(
I∇λ

(
S−

1
2 TS−

1
2

))s
.

Multiplying the right and left sides of these inequalities by S
1
2 , we deduce (39).
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Corollary 4.13. Let S,T ∈ B+∗(H) and λ ∈ [0, 1]. Then the following inequalities hold

S∇λ Lλ(S,T) ≤
∫ 1

0
L (S,S∇t T)dνλ(t) ≤ Lλ(S,S∇λ T).

Proof. Multiplying all sides of (39) by dνλ(s) and integrating with respect to s ∈ [0, 1], we obtain the desired
inequalities.

Theorem 4.14. For S,T ∈ B+∗(H) and s, a, λ ∈ [0, 1] the following inequalities hold

m(a, λ)
(
S∇a

(
S♯s T

)
− S♯s

(
S∇a T

))
≤ S∇λ

(
S♯s T

)
−

∫ 1

0
S♯s (S∇t T)dνλ(t)

≤ M(a, λ)
(
S∇a

(
S♯s T

)
− S♯s

(
S∇a T

))
. (41)

Proof. Employing Theorem 3.5 for the operator concave function f (x) = xs on (0,+∞) with s ∈ [0, 1], we
obtain

m(a, λ) (As
∇aBs

− (A∇aB)s) ≤ As
∇λBs

−

∫ 1

0
(A∇tB)sdνλ(t) ≤M(a, λ) (As

∇aBs
− (A∇aB)s) ,

for all A,B ∈ C(0,+∞)(H).
Noticing that I, S−

1
2 TS−

1
2 ∈ C(0,∞)(H), we can therefore replace A and B respectively by I and S−

1
2 TS−

1
2 .

So, we get

m(a, λ)
(
I∇a

(
S−

1
2 TS−

1
2

)s
− (I∇a

(
S−

1
2 TS−

1
2

)s)
≤ I∇λ

(
S−

1
2 TS−

1
2

)s
−

∫ 1

0
(I∇t

(
S−

1
2 TS−

1
2

)
)sdνλ(t)

≤ M(a, λ)
(
I∇a

(
S−

1
2 TS−

1
2

)s
− (I∇a

(
S−

1
2 TS−

1
2

)s)
.

By multiplying the right and left sides of these inequalities by S
1
2 , we get the inequalities (41).

Corollary 4.15. Let S,T ∈ B+∗(H) and a, λ ∈ [0, 1]. Then we have

m(a, λ)
(
S∇a Lλ(S,T) −Lλ(S,S∇λ T)

)
≤ S∇λ Lλ(S,T) −

∫ 1

0
Lλ(S,S∇tT)dνλ(t)

≤ M(a, λ)
(
S∇a Lλ(S,T) −Lλ(S,S∇aT)

)
.

Proof. Multiplying all sides of (41) by dνλ(s) and integrating with respect to s ∈ [0, 1], we obtain the desired
inequalities.

Acknowledgment
The authors express their thanks to the anonymous reviewer(s) for the careful and thorough examination
of this manuscript and for the insightful comments, which significantly enhanced the manuscript’s quality.

References

[1] I. Al-Subaihi and M. Raı̈ssouli, Further inequalities involving the weighted geometric operator mean and the Heinz operator mean, Linear
Multilinear Algebra, 90/17 (2022), 4432-4454.

[2] V. Bacak and R. Türkmen, Refinements of Hermite-Hadamard type inequality for operator convex functions, J. Inequal. Appl. 2013,
2013:262.

[3] A. Burqan, A. Abu-Snainah, and R. Saadeh, Improvements of Logarithmic and Identric Mean Inequalities for Scalars and Operators, J.
Applied Mathematics, Hindawi, (2023), 1-7.

[4] S. S. Dragomir, Bounds of the normalised Jensen’s functional, Bull. Aust. Math.Soc. 74/3 (2006), 471-478.



M. Raı̈ssouli et al. / Filomat 38:17 (2024), 5971–5982 5982

[5] S. S. Dragomir, Hermite-Hadamard type inequalities for operator convex functions, Appl. Math. Computation 218/3 (2011), 766-772.
[6] S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal. 11/1 (2017),

241-259.
[7] S. S. Dragomir, Reverse Jensen integral inequalities for operator convex functions in terms of Fréchet derivative, Bull. Iran. Math. Soc.,

47(2021), 1969-1987,.
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