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Available at: http://www.pmf.ni.ac.rs/filomat

Optimization methods to statistical submanifolds in statistical warped
product manifolds

Aliya Naaz Siddiquia,∗, Fatemah Mofarrehb, Ali Hussain Alkhaldic, Akram Alic

aDivision of Mathematics, School of Basic Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
bMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi Arabia

cDepartment of Mathematics, College of Science, King Khalid University, 9004 Abha, Saudi Arabia

Abstract. This research paper strives to address the utilization of an optimization technique on subman-
ifolds. Specifically, it explores the concept of treating geometric inequalities as optimization challenges.
Within this framework, the paper examines two categories of inequalities: the optimal Casorati inequalities
and the Chen-Ricci inequality. These inequalities are investigated in the context of a statistical submanifold
situated within an almost Kenmotsu statistical manifold. Notably, this manifold represents a statistical
warped product of a trivial statistical manifold and an almost Kähler statistical manifold.

1. Development of statistical warped products

The productive exploration of warped product manifolds as an inherent extension of Riemannian
product manifolds began in 1969 through the pioneering work of R.L. Bishop and B. O’Neil [3], primarily
focused on manifolds exhibiting a curvature that is negative. These manifolds are a fascinating class of
mathematical structures that emerge from the field of differential geometry, offering a versatile framework
for understanding and studying various geometric phenomena. These manifolds arise by combining two
distinct manifolds using a special type of product, known as the warped product. This construction
introduces a notion of nontrivial warping or scaling along one of the manifold’s directions, resulting in
intriguing and rich geometries.

At its core, a warped product manifold is formed by taking the Cartesian product of two different
manifolds and then warping one of the manifolds using a smooth, positive function known as the warping
function. This warping function acts as a scaling factor, varying along the directions of the other manifold,
and determines how the two manifolds are interlinked. As a consequence, the geometry of the warped
product manifold can significantly differ from the simple product manifold.

Warped product manifolds have found applications in various areas of mathematics and theoretical
physics. They play a crucial role in general relativity, where they are used to describe certain solutions to
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Einstein’s field equations, including the well-known Schwarzschild and Kerr metrics, which describe the
geometry around non-rotating and rotating black holes, respectively.

A statistical structure can be regarded as a fruitful extension of a Riemannian structure, encompassing
a Riemannian metric along with its Levi-Civita connection (referred to as LCC for brevity). Building upon
this notion within complex and contact geometries has led to the definition of several novel manifolds, as
outlined below:

1. Serving as a elegant extension beyond the combination of a Kähler structure and its associated Levi-
Civita connection (in short, LCC), H. Furuhata introduced the concept of a holomorphic statistical
manifold in [11, 12]. This construct essentially serves as the statistical counterpart to the idea of a com-
plex manifold. Subsequently, Siddiqui et al. [32] delved into the exploration of totally real statistical
submanifolds within holomorphic statistical manifolds, shedding new insights in this context.

2. In the realm of contact geometry, Furuhata and colleagues [13] presented the statistical analog of a
Sasakian manifold, introducing the notion of a Sasakian statistical manifold.

3. Vilcu et al. [40] explored the presence of almost quaternionic structures on statistical manifolds, a
category termed as quaternionic Kähler-like statistical manifolds. Building upon K. Takano’s findings
pertaining to statistical manifolds equipped with almost complex structures [36] and almost contact
structures [37], they delved into the curvature characteristics of quaternionic Kähler-like statistical
submersions.

4. In [38], L. Todjihounde formulated a dualistic structure within the context of a warped product
manifold.

5. Taking inspiration from his research, Furuhata et al. [14] delved into the statistical analog of a
Kenmotsu manifold, which they referred to as Kenmotsu statistical manifolds. In addition, they
achieved success in outlining a procedure for structuring a Kenmotsu statistical manifold in the
manner of a warped product involving a holomorphic statistical manifold and a line.

6. In a recent development, taking inspiration from Todjihounde’s research, Murathan et al. [21] delved
into the formulation of Kenmotsu-like statistical manifolds and cosymplectic-like statistical manifolds.
This construction relies on the presence of a Kähler-like statistical manifold in conjunction with a line.

7. Hulya et al. [16] showcased the Einstein statistical warped product configurations.

Within this article, we present an application situated within the realm of optimization on manifolds,
encapsulated as a concise summary of the content in [25], enriched with pointers to the latest scholarly
sources. Our contribution culminates in a particularly intriguing outcome concerning optimization on
Riemannian manifolds, as detailed below:

Optimizations on submanifolds: Consider a Riemannian submanifold (N,G) in a Riemannian manifold
(M,G), alongside a differentiable function f : M→ R.

Theorem 1.1. [25] When x ∈ N represents a solution to the constrained extremum problem min
x0∈N

f (x0), then

1.
(
1rad( f )

)
(x) ∈ T⊥x N,

2. the bilinear form B : TxN × TxN→ R is positive semi-definite, defined by

B(U1,V1) = Hess f (U1,V1) + G(h∗(U1,V1),
(
1rad( f )

)
(x)),

where 1rad( f ) indicates the gradient of f and h∗ is the second fundamental form of N in M.

To sum up, the concept of optimization on manifolds revolves around harnessing the tools of differ-
ential geometry to construct optimization strategies applicable to abstract manifolds. Subsequently, these
abstract geometric methodologies are translated into practical numerical techniques suited for specific
manifolds. These methods find relevance in solving problems that can be reformulated as the optimiza-
tion of differentiable functions over a manifold. This research initiative has brought fresh perspectives
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to existing algorithms and introduced innovative approaches supported by robust convergence analyses.
Optimization on manifolds has applications in a wide range of fields, including machine learning like
training neural networks with constraints; computer graphics (for example shape optimization), robotics
(for example motion planning) and physics such as optimizing physical systems subject to constraints. It’s
important to emphasize that while the optimization of real-valued functions on manifolds, as expressed
in Theorem 1.1, involves locating function minima or maxima on a manifold, this isn’t the sole intersec-
tion point between optimization and differential geometry. Another notable instance is the Riemannian
geometry’s involvement in the central path of linear programming. Therefore, within this current study,
we derive optimal Casorati inequalities and the Chen-Ricci inequality for a statistical submanifold in a
statistical warped product manifold. These inequalities, involving a set of paired conjugate affine con-
nections, incorporate the intrinsic and extrinsic curvature invariants of statistical submanifolds residing in
distinct ambient spaces. For example, in [2] Aydin et al. obtained Euler and Chen-Ricci inequalities on
submanifolds in statistical manifolds of constant curvature. Mihai et al. [20] inspired by above inequalities
and considered statistical submanifolds of Hessian manifolds of constant Hessian curvature, then obtained
both inequalities with respect to a sectional curvature of the ambient Hessian manifold. Infact, Chen-Ricci
inequality for CR-statistical submanifolds of holomorphic statistical manifolds of constant holomorphic
curvature was also discussed in [29]. Later on, inequalities involving Casorati curvature for statistical
submanifolds in statistical manifolds of constant curvature, as well as in Kenmotsu statistical manifolds
of constant ϕ-sectional curvature, were established in [19] and [9], respectively. Siddiqui et al. [33] also
derived similar inequality for statistical hypersurfaces in statistical manifolds of constant curvature.

2. Statistical manifolds and their associated submanifolds

A statistical manifold constitutes a Riemannian manifold (M,G) accompanied by a duo of torsion-free
affine connections, denoted as ∇ and ∇

′

, which adhere to the condition:

U1G(V1,U2) = G(∇U1 V1,U2) + G(V1,∇
′

U1
U2),

for all U1,V1,U2 ∈ Γ(TM). These connections are named as dual connections.

Definition 2.1. A Riemannian manifold (M,G) with an affine connection ∇ is said to be a statistical manifold [11]
(M,G,∇) if

1. ∇ is a torsion free connection on M,
2. the covariant derivative ∇G is symmetric.

Amari [1] initially introduced the concept of a conjugate connection within the field of statistics, and
subsequently, Lauritzen [18] further advanced this idea through subsequent studies. Evidently,

(
∇
′
)′
= ∇.

Additionally, 2∇
0
= ∇+∇

′

, where ∇
0

is LCC on M. Furthermore, if (∇,G) is a statistical structure on M, then
(∇
′

,G) is also a statistical structure.
An almost Hermitian manifold (M,G,J) is classified as an almost Kähler manifold if its fundamental

2-form Ω is closed, defined by

Ω(U1,V1) = G(U1,JV1),

This concept is elaborated in reference [42].

Definition 2.2. [10] Let (M,∇,G) be a statistical manifold. If (M,G,J) is

1. an almost Hermitian manifold, then (M,∇,G,J) is known as an almost Hermitian statistical manifold.
2. a (almost) Kähler manifold then (M,∇,G,J) is called a (almost) Kähler statistical manifold.
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Definition 2.3. [12] Consider an affine connection ∇ on a Kähler manifold (M,∇,G,J). Then (M,∇,G,J) is
referred to as a holomorphic statistical manifold if

1. (M,∇,G) is a statistical manifold,
2. a 2−form Ω on M is ∇−parallel (means ∇Ω = 0).

Definition 2.4. [12] A holomorphic statistical manifold (M,∇,G,J) is of constant holomorphic curvature c ∈ R if
and only if

S(U1,V1)U2 =
c
4

{
G(V1,U2)U1 − G(U1,U2)V1 + G(JV1,U2)JU1

−G(JU1,U2)JV1 + 2G(U1,JV1)JU2

}
, (1)

where S denotes the statistical curvature tensor field of M. It is symbolized by M(c).

Consider (M,∇,G) as a statistical manifold and let N represent a submanifold of M. Consequently,(
N,∇,G

)
forms another statistical manifold, inheriting the statistical structure (∇,G) from (∇,G). We denote(

N,∇,G
)

as a statistical submanifold within the context of
(
M,∇,G

)
. The core equations in the Riemannian

submanifold geometry (see [42]) consist of the Gauss and Weingarten formulas, along with the Gauss and
Ricci equations. In the context of statistics, the Gauss and Weingarten formulas are defined as follows [41]:

∇U1 V1 = ∇U1 V1 + h(U1,V1)V, ∇
′

U1
V1 = ∇

′

U1
V1 + h′(U1,V1)V,

∇U1N = −AN (U1) + ∇⊥U1
N , ∇

′

U1
N = −A′

N
(U1) + ∇⊥′U1

N ,

for all U1,V1 ∈ Γ(TN) andN ∈ Γ(T⊥N), where

1. ∇ and ∇
′

: dual connections on M,
2. ∇ and ∇′ : dual connections on N,
3. h and h′ : second fundamental forms of N in regard to ∇ and ∇

′

.

4. A and A′ : shape operators of N in regard to ∇ and ∇
′

The relation between h (resp. h′) and AN (resp. A′
N

) is established through the following [41]:

G(h(U1,V1),V) = G(A′
N

U1,V1),

G(h′(U1,V1),V) = G(ANU1,V1).

Consider N as a d-dimensional submanifold in a n-dimensional statistical manifold M. When {v1, . . . , vd}

constitutes an orthonormal basis for T℘N, where ℘ ∈ N, the mean curvature vectors of N can be expressed
as

H =
1
d

d∑
i=1

h(vi, vi) and H
′ =

1
d

d∑
i=1

h′(vi, vi).

The squared norms of h and h′ are expressed by C and C′ respectively, termed as the Casorati curvatures
of N in M:

C =
1
d
||h||2 and C

′ =
1
d
||h′||2. (2)

For a s−dimensional subspace W of TN, provided s ≥ 2, scal(W) is defined as

scal(W) =
∑

1≤i< j≤s

S(vi, v j, v j, vi),
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where S denotes the statistical curvature tensor field of N and the Casorati curvatures of W are as follows:

C(W) =
1
s

n∑
k=d+1

s∑
i, j=1

(
hk

i j

)2
and C

′(W) =
1
s

n∑
k=d+1

s∑
i, j=1

(
h′ki j

)2
.

where {v1, . . . , vs} is an orthonormal basis of W.
Also, the normalized Casorati curvatures δC(d − 1) and δ̂C(d − 1) are defined as

[δC(d − 1)]℘ =
1
2
C℘ + (

d + 1
2d

) inf{C(W)|W : a hyperplane of T℘N} (3)

and

[δ̂C(d − 1)]℘ = 2C℘ − (
2d − 1

2d
) sup{C(W)|W : a hyperplane of T℘N}. (4)

Note that dual of (3) and (4) are δ′
C

(d − 1) and δ̂′
C

(d − 1) at ℘ ∈ N.
Consider the curvature tensor fields R and R associated with ∇ and ∇, respectively. The relevant Gauss

equation is [41]

G(R(U1,V1)U2,V2) = G(R(U1,V1)U2,V2) + G(h(U1,U2), h′(V1,V2))

−G(h′(U1,V2), h(V1,U2)). (5)

Likewise, R
′

and R′ correspondingly denote the curvature tensor fields in regard to ∇
′

and ∇′. The
counterpart of (5) under ∇

′

and ∇′ can be derived.
The statistical curvature tensor fields S of M and S of N are defined as per [23, 24] in the following

manner:

S =
1
2

(R + R
′

) and S =
1
2

(R + R′). (6)

Consequently, the sectional curvatureK∇,∇
′

on N in M can be expressed as given in [23, 24]:

K∇,∇
′

(U1 ∧ V1) = G(S(U1,V1)V1,U1)

=
1
2

(G(R(U1,V1)V1,U1) + G(R′(U1,V1)V1,U1)), (7)

where U1 and V1 are orthonormal vectors in the tangent space T℘N, and ℘ ∈ N.
The concept of warped product manifolds emerged as an elegant extension of Riemannian product

manifolds. As outlined by R.L. Bishop and B. O’Neil, the definition of these manifolds is as follows [3]:

Definition 2.5. Let (N1,G1) and (N2,G2) denote two (pseudo)-Riemannian manifolds, and ℓ > 0 represent a
differentiable function on N1. Consider the mappings ρ : N1 ×N2 −→ N1 and ϱ : N1 ×N2 −→ N2. In this context,
the warped product N = N1 ×ℓ N2 represents the product manifold endowed with a Riemannian structure, such that

G(U1,V1) = G1(ρ′U1, ρ′V1) + ℓ2(u)G2(ϱ∗U1, ϱ∗V1), (8)

for all U1,V1 ∈ Γ(T(u,v)N), u ∈ N1 and v ∈ N2, where ∗ is the symbol for the tangent maps. The function ℓ is called
the warping function.

Let χ(N1) and χ(N2) denote the sets of all vector fields on N1 × N2, which represent the horizontal lift
of a vector field on N1 and the vector lift of a vector field on N2, respectively. This implies that ρ(χ(N1))
encompasses Γ(TN1), and ϱ(χ(N2)) encompasses Γ(TN2). As a result, we have ρ∗(X) = U1 ∈ Γ(TN1),
ρ∗(Y) = V1 ∈ Γ(TN1), ϱ∗(U) = U2 ∈ Γ(TN2), and ϱ∗(V) = V2 ∈ Γ(TN2).

Consider a statistical warped product manifold denoted as M = R ×ℓ M, where the metric is G =
G1 + ℓ2(z)G2. In this context, R signifies a trivial statistical manifold with metric G1 = dz2, while M stands
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as an almost Kähler statistical manifold [10] with metric G2 and dual affine connections ∇M and ∇M′. The
structure vector field on M is denoted by ξ = ∂z. Any arbitrary vector field on M can be expressed as
Z = η(Z) + U1, where U1 constitutes an arbitrary vector field on M and dz = η. Moreover, a novel tensor
field ϕ of type (1, 1) on M can be defined by utilizing the tensor fieldJ , yielding ϕZ = JU1. This particular
type of statistical warped product was termed as an almost Kenmotsu statistical manifold by R. Gorunus
et al. [15]. The statistical curvature tensor of M = R ×ℓ M(c) can be found in [15] as

S(U1,V1,U2,V2) =
1
2

(
R(U1,V1,U2,V2) + R

′

(U1,V1,U2,V2)
)

=α
(
G(U1,V2)G(V1,U2) − G(U1,U2)G(V1,V2)

)
+ β
(
G(U1,U2)G(V1, ∂z)G(V2, ∂z) − G(V1,U2)G(U1, ∂z)G(V2, ∂z)

+ G(V1,V2)G(U1, ∂z)G(U2, ∂z) − G(U1,V2)G(V1, ∂z)G(U2, ∂z)
)

+ γ
(
G(U1, ϕU2)G(ϕV1,V2) − G(V1, ϕU2)G(ϕU1,V2)

+ 2G(U1, ϕV1)G(ϕU2,V2)
)
, (9)

where ∂z = ∂
∂z represents the unit tangent vector field on R while α, β, and γ are

α =
c

4ℓ2
−

(ℓ
′

)2

ℓ2
, β =

c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ
and γ =

c
4ℓ2
.

3. Main inequality 1

In his work, F. Casorati [5] introduced an extrinsic invariant referred to as the Casorati curvature,
applicable to a submanifold in a Riemannian manifold. This curvature, characterized as the normalized
square length of the second fundamental form, extended the exploration of principal directions within
hypersurfaces in Riemannian geometries. Eminent geometers [8, 17, 39] have rigorously examined the
geometric aspects and significance of Casorati curvatures, leading to significant progress in the realm
of pure Riemannian geometry. Consequently, there has been a substantial interest among geometers to
establish optimal inequalities for Casorati curvatures of submanifolds across a range of ambient spaces.

Notations:

1. (R, dz,∇
R

) : trivial statistical manifold,

2. (M,G,∇,J) : holomorphic statistical manifold of constant holomorphic sectional curvature c,

3. R ×ℓ M(c) : statistical warped product manifold of special type.

Theorem 3.1. Let N be a d-dimensional statistical submanifold ofR×ℓM(c). Then we have the following inequality:

nor(scal)∇,∇
′

≤2δ0
C
+

1
d − 1

C
0 +
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
+

3c
4d(d − 1)ℓ2

||ϕ||2

−
2
d

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2 −

d
2(d − 1)

(
||H||

2 + ||H ′||2
)
, (10)

where 2C0 = C + C′ and 2δ0
C

(d − 1) = δC(d − 1) + δ′
C

(d − 1).
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Proof. The statistical scalar curvature denoted as scal∇,∇′ associated with N is

2scal∇,∇
′

=
∑

1≤i< j≤m

S(vi, v j, v j, vi) =
1
2

∑
1≤i< j≤m

{
R(vi, v j, v j, vi) + R′(vi, v j, v j, vi)

}
=
∑

1≤i< j≤m

R(vi, v j, v j, vi)

=d(d − 1)
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
− 2(d − 1)

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2 +

3c
4ℓ2
||ϕ||2

+
1
2

∑
i, j

{
G(h′(vi, vi), h(v j, v j)) + G(h(vi, vi), h′(v j, v j))

}
− 2
∑

i, j

G(h(vi, v j), h′(vi, v j)), (11)

where V = ∂z −
∑p

k=1 θkξp represents a vector field that lies tangent to N, and θ1, . . . , θp denote smooth
functions defined over N..

Presently, we establish a polynomial Q using h0 in regard to LCC:

Q =
1
2

d(d − 1)C0 +
1
2

(d − 1)(d + 1)C0(W) +
d
2

(C + C′) +
3c
4ℓ2
||ϕ||2

+ d(d − 1)
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
− 2(d − 1)

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2

−
d2

2

(
||H||

2 + ||H ′||2
)
− 2scal∇,∇

′

, (12)

where W denotes a hyperplane located within the tangent space T℘N.
Without sacrificing generality, we assume that W is spanned by {v1, . . . , vd}. Subsequently, utilizing (11)

and (12), we obtain

Q =

p∑
k=1

( d∑
i, j=1

d + 3
2

(h0k
i j )2 +

d + 1
2

d−1∑
i, j=1

(h0k
i j )2
− 2(
∑
i=1

h0k
ii )2
)

=

p∑
k=1

(
2(d + 2)

∑
1≤i< j≤d−1

(h0k
i j )2 + (d + 3)

d−1∑
i=1

(h0k
im)2

+ d
d−1∑
i=1

(h0k
ii )2
− 4

∑
1≤i< j≤m

(h0k
ii h0k

j j ) +
d − 1

2
(h0k

dm)2
)

≥

p∑
k=1

( d−1∑
i=1

d(h0k
ii )2 +

d − 1
2

(h0k
dd)2
− 4

∑
1≤i< j≤m

h0k
ii h0k

j j

)
.

For each k ∈ 1, . . . , p, we introduce a quadratic form Pk : Rd
→ R defined as follows:

Pk(h0k
11, h

0k
22, . . . , h

0k
d−1d−1, h

0k
dd) =

d−1∑
i=1

d(h0k
ii )2 +

d − 1
2

(h0k
dd)2

− 4
∑

1≤i< j≤m

h0k
ii h0k

j j . (13)



A. N. Siddiqui et al. / Filomat 38:18 (2024), 6493–6508 6500

Furthermore, we delve into the constrained extremum problem of minimizing Pk under the constraint
of

N :
d∑

i=1

h0k
ii = ak,

where ak is real constant. From (13), it becomes evident that the critical points

h0c = (h0k
11, h

0k
22, . . . , h

0k
d−1d−1, h

0k
dd)

ofN are derived from the solutions of the subsequent system of linear homogeneous equations:

∂Pk

∂h0k
ii
= 2(d + 2)(h0k

ii ) − 4
∑d

r=1 h0k
rr = 0

∂Pk

∂h0k
dd
= (d − 1)h0k

dd − 4
∑d−1

r=1 h0k
rr = 0,

(14)

for i ∈ {1, 2, . . . , d − 1} and k ∈ {1, . . . , p}.
Consequently, each solution denoted as h0c possesses:

h0k
ii =

1
d + 1

ak and h0k
dd =

4
d + 3

ak,

for i ∈ {1, 2, . . . , d − 1} and k ∈ {1, . . . , p}.
Here we fix x ∈ N , then the bilinear form B : TxN × TxN → R is expressed as follows:

B(U1,V1) = HessPk (U1,V1) + ⟨h∗(U1,V1),
(
1rad(Pk)

)
(x)⟩, (15)

where h∗ signifies the second fundamental form ofN in Rd, and ⟨·, ·⟩ represents the standard inner product
on Rd. The Hessian matrix of Pk is:

HessPk =


2(d + 2) −4 . . . −4 −4
−4 2(d + 2) . . . −4 −4
...

...
. . .

...
...

−4 −4 . . . 2(d + 2) −4
−4 −4 . . . −4 (d − 1)


.

Consider a vector denoted as U1 belonging to the tangent space TxN , such that the condition
∑d

i=1 U1i = 0
holds. Given that the hyperplane is totally geodesic in the space Rd, it follows that

B(U1,U1) = HessPk (U1,U1) =2(d + 2)
d−1∑
i=1

U2
1i + (d − 1)U2

1d − 8
d∑

i, j=1

U1iU1 j

=2(d + 2)
d−1∑
i=1

U2
1i + (d − 1)U2

1d − 4
(( d∑

i=1

U1i

)2
−

d∑
i=1

U2
1i

)
=2(d + 4)

d−1∑
i=1

U2
1i + (d + 3)U2

1d ≥ 0.

Nonetheless, h0c stands as the sole optimal solution, representing the global minimum point of the
problem, and it attains a minimum value of Q(h0c) = 0 when evaluated for h0c that satisfies the system (14).
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Consequently, it can be inferred that Q ≥ 0.

2scal∇,∇
′

≤
1
2

d(d − 1)C0 +
1
2

(d − 1)(d + 1)C0(W) +
d
2

(C + C′) +
3c
4ℓ2
||ϕ||2

+ d(d − 1)
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
− 2(d − 1)

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2

−
d2

2

(
||H||

2 + ||H ′||2
)
.

The mathematical expression for the normalized statistical scalar curvature nor(scal)∇,∇′ of N is given by

nor(scal)∇,∇
′

=
2scal∇,∇′

d(d − 1)

and hence, we get

nor(scal)∇,∇
′

≤
1
2
C

0 +
d + 1

2d
C

0(W) +
1

2(d − 1)

(
C + C′

)
+

3c
4d(d − 1)ℓ2

||ϕ||2

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
−

2
d

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2

−
d

2(d − 1)

(
||H||

2 + ||H ′||2
)
.

By considering the infimum across all tangent hyperplanes W, our inequality (10) is substantiated.

Crucially, the inequality

nor(scal)∇,∇
′

≤2δ̂0
C
+

1
d − 1

C
0 +
( c
4ℓ2
−

(ℓ
′

)2

ℓ2

)
+

3c
4d(d − 1)ℓ2

||ϕ||2

−
2
d

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2 −

d
2(d − 1)

(
||H||

2 + ||H ′||2
)
. (16)

in relation to δ̂0
C

can be deduced by analyzing the subsequent polynomial:

Q =2d(d − 1)C0
−

1
2

(d − 1)(d + 1)C0(W) +
d
2

(C + C′) +
3c
4ℓ2
||ϕ||2

+ d(d − 1)
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
− 2(d − 1)

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
||V||2

−
d2

2

(
||H||

2 + ||H ′||2
)
− 2scal∇,∇

′

(17)

The remainder of the process follows a similar pattern to the proof of Theorem 3.1.

Theorem 3.2. Let N be a d-dimensional statistical submanifold of R ×ℓ M(c). Subsequently, the inequalities (10)
and (16) exhibit equality if and only if the condition h = −h′ is satisfied.

Proof. The equations (10) and (16) exhibit equality if and only if h0 = 0, leading to the conclusion that
h = −h′. This implies a partial assertion that h and h′ are linearly dependent.

When ϕ(TN) = T⊥N, the submanifold N is referred to as a Legendrian submanifold. In a specific
scenario, when n = d, an immediate application of this concept leads us to the following outcome, relying
on Theorem 3.1:
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Corollary 3.3. Let N be a d-dimensional Legendrian submanifold of a statistical warped product manifold of the form

R ×ℓ M
2d

(c). Then we have

nor(scal)∇,∇
′

≤ 2δ0
C
+

1
d − 1

C
0 +
( c
4ℓ2
−

(ℓ
′

)2

ℓ2

)
−

d
2(d − 1)

(
||H||

2 + ||H ′||2
)
, (18)

Moreover, the equality holds in (18) if and only if h = −h′ holds.

We notice that the submanifolds wherein the equality condition of the Casorati curvature inequalities
hold true at each point are referred to as Casorati ideal submanifolds [8]. Hence, we are able to formulate the
subsequent statement:

Theorem 3.4. Let N be a d-dimensional Legendrian Casorati ideal submanifold of a statistical warped product

manifold of the form M2d+1 = R ×ℓ M
2d

(c) for (18). Then it is a totally geodesic (in regard to LCC) Legendrian
submanifold.

4. Main inequality 2

In the original work by Chen [6], he established relationships that involved the sectional curvature,
scalar curvature, and squared norm of the mean curvature for a submanifold embedded in a real space
form. Moreover, he derived inequalities that connected the k-Ricci curvature, squared mean curvature,
and shape operator for submanifolds existing in real space forms with different codimensions. Since that
time, numerous geometers have investigated similar inequalities applicable to diverse submanifolds and
ambient spaces.

By employing optimization techniques within the framework of Riemannian geometry, T. Oprea [26]
derived the Chen-Ricci inequality for a submanifold within a real space form. More recently, Siddiqui et
al. [34] delved into the Chen-Ricci inequality for a submanifold within a Kenmotsu statistical manifold
characterized by a constant ϕ-sectional curvature, employing optimization techniques. As a result, a
significant application of Theorem 1.1 manifests in the following context:

Theorem 4.1. Let N be a d-dimensional statistical submanifold of R×ℓ M(c). Then, for each unit vector U1 ∈ T℘N,
℘ ∈ N, we have

Ric∇,∇
′

(U1) ≥2Ric0(U1) −
d2

8
[||H||2 + ||H ′||2] −

[( c
4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1)

+
3c
4ℓ2
||ϕU1||

2 +
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)(
(2 − d)G2(U1,V) − ||V||2

)]
, (19)

where ∇,∇′ and Ric0 stand for, respectively, the statistical Ricci curvature and Ricci curvature in regard to LCC.
Furthermore, equality is valid in (19) if and only if

h(U1,U1) =
d
2
H(℘) and h(U1,V1) = 0, (20)

h′(U1,U1) =
d
2
H
′(℘) and h′(U1,V1) = 0, (21)

for all V1 ∈ T℘N orthogonal to U1.

Proof. We select {v1, . . . , vd} as the orthonormal frame for T℘N, with the condition that v1 = U1 and ||U1|| = 1.
Additionally, {ẽ1, . . . , ẽp} is chosen as the orthonormal frame for T℘N. Utilizing equations (9) and (6), we
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arrive at

d∑
i=2

S(v1, vi, v1, vi) =
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) −

( c
4ℓ2
−

(ℓ
′

)2

ℓ2
ℓ
′′

ℓ

)
+
( d∑

i=2

1(vi, vi)G2(U1,V) +
d∑

i=1

G2(V, vi) − G2(U1,V)
)

+
3c
4ℓ2
||ϕU1||

2

=
( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2
||ϕU1||

2

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)(
(2 − d)G2(U1,V) − ||V||2

)
. (22)

By utilizing (5), the dual of (5), and (6), we derive

2S(v1, vi, v1, vi) =2S(v1, vi, v1, vi) − 1(h(v1, v1), h′(vi, vi)) − 1(h′(v1, v1), h(vi, vi))
+ 21(h(v1, vi), h′(v1, vi))

= 2S(v1, vi, v1, vi) −
{
41(h0(v1, v1), h0(vi, vi)) − 1(h(v1, v1), h(vi, vi))

− 1(h′(v1, v1), h′(vi, vi)) − 41(h0(v1, vi), h0(v1, vi))

+ 1(h(v1, vi), h(v1, vi)) + 1(h′(v1, vi), h′(v1, vi))
}

= 2S(v1, vi, v1, vi) − 4
p∑

k=1

(h0k
11h0k

ii − (h0k
1i )2)

+

p∑
k=1

(hk
11hk

ii − (hk
1i)

2) +
p∑

k=1

(h′k11h′kii − (h′k1i)
2).

By summing over 2 ≤ i ≤ d and employing (22), we obtain

2
[( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2
||ϕU1||

2 +
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
((2 − d)G2(U1,V) − ||V||2)

]
=2Ric∇,∇

′

(U1) − 4
p∑

k=1

d∑
i=2

(h0k
11h0k

ii − (h0k
1i )2)

+

p∑
k=1

d∑
i=2

(hk
11hk

ii − (hk
1i)

2) +
p∑

k=1

d∑
i=2

(h′k11h′kii − (h′k1i)
2),

where Ric∇,∇′ (U1) indicates the statistical Ricci curvature of N in regard to ∇ and ∇′ at ℘.
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Moreover, we deduce

2Ric∇,∇
′

(U1) − 2
[( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2
||ϕU1||

2

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
((2 − d)G2(U1,V) − ||V||2)

]
= 4

p∑
k=1

d∑
i=2

(h0k
11h0k

ii − (h0k
1i )2) −

p∑
k=1

d∑
i=2

(hk
11hk

ii − (hk
1i)

2)

−

p∑
k=1

d∑
i=2

(h′k11h′kii − (h′k1i)
2). (23)

According to the Gauss equation in regard to LCC, it can be inferred that

Ric0(U1)−
[( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2
||ϕU1||

2

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
((2 − d)G2(U1,V) − ||V||2)

]
=

p∑
k=1

d∑
i=2

(h0k
11h0k

ii − (h0k
1i )2).

Now, upon substituting this into (23), we reach

−2Ric∇,∇
′

(U1)−2
[( c

4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2
||ϕU1||

2 (24)

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)
((2 − d)G2(U1,V) − ||V||2)

]
+ 4Ric0(U1)

=

p∑
k=1

d∑
i=2

(hk
11hk

ii − (hk
1i)

2) +
p∑

k=1

d∑
i=2

(h′k11h′kii − (h′k1i)
2)

≤

p∑
k=1

d∑
i=2

hk
11hk

ii +

p∑
k=1

d∑
i=2

h′k11h′kii . (25)

In this context, we introduce two quadratic forms denoted as Pk and P′k, which map from Rd to R,
defined as follows:

Pk(hk
11, h

k
22, . . . , h

k
dd) =

p∑
k=1

d∑
i=2

hk
11hk

ii,

and

P
′

k(h′k11, h
′k
22, . . . , h

′k
dd) =

p∑
k=1

d∑
i=2

h′k11h′kii ,

Again we follow the same steps followed in proving Theorem 3.1, but here we consider the constrained
extremum problem as maxPk subject to

N :
d∑

i=1

hk
ii = ak.
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Considering an optimal solution h0c = (hk
11, h

k
22, . . . h

k
dd) for the given problem, the vector 1rad(Pk) =

(
∑d

i=2 hk
ii, h

k
11, h

k
11, . . . , h

k
11) is orthogonal toN at h0c. This implies that

hk
11 =

d∑
i=2

hk
ii =

ak

2
.

The bilinear form B : TxN × TxN → R has the expression (15). Then, here we have

HessPk =


0 1 . . . 1
1 0 . . . 0
...
...
. . .

...
1 0 . . . 0
1 0 . . . 0


.

By considering a vector U1 ∈ TxN , we perform the following calculations, analogous to those conducted
in Theorem 3.1:

B(U1,U1) =2
d∑

i=2

U11U1i = (U11 +

d∑
i=2

U1i)2
− (U11)2

− (
d∑

i=2

U1i)2

= − 2(U11)2
≤ 0.

Consequently, we discover

Pk ≤
1
4

(
d∑

i=1

hk
ii)

2 =
d2

4
(H k)2. (26)

Likewise, for the constrained extremum problem of maximizing P′k subject to the condition

N
′

:
d∑

i=1

h′kii = a′k,

using analogous reasoning as mentioned earlier, we reach

P
′

k ≤
1
4

(
d∑

i=1

h′kii )2 =
d2

4
(H ′k)2. (27)

By merging equations (24), (26), and (27), we arrive at equation (19). Furthermore, U1 adheres to the
equality case if and only if

hk
1i = 0, h′k1i = 0, i ∈ {2, . . . , d} and hk

11 =
d
2
H , h′k11 =

d
2
H
′.

Corollary 4.2. Let N be a d-dimensional anti-invariant submanifold of R ×ℓ M(c). Then, for each unit vector
U1 ∈ T℘N, ℘ ∈ N, we have:

Ric∇,∇
′

(U1) ≥2Ric0(U1) −
d2

8
[||H||2 + ||H ′||2] −

[( c
4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1)

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)(
(2 − d)G2(U1,V) − ||V||2

)]
.



A. N. Siddiqui et al. / Filomat 38:18 (2024), 6493–6508 6506

Corollary 4.3. Let N be a d-dimensional invariant submanifold ofR×ℓ M(c). Then, for each unit vector U1 ∈ T℘N,
℘ ∈ N, we have

Ric∇,∇
′

(U1) ≥2Ric0(U1) −
d2

8
[||H||2 + ||H ′||2] −

[( c
4ℓ2
−

(ℓ
′

)2

ℓ2

)
(d − 1) +

3c
4ℓ2

+
( c

4ℓ2
−

(ℓ
′

)2

ℓ2
+
ℓ
′′

ℓ

)(
(2 − d)G2(U1,V) − ||V||2

)]
.

5. Some non-trivial examples

We present two non-trivial instances of statistical immersions into statistical warped product manifolds,
which serve to illustrate the key outcomes outlined earlier.

Example 5.1. Following [31], we give a non-trivial example satisfying Theorem 3.2. We consider a statistical
manifold (H3,GH3 ,D(−1),D(+1)) of constant statistical sectional curvature c = r2

− 1, r ∈ R and the translation
surface(

M
2
,G

M
2 =

1
y2 ((p2 + 1)dx2 + dy2),D(−1),D(+1)

)
, p ∈ R, (x, y) ∈ R2, y > 0

which is a statistical submanifold of(
H3 = {(u, v, t) ∈ R3

|t > 0},GH3 =
1
t2 (du2 + dv2 + dt2),D(−1),D(+1)

)
.

Then it becomes straightforward to prove that under the following isometric immersion, h and h′ vanish

f :
(
N = R ×cosh(z) M

2
, dz2 + cosh2(z)G

M
2

)
→

(
R ×cosh(z)H

3,G = dz2 + cosh2(z)GH3

)
,

f (z, x, y) = (z, x, ax + b, y), a, b ∈ R.

This means that N is a totally geodesic submanifold of R ×cosh(z)H3 in regard to the induced LCC.

Example 5.2. In the work presented in [27], certain non-trivial examples of statistical warped product manifolds are
elaborated upon. In this reason, we leverage Example 4.9 from [27] as a non-trivial instance that fulfills the equality
condition as described in Theorem 4.1. First we consider the standard statistical warped product manifold

M = R ×cosh(λt)H
d+p−1(c) = {t, y1, . . . , yd+p−1

∈ Rd+p
|yd+p−1 > 0},

where

c = κ(r2
− 1), λ, r ∈ R, κ > 0, m ≥ 2, p ≥ 1.

For constants (a1, . . . , ap) ∈ Rp, we have the submanifold N of M as

N = {(a1, . . . , ap, x1, . . . , xd) ∈M|(x1, . . . , xd) ∈ Rd−1
×R+}.

The second fundamental forms in regard to dual connections are given by

h(vi, v j) = h′(vi, v j) = −δi jλ tanh(λa1)ẽ1,

where

{vi =
√
κxd cosh−1(λa1)

∂

∂yi+p−1
|i = 1, . . . , d}

and

{ẽ1 =
∂
∂t
, ẽk =

√
κxd cosh−1(λa1)

∂

∂yk−1
|k = 2, . . . , p}

are the adopted orthonormal frames. Therefore, the equality condition of Theorem 4.1 is fulfilled at each point of N if
and only if either d ≥ 3 and λa1 = 0, or if d = 2.
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6. Closing thoughts and observations

Curvature is a measure of how a curve or surface deviates from being straight or flat and we know
that the curvature invariants are widely used in the field of physics and in differential geometry also. The
mean curvature vector is a mathematical concept used in the field of differential geometry to describe
the curvature of a surface at a given point. It is important in various areas of mathematics and physics,
including computer graphics, and materials science, where it is used to analyze the behavior of surfaces
and their interactions with light, fluids, and other forces. On the other hand, the Ricci curvature plays
a significant role in the study of general relativity, where the curvature of spacetime is described by
the Einstein field equations. It also has applications in various fields, such as geometry, topology, and
mathematical physics. Extensively explored in the field of differential geometry, this concept offers a means
to quantify the extent to which the geometry defined by a given Riemannian metric may deviate from the
standard Euclidean n-space. In a more intuitive sense, the Ricci curvature at a point on a manifold provides
information about the concentration or divergence of geodesics (the analogs of straight lines) starting
from that point. Positive Ricci curvature indicates that nearby geodesics tend to converge, implying a
concentration of volume. Negative Ricci curvature indicates that geodesics tend to diverge, leading to a
spread-out behavior of nearby points. Ricci curvature equal to zero suggests that volume preservation
is maintained along geodesics. Given the importance of regulating extrinsic quantities in relation to
intrinsic ones, establishing elementary correlations between extrinsic and intrinsic curvature invariants is a
fundamental pursuit in contemporary Riemannian geometry. For instance, deriving lower bounds on the
Ricci tensor within a Riemannian manifold provides a means to extract global geometric and topological
insights by contrasting with the geometry of a constant curvature space form. Within this paper, we have
demonstrated a range of optimal inequalities that involve fundamental curvature invariants for statistical
submanifolds within a statistical warped product manifold of the type R ×ℓ M(c). Furthermore, we have
explored the instances where these inequalities attain equality. Through a meticulous analysis of the terms
within the primary inequalities established above, it becomes evident that the simplest intrinsic curvature
invariant is bounded from above by means of certain basic extrinsic curvature invariants. Concluding with
examples (see [27, 31]) that illustrate the cases of equality in the main inequalities, we have demonstrated
the feasibility of achieving these states. Looking ahead to further research, a fascinating avenue would
involve generating novel or akin types of inequalities, or exploring various outcomes for diverse categories
of statistical submersions (for example see [28, 30, 35]).
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