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General improved Chen’s inequality for Warped product bi-slant
submanifolds in Kenmotsu manifolds

Yi Caoa, Ximin Liua,∗

aSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Abstract. Recently, B.Y. Chen established a relationship for the squared norm of the second fundamental
form (an extrinsic invariant) of warped product bi-slant submanifolds of Kenmotsu manifolds in terms of
the warping function (an intrinsic invariant). In this paper, we study warped product bi-slant submanfolds
of Kenmotsu manifolds. We obtain a sufficient necessary condition that a bi-slant submanifold is locally
a warped product and prove a characterisation theorem for such submanifolds. Finally, we establish a
general improved Chen type of inequality. The equality case is also investigated.

1. Introduction

In [6], Bishop and O’Neill initiated the concept of the warped product manifolds in their study of
manifolds of negative curvature. Warped product submanifolds have been studied rapidly since Chen
introduced the notion of CR-warped product of Kaehler manifolds in his series papers [10, 11]. Moreover,
Chen [12] established a general sharp geometric inequality for the squared norm of the second fundamental
form for different warped product submanifolds of different ambient manifolds, which embodies the
relationship between the main extrinsic invariant (the second fundamental form) and an intrinsic invariant
(the warping function). Motivated by his work, many distinguished geometers extended and improved
the Chen’s type inequality [1, 16, 17, 19, 21, 24].

On the other hand, J.L. Cabrerizro et al. introduced the notion of bi-slant submanifolds of almost contact
metric manifolds as a generalization of contact CR-submanifolds, semi-slant submanifolds and pseudo-
slant submanifolds in [8]. S. Uddin and B.Y. Chen investigated warped product bi-slant submanifolds
in Kaehler manifolds in [26], They proved the non-existence of warped product bi-slant submanifolds of
Kaehler manifolds, and the non-existence of such submanifolds for cosymplectic manifolds was proved in
[2]. Also, many researchers extended the above special type of submanifolds in some different structure
manifolds (see [18], [20], [22], [25], [27], [4], [5], [3]), they have given many non-trivial examples and proved
several interesting results including characterisation theorems and inequalities. Recently, the idea has been
extended for CR-slant warped products and bi-warped products (see [12],[14], [21], [26], [23]).

The paper is organised as follows: In section 2, we recall some basic formulas and definitions, which
are useful to the next section. Section 3 is devoted to the study of bi-slant submanifolds of almost contact
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metric manifolds and provide some basic results which are useful to the next section. In section 4, we study
warped product bi-slant submanfolds of Kenmotsu manifolds. In the beginning of this section, we give an
example of such submanifolds to prove its existence and then obtain a sufficient necessary condition for
that a bi-slant submanifold to be a warped product. Finally, we prove a characterisation theorem for such
submanifolds. The last section 5 is devoted to establish a general improved Chen’s inequality for warped
product bi-slant submanifolds in Kenmotsu manifolds. Also, the equality is also discussed in details.

2. Preliminaries

Let M̃ be a (2n + 1) dimensional Riemannian manifold, then M̃ is said to be an almost contact metric
manifold if it admits an almost contact metric structure

(
φ, ξ, η, 1

)
, where the endomorphismφ of its tangent

bundle is a tensor field of the form (1, 1), ξ is a structure vector field, η is a 1-form and 1 is a Riemannian
metric on M̃ satisfying the following conditions [7]:

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η (ξ) = 1,
1
(
φX, φY

)
= 1 (X,Y) − η (X) η (Y) , η (X) = 1 (X, ξ) ,

(2.1)

for any vector field X,Y tangent to M̃, and from (2.1), we also have

1
(
φX,Y

)
= −1

(
X, φY

)
. (2.2)

An almost contact metric manifold M̃ is said to be a Kenmotsu manifold [15], if the relation(
▽̃Xφ

)
Y = 1

(
φX,Y

)
ξ − η (Y)φX (2.3)

holds, where ▽̃ is the Levi-Civita connection of 1. From (2.1), (2.2), it can be easily derived that

▽̃Xξ = X − η (X) ξ. (2.4)

In addition, the covariant derivative of the tensor field φ is defined by(
▽̃Xφ

)
Y = ▽̃X

(
φY

)
− φ

(
▽̃XY

)
, (2.5)

for any vector field X,Y tangent to M̃.
Let ψ :

(
M, 1

)
→

(
M̃, 1

)
be an isometric immersion of an almost contact metric manifold. We denote by

▽ and ▽⊥ the Levi-Civita connections on the tangent bundle TM and the normal bundle T⊥M, respectively,
and ▽̃ the extrinsic connection of M on M̃. Then the Gauss and Weingarten formulas are repectively given
by

▽̃XY = ▽XY + σ (X,Y) ,

▽̃XN = −ANX + ▽⊥XN,
(2.6)

for any X,Y ∈ Γ (TM) and N ∈ Γ (T⊥M). Where σ : TM × TM→ T⊥M is the second fundamental form of M
in M̃, and A is the shape operator of the submanifold M. Moreover, σ and A are related as follows

1 (ANX,Y) = 1 (σ (X,Y) ,N) . (2.7)

We assume that dim(M) = m. Let {e1, · · · em} be a local orthonormal frame of the tangent bunble TM and
{em+1, · · · e2n+1} be a local orthonormal frame of the normal bunble T⊥M. If we set σr

i j = 1
(
σ
(
ei, e j

)
, er

)
, i, j =

1, 2, · · · ,m, r = 1, · · · , 2n + 1, then the squared norm of the second fundamental form is defined by

∥σ∥2 =
m∑

i, j=1

1
(
σ
(
ei, e j

)
, σ

(
ei, e j

))
=

2n+1∑
r=m+1

m∑
i, j=1

(
1
(
σ
(
ei, e j

)
, er

))2
. (2.8)
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Definition 2.1. [29] A submanifold M of M̃ is said to be totally geodesic if its second fundamental form σ is identically
zero, while it is called totally umbilical if its second fundamental form σ satisfies

σ (X,Y) = 1 (X,Y) H, (2.9)

for each X,Y ∈ Γ (TM), where H is the mean curvature vector of H =
1
m

m∑
i=1

σ (ei, ei). In addition, M is called minimal

if H = 0.

For any X ∈ Γ (TM) and N ∈ Γ (TM⊥), an orthogonal decomposition of φX and φN yields

φX = TX + FX,
φN = tN + f N,

(2.10)

where TX
(
resp. tN

)
and FX

(
resp. fN

)
denotes the tangential and normal components ofφX

(
resp. φN

)
,

respectively. Thus, T is an endomorphism on the tangent bundle TM and F is a normal bundle valued
1-form of TM. Moreover, M is said to be invariant if F ≡ 0, that is, φX ∈ Γ (TM), and anti-invariant if T ≡ 0,
that is, φX ∈ Γ (T⊥M). Furthermore, from (2.2) and (2.8), we have

1 (TX,Y) = −1 (X,TY) . (2.11)

For a differentiable function f on a submanifold M of M̃, the gradient ▽ f is defined as

1
(
▽ f ,X

)
= X

(
f
)
. (2.12)

Now, an important class of submanifold under the action of φ of M̃ is given.

Definition 2.2. [9] A submanifold M of an almost contact metric manifold M̃ is said to be slant, if for each non-zero
vector X tangent to M at p such that X is not proportional to

〈
ξp

〉
, the slant angle θ (X) ∈

[
0, π2

]
between φX and

TpM is constant, i.e., it is independent of the choice of p ∈M and X ∈ TpM −
〈
ξp

〉
.

Obviously, if θ = 0, then M is an invariant submanifold and if θ = π
2 , then M is an anti-invariant

submanifold. A slant submanifold is said to be proper if it is neither θ = 0 nor θ = π
2 .

Similarly, we define the slant distribution, if the differentiable distributionD is a θ-slant distribution on
a submanifold M of M̃, then for any non-zero X ∈ D, p ∈M, the slant angle θ

(
Xp

)
∈

[
0, π2

]
between φXp and

Dp is constant, i.e., it is independent of the choice of p ∈M and X ∈ D. Also, it is an invariant distribution if
θ = 0, and it is called anti-invariant if θ = π

2 . A slant distribution is said to be proper if it is neither invariant
nor anti-invariant. Moreover, it was proved in [9] that a submanifold M of M̃ such that ξ tangent to M, and
there exists a distribution D satisfies TM = D ⊕ ⟨ξ⟩, then M is slant if and only if D is a slant distribution
with the same slant angle.

For the slant submanifold, the following characterizations are known.

Lemma 2.3. Let M be a submanifold tangent to ξ of an almost contact metric manifold M̃, Then M is θ-slant
submanifold if and only if [9]

T2 = cos2θ
(
−I + η ⊗ ξ

)
. (2.13)

The following relations are the natural consequences of (2.11) and (2.13) as

1 (TX,TY) = cos2θ
(
1 (X,Y) − η (X) η (Y)

)
,

1 (FX,FY) = sin2θ
(
1 (X,Y) − η (X) η (Y)

)
,

(2.14)

for any X,Y ∈ Γ (TM). Another relation for a θ-slant submanifold of M̃ is obtained by using (2.1), (2.10) and
(2.13) as [20]

tFX = sin2θ
(
−X + η (X) ξ

)
,

f FX = −FTX,
(2.15)

for any X ∈ Γ (TM).
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3. Bi-slant submanifolds

The bi-slant immersion on a almost cantact metric manifold was first introduced in [8], Cabrerizo et al.
defined bi-slant submanifolds as follows:

Definition 3.1. A submanifold M of an almost cantact mertic manifold
(
M̃, φ, ξ, η, 1

)
is said to be a bi-slant

submanifold if there exists a pair of orthogonal distributions D1 and D2 such that

(i) The tangent bundle TM admits the orthogonal direct decomposition: TM = D1
⊕D2

⊕ ⟨ξ⟩,
(ii) φD1

⊥ D2 and φD2
⊥ D1 ,

(iii) Each Di (i = 1, 2) is a slant distribution with a slant angle θi, and the set {θ1, θ2} is called bi-slant angle.

In particular, if the distributionsD1 andD2 are invariant and anti-invariant with respect toφ, respectively,
then we call this type of bi-slant submanifolds as CR submanifolds. If neither θi = 0 nor θi =

π
2 (i = 1, 2),

then M is called proper. In addition, M is known as semi-slant if D1 and D2 are invariant and proper,
respectively, and it is called pseudo-slant if D1 and D2 are anti-invariant and proper, respectively.

Let M be a bi-slant submanifold with slant angle {θ1, θ2} of a Kenmotsu manifold M̃, for any X ∈ Γ (TM)
, we put

φX = T1X + T2X + FX, (3.1)

where Ti denotes the orthogonal projection of T on Di, for any i = 1, 2. Then if X ∈ Di, we obtain
φX = TiX + FX.

Now, we give the following useful results for bi-slant submanifolds.

Lemma 3.2. Let M be a proper bi-slant submanifold of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
with bi-slant angle

{θ1, θ2}. Then, the slant distribution D1
⊕ ⟨ξ⟩ defines a totally geodesic foliation if and only if

AFT2X2 X1 − AFX2 T1X1 + AFT1X1 X2 − AFX1 T2X2 ∈ D
2,

for any X1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2 ∈ Γ

(
D2

)
.

Proof. For any X1,Y1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2,Y2 ∈ Γ

(
D2

)
, from (2.1), (2.5) and (2.6), we have

1
(
▽Y1 X1,X2

)
= 1

(
φ▽̃Y1 X1, φX2

)
= 1

(
▽̃Y1φX1, φX2

)
− 1

((
▽̃Y1φ

)
X1, φX2

)
.

By (2.3) and (2.10), we derive

1
(
▽Y1 X1,X2

)
= 1

(
▽̃Y1φX1, φX2

)
= 1

(
▽̃Y1 T1X1,T2X2

)
+ 1

(
▽̃Y1 FX1,T2X2

)
+ 1

(
▽̃Y1φX1,FX2

)
.

Using the Gauss and Weingarten formulas (2.6), we obtain

1
(
▽Y1 X1,X2

)
= 1

(
▽Y1 T1X1,T2X2

)
− 1

(
AFX1 Y1,T2X2

)
− 1

(
▽̃Y1 FX2, φX1

)
.

Then from (2.2), (2.3), (2.5), (2.10) and (2.15), we get

1
(
▽Y1 X1,X2

)
= 1

(
▽Y1 T1X1,T2X2

)
− 1

(
AFX1 Y1,T2X2

)
− sin2θ21

(
▽̃Y1 X2,X1

)
− 1

(
▽̃Y1 FTX2,X1

)
.

Again by using (2.6), and the symmetry of the shape operator A, we arrive at

cos2θ21
(
▽Y1 X1,X2

)
= 1

(
▽Y1 T1X1,T2X2

)
+ 1

(
AFT2X2 X1 − AFX1 T2X2,Y1

)
. (3.2)



Y. Cao, X. Liu / Filomat 38:18 (2024), 6509–6523 6513

We note that T1X1 ∈ Γ
(
D1

)
, T2X2 ∈ Γ

(
D2

)
, then, replacing X1 by T1X1, X2 by T2X2, by using (2.13), (2.4) and

the orthogonality of the vector fields, we obtain

cos2θ21
(
▽Y1 T1X1,T2X2

)
=1

(
▽Y1 T2

1X1,T2
2X2

)
+ 1

(
AFT2

2X2
T1X1 − AFT1X1 T2

2X2,Y1

)
=cos2θ1cos2θ21

(
▽Y1 X1,X2

)
− cos2θ21

(
AFX2 T1X1 − AFT1X1 X2,Y1

)
.

Since M is proper, then cos2θ2 , 0, from the above relation we get

1
(
▽Y1 T1X1,T2X2

)
= cos2θ11

(
▽Y1 X1,X2

)
− 1

(
AFX2 T1X1 − AFT1X1 X2,Y1

)
. (3.3)

Adding equations (3.2) and (3.3), we find that(
cos2θ2 − cos2θ1

)
1
(
▽Y1 X1,X2

)
=1

(
AFT2X2 X1 − AFX2 T1X1 + AFT1X1 X2 − AFX1 T2X2,Y1

)
.

(3.4)

Hence, according to definition 2.1, the proof of the Lemma is completed.

Lemma 3.3. Let M be a proper bi-slant submanifold of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
with bi-slant angle

{θ1, θ2}. Then, the slant distribution D2 defines a totally geodesic foliation if and only if

AFT1X1 X2 − AFX1 T2X2 + AFT2X2 X1 − AFX2 T1X1 +
(
cos2θ2 − cos2θ1

)
η (X1) X2 ∈ D

2

for any X1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2 ∈ Γ

(
D2

)
.

Proof. For any X1,Y1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2,Y2 ∈ Γ

(
D2

)
, from (2.1), (2.5) and (2.6), we have

1
(
▽Y2 X2,X1

)
= 1

(
φ▽̃Y2 X2, φX1

)
+ η

(
▽̃Y2 X2

)
η (X1)

= 1
(
▽̃Y2φX2, φX1

)
− 1

((
▽̃Y2φ

)
X2, φX1

)
− η (X1) 1

(
▽̃Y2ξ,X2

)
.

By (2.1), (2.4) and the orthogonality of D2 and ⟨ξ⟩, we derive

1
(
▽Y2 X2,X1

)
= 1

(
▽̃Y2φX2, φX1

)
− η (X1) 1 (X2,Y2) .

Using (2.10) and the Gauss and Weingarten formulas (2.6), we deduce

1
(
▽Y2 X2,X1

)
= 1

(
▽Y2 T2X2,T1X1

)
− 1

(
AFX2 Y2,T1X1

)
− 1

(
▽̃Y2 FX1, φX2

)
− η (X1) 1 (X2,Y2) .

(3.5)

Consider the third term in the right hand side of the above relation by using (2.2), (2.3), (2.4), (2.5), (2.6) and
(2.15), we find that

− 1
(
▽̃Y2 FX1, φX2

)
=1

(
φ▽̃Y2 FX1,X2

)
= 1

(
▽̃Y2φFX1,X2

)
− 1

((
▽̃Y2φ

)
FX1,X2

)
=1

(
▽̃Y2 tFX1,X2

)
+ 1

(
▽̃Y2 f FX1,X2

)
= − sin2θ11

(
▽Y2 X1,X2

)
+ sin2θ1η (X1) 1

(
▽̃Y2ξ,X2

)
− 1

(
▽̃Y2 FT1X1,X2

)
= − sin2θ11

(
▽Y2 X1,X2

)
+ sin2θ1η (X1) 1 (X2,Y2) + 1

(
AFT1X1 Y2,X2

)
. (3.6)
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Plugging (3.6) into (3.5), we have the following by using the symmetry of the shape operator A

cos2θ11
(
▽Y2 X2,X1

)
=1

(
▽Y2 T2X2,T1X1

)
+ 1

(
AFT1X1 X2 − AFX2 T1X1,Y2

)
− cos2θ1η (X1) 1 (X2,Y2) .

(3.7)

Replacing X1 by T1X1, X2 by T2X2, then by using (2.1), (2.13), (2.4) and the orthogonality of the vector fields,
we obtain

cos2θ11
(
▽Y2 T2X2,T1X1

)
=1

(
▽Y2 T2

2X2,T2
1X1

)
+ 1

(
AFT2

1X1
T2X2 − AFT2X2 T2

1X1,Y2

)
=cos2θ1cos2θ21

(
▽Y2 X2,X1

)
+ cos2θ1cos2θ2η (X1) 1

(
▽̃Y2ξ,X2

)
− cos2θ11

(
AFX1 T2X2 − AFT2X2 X1,Y2

)
− cos2θ1η (X1) 1

(
▽̃Y2ξ,FT2X2

)
=cos2θ1cos2θ21

(
▽Y2 X2,X1

)
+ cos2θ1cos2θ2η (X1) 1 (Y2,X2)

− cos2θ11
(
AFX1 T2X2 − AFT2X2 X1,Y2

)
.

Since M is proper, then cos2θ1 , 0, from the above relation we get

1
(
▽Y2 T2X2,T1X1

)
=cos2θ21

(
▽Y2 X2,X1

)
− 1

(
AFX1 T2X2 − AFT2X2 X1,Y2

)
+ cos2θ2η (X1) 1 (Y2,X2) .

(3.8)

Adding equations (3.7) and (3.8), we arrive at(
cos2θ1 − cos2θ2

)
1
(
▽Y2 X2,X1

)
= 1

(
AFT1X1 X2 − AFX1 T2X2 + AFT2X2 X1 − AFX2 T1X1,Y2

)
+

(
cos2θ2 − cos2θ1

)
η (X1) 1 (Y2,X2) . (3.9)

Thus, similarly to Lemma 3.2, we complete the proof of our lemma.

4. Warped product bi-slant submanifolds

In [6], Bishop and O’Neill introduced the notion of warped product manifolds as follows: Let
(
M1, 11

)
and

(
M1, 11

)
be two Riemannian manifolds, respectively, and f a positive differentiable function on M1.

Consider the Riemannian product manifold M1×M2 with its canonical projection maps π1 : M1×M2 →M1

andπ2 : M1×M2 →M2. Then their warped product manifold M =
(
M1 × f M2, 1

)
is the Riemannian product

manifold M1 ×M2 equipped with the Riemannian structure such that

1 (X,Y) = 11 (π1∗X, π1∗Y) +
(

f ◦ π1
)2
12 (π2∗X, π2∗Y) , (4.1)

for any vector field X,Y ∈ Γ (TM), where ∗ is the symbol for the tangent maps.

Remark 4.1. A warped product manifold M =
(
M1 × f M2, 1

)
is said to be trivial if the warping function f is

constant. In this case, the warped product manifold is a Riemannian product manifold. From [6] and [10], we have
the following facts for a warped product manifold:

(i) ▽X1 X2 = ▽X2 X1 =
(
X1ln f

)
X2, for any X1 ∈ Γ (TM1) and X2 ∈ Γ (TM2), where ▽ is the Levi-Civita connection

on M.
(ii) M1 and M2 are totally geodesic and totally umbilical submanifolds of M, respectively.

In this section, we study the warped product bi-slant submanifold of a Kenmotsu manifold. We defined
these submanifolds as follows.
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Definition 4.2. A warped product M =M1 × f M2 of a θ1-slant submanifold M1 and a θ2-slant submanifold M2 of
a Kenmotsu manifold

(
M̃, φ, ξ, η, 1

)
is called a warped product bi-slant submanifold.

A warped product bi-slant submanifold M1 × f M2 is called proper if both M1 and M2 are proper slant
submanifolds with slant angle θ1, θ2 , 0, π2 of M̃. Otherwise, a warped product bi-slant submanifold
M1 × f M2 is a contact CR-warped product of the form if θ1 = 0, θ2 =

π
2 or θ2 = 0, θ1 =

π
2 discussed in [4, 25].

Also, the warped product pseudo-slant and the warped product semi-slant submanifolds were discussed in
[3] and [22, 27], respectively. It is known that from [22], if the structure vector field ξ is tangent to M2, then
the warped product is trivial. Since we do not study the non-existence of warped products, throughout we
consider ξ is tangent to M1, in this case, we have the following facts

ξln f = 1, σ (X2, ξ) = 0, (4.2)

for any X2 ∈ Γ (TM2).

Definition 4.3. A warped product bi-slant submanifold M = M1 × f M2 of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
is

said to be mixed totally geodesic if σ (X1,X2) = 0, for each vector field X1 ∈ Γ (TM1) and X2 ∈ Γ (TM2).

First, we provide a non-trivial example of warped product bi-slant submanifols.

Example 4.4. Let R11 be an Euclidean 11-space endowed with the standard metric and cartesian coordinates(
x1, y1, · · · , x5, y5, t

)
and with the canonical structure

(
φ, ξ, η, 1

)
defined by

φ

(
∂
∂xi

)
= −

∂
∂yi

, φ

(
∂
∂y j

)
=

∂
∂x j

, φ

(
∂
∂t

)
= 0

ξ =
∂
∂t
, η = dt, 1 = ⟨ , ⟩ , 1 ≤ i, j ≤ 5.

If we denote by any vector field X = ai
∂
∂xi
+ b j

∂
∂y j
+ c ∂∂t

(
1 ≤ i, j ≤ 5

)
tangent to R11, it can be easily proved that(

φ, ξ, η, 1
)

is an almost contact metric structure on R11 by using (2.1). Consider a 5-dimensional submanifold M of
R11 given by

χ (u, v,w, s, t) = (u, vcosθ, 0, vsinθ,uvwcosθ,
uvscosθ,uvwsinθ,uvssinθ,uvs − uvw,uvs + uvw, t) ,

for θ ∈
(
0, π2

)
, whose tangent space is spanned by the orthonormal vector fields

e1 =
∂
∂x1

, e2 = cosθ
∂
∂y1
+ sinθ

∂
∂y2

,

e3 = uvcosθ
∂
∂x3
+ uvsinθ

∂
∂x4
− uv

∂
∂x5
+ uv

∂
∂y5

,

e4 = uvcosθ
∂
∂y3
+ uvsinθ

∂
∂y4
+ uv

∂
∂x5
+ uv

∂
∂y5

, e5 =
∂
∂t
.

Clearly, we have

φe1 = −
∂
∂y1

, φe2 = cosθ
∂
∂x1
+ sinθ

∂
∂x2

,

φe3 = −uvcosθ
∂
∂y3
− uvsinθ

∂
∂y4
+ uv

∂
∂y5
+ uv

∂
∂x5

,

φe4 = uvcosθ
∂
∂x3
+ uvsinθ

∂
∂x4
− uv

∂
∂y5
+ uv

∂
∂x5

, e5 =
∂
∂t
.
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Define the distributions D1 = Span {e1, e2} and D2 = Span {e3, e4}, respectively, then it is clear that D1 is a θ1-slant
distribution with θ1 = θ and D2 is a θ2-slant distribution with θ2 = arccos

(
1
3

)
, such that ξ is tangent to M. Hence,

M is a proper bi-slant submanifold with bi-slant angle {θ1, θ2} of R11. Furthermore, it is easy to verify that both the
distributions D1

⊕ ⟨ξ⟩ and D2 are integrable. We denote the integral manifolds of D1
⊕ ⟨ξ⟩ and D2 by M1 and M2,

respectively. Then the metric tensor 1 of the product manifold M =M1 ×M2 is given by

1 = du2 + dv2 + dt2 + 3u2v2
(
dw2 + ds2

)
= 1M1 +

(√
3uv

)2
1M2 .

Thus, M is a proper warped product bi-slant submanifold of R11 of the form M1 × f M2 with warping function
f =
√

3uv, such that ξ is tangent to M1.

Now, we give the following lemma, which plays a crucial role in our main results.

Lemma 4.5. Let M = M1 × f M2 be a warped product bi-slant submanifold of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
such that ξ is tangent to M1, where M1 and M2 are a θ1-slant submanifold and a θ2-slant submanifold of M̃,
respectively, then we have

(i) 1 (σ (X2,Y2) ,FX1) − 1 (σ (X1,Y2) ,FX2) =
(
X1ln f − η (X1)

)
1 (T2X2,Y2) +

T1X1ln f1 (X2,Y2) .
(ii) 1 (σ (X1,Y1) ,FX2) = 1 (σ (Y1,X2) ,FX1) .

For any X1,Y1 ∈ Γ (TM1) , X2,Y2 ∈ Γ (TM2).

Proof. For any X1,Y1 ∈ Γ (TM1) , X2,Y2 ∈ Γ (TM2), from (2.6) and (2.10), we can write

1 (σ (X1,Y2) ,FX2) = 1
(
▽̃Y2 X1,FX2

)
= 1

(
▽̃Y2 X1, φX2

)
− 1

(
▽Y2 X1,TX2

)
.

By (2.2), (2.5) and the (i) of Remark 4.1, we derive

1 (σ (X1,Y2) ,FX2) = − 1
(
φ▽̃Y2 X1,X2

)
− X1ln f1 (Y2,T2X2)

=1
((
▽̃Y2φ

)
X1,X2

)
− 1

(
▽̃Y2φX1,X2

)
− X1ln f1 (Y2,T2X2) .

Using (2.3), (2.6), (2.10) and by the orthogonality of the vector field ξ, we deduce

1 (σ (X1,Y2) ,FX2) = − η (X1) 1 (T2Y2,X2) − 1
(
▽Y2 T1X1,X2

)
+ 1

(
AFX1 Y2,X2

)
− X1ln f1 (Y2,T2X2) .

Then from (2.11), (2.7), and again using the (i) of Remark 4.1, we obtain

1 (σ (X1,Y2) ,FX2) =η (X1) 1 (Y2,T2X2) − T1X1ln f1 (X2,Y2)
+ 1 (σ (X2,Y2) ,FX1) − X1ln f1 (Y2,T2X2) .

Hence, the proof of the first assertion is complete. Next, we prove the second assertion. Using (2.2), (2.6)
and (2.10), we get

1 (σ (Y1,X2) ,FX1) = −1
(
φ▽̃Y1 X2,X1

)
− 1

(
▽Y1 X2,T1X1

)
.

Then from (2.5) and the (i) of Remark 4.1, we arrive at

1 (σ (Y1,X2) ,FX1) = 1
((
▽̃Y1φ

)
X2,X1

)
− 1

(
▽̃Y1φX2,X1

)
− Y1ln f1 (X2,T1X1) .
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Since the orthogonality of the vector fields, by (2.3), we find that the first term and the last term in the right
hand side of the above relation vanishes, thus we have

1 (σ (Y1,X2) ,FX1) = −1
(
▽̃Y1φX2,X1

)
.

Therefore, again using (2.6) and (2.10), we have

1 (σ (Y1,X2) ,FX1) = −1
(
▽Y1 T2X2,X1

)
+ 1

(
AFX2 Y1,X1

)
.

Thus, by (2.7) and the (i) of Remark 4.1, the above reduced to

1 (σ (Y1,X2) ,FX1) = 1 (σ (Y1,X1) ,FX2) ,

which is the required result together with the symmetry of σ. Hence, the proof of the Lamma is complete.

Here, we recall the following lemma for later use.

Lemma 4.6 (Hiepko’s Theorem). [30] Let D1 and D2 be two orthogonal distributions on a Riemannian manifold
M. Suppose that D1 and D2 both are involutive such that D1 is a totally geodesic foliation and D2 is a spherical
foliation. Then M is locally isometric to a non trivial warped product M1 × f M2, where M1 and M2 are integral
manifolds of D1 and D2, respectively.

Theorem 4.7. Let M be a proper bi-slant submanifold of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
with bi-slant angle

{θ1, θ2}. Then, M is locally a warped product submanifold of the form M1 × f M2 if and only if the shape operator
satisfies

AFX1 X2 − AFX2 X1 =
(
X1

(
µ
)
− η (X1)

)
T2X2 + T1X1

(
µ
)

X2, (4.3)

for any X1 ∈ D
1
⊕ ⟨ξ⟩, X2 ∈ D

2 and for some smooth function µ on M such that Y2
(
µ
)
= 0, for any Y2 ∈ D

2.

Proof. If M = M1 × f M2 is a warped product bi-slant submanifold, then for any X1,Y1 ∈ Γ (TM1) , X2,Y2 ∈

Γ (TM2), from the (ii) of Lemma 4.5, we find that 1
(
AFX1 X2 − AFX2 X1,

Y1) = 0, which means that AFX1 X2 −AFX2 X1 has no componenet in TM1, i.e., it is lies in TM2 only. Then, the
relation (4.3) follows from the (i) of Lemma 4.5 with µ = ln f .

Conversely, if M is a proper {θ1, θ2}-bi-slant submanifold of a Kenmotsu manifold M̃ with two proper
slant distributions D1

⊕ ⟨ξ⟩ and D2 such that (4.3) holds, for any X1,Y1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2,Y2 ∈ Γ

(
D2

)
,

replacing X1 and X2 by T1X1 and T2X2, respectively, then the given condition (4.3) becomes the following
by (2.1) and (2.13).

AFT1X1 X2 − AFX2 T1X1 = −cos2θ1
(
X1

(
µ
)
− η (X1)

)
X2 + T1X1

(
µ
)

T2X2,

AFX1 T2X2 − AFT2X2 X1 = −cos2θ2
(
X1

(
µ
)
− η (X1)

)
X2 + T1X1

(
µ
)

T2X2.
(4.4)

First, we consider the distribution D1
⊕ ⟨ξ⟩, plugging (4.4) into the (3.4) of Lemma 3.2, we find that(

cos2θ2 − cos2θ1

)
1
(
▽Y1 X1,X2

)
= 0, since M is proper, we derive 1

(
▽Y1 X1,X2

)
= 0, and also, it is clear that

1 ([X1,Y1] ,X2) = 0, which means that the leaves of the distribution D1
⊕ ⟨ξ⟩ are totally geodesic in M and

the distribution D1
⊕ ⟨ξ⟩ is integrable. On the other hand, for the distribution D2, combining the relations

(4.4) and (3.9) of Lemma 3.3, we conclude that(
cos2θ1 − cos2θ2

)
1
(
▽Y2 X2,X1

)
=

(
cos2θ2 − cos2θ1

) (
X1

(
µ
)
− η (X1)

)
1 (X2,Y2)

+
(
cos2θ2 − cos2θ1

)
η (X1) 1 (Y2,X2) .

Since M is proper, the above equality reduced to

1
(
▽Y2 X2,X1

)
= −X1

(
µ
)
1 (X2,Y2) . (4.5)
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Also, from the above relation we conclude that 1 ([X2,Y2] ,X1) = 0, that is, the slant distribution D2 is
integrable. If we denote by σ̂ the second fundamental form of a leaf M2 of D2 in M, then (4.5) yields

1 (σ̂ (X2,Y2) ,X1) = −X1
(
µ
)
1 (X2,Y2) .

Therefore, from the definition of gradient (2.12), we get

σ̂ (X2,Y2) = − ▽ µ1 (X2,Y2) ,

which means that M2 is totally umbilical in M with the non vanishing mean curvature vector H = − ▽ µ.
Now we prove that H is parallel corresponding to the normal connection ▽̂⊥ of a leaf M2 of D2 in M, from
(2.6) and (2.12), we obtain

1
(
▽̂
⊥

X2
▽ µ,X1

)
= 1

(
▽X2 ▽ µ,X1

)
= X21

(
▽µ,X1

)
− 1

(
▽µ,▽X2 X1

)
= X2

(
X1µ

)
− [X2,X1]µ + 1

(
▽X1 ▽ µ,X2

)
= X1

(
X2µ

)
+ 1

(
▽X1 ▽ µ,X2

)
= 0.

Since X2
(
µ
)
= 0 andD1

⊕⟨ξ⟩ is a totally geodesic foliation in M, for any X1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2 ∈ Γ

(
D2

)
. Thus,

the leaves of the distribution D2 are totally umbilical in M with non-vanishing parallel mean curvature
vector H, i.e., M2 is an extrinsic sphere in M. Then from Hiepko’s Theorem, M is a warped product
submanifold, the proof of Theorem 4.7 is complete.

The following corollary is given by a similar proof procedure to the above theorem.

Corollary 4.8. Let M be a proper mixed totally geodesic bi-slant submanifold of a Kenmotsu manifold
(
M̃, φ, ξ, η, 1

)
with bi-slant angle {θ1, θ2}. Then, M is locally a mixed totally geodesic warped product submanifold of the form
M1 × f M2 if and only if the shape operator satisfies

AFT1X1 X2 − AFX1 T2X2 =
(
cos2θ2 − cos2θ1

) (
X1

(
µ
)
− η (X1)

)
X2,

AFT2X2 X1 − AFX2 T1X1 = 0,

for any X1 ∈ Γ
(
D1
⊕ ⟨ξ⟩

)
, X2 ∈ Γ

(
D2

)
and for some smooth function µ on M such that Y2

(
µ
)
= 0, for any Y2 ∈ D

2.

Theorem 4.9. Let M = M1 × f M2 be a mixed totally geodesic warped product bi-slant submanifold of a Kenmotsu
manifold

(
M̃, φ, ξ, η, 1

)
such that ξ is tangent to M1, where M1 and M2 are a θ1-slant submanifold and a θ2-slant

submanifold of M̃, respectively, then one of the following two cases must occur:
(i) θ2 =

π
2 .

(ii) ▽ln f = ξ.

Proof. For any X1,Y1 ∈ Γ (TM1) , X2,Y2 ∈ Γ (TM2), since M is mixed totally geodesic, the (i) of Lemma 4.5
becomes

1 (σ (X2,Y2) ,FX1) =
(
X1ln f − η (X1)

)
1 (T2X2,Y2) + T1X1ln f1 (X2,Y2) . (4.6)

Interchanging X2 by Y2 in (4.6) and using (2.11), we obtain

1 (σ (X2,Y2) ,FX1) = −
(
X1ln f − η (X1)

)
1 (T2X2,Y2) + T1X1ln f1 (X2,Y2) . (4.7)

Then from (4.6), (4.7), we arrive at(
X1ln f − η (X1)

)
1 (T2X2,Y2) = 0.

Replacing X2 by T2X2, we conclude that

−cos2θ2
(
X1ln f − η (X1)

)
1 (X2,Y2) = 0.

Hence, the proof of the theorem is complete by using the the definition of gradient (2.12).
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5. General improved Chen’s inequality for Warped product bi-slant submanifolds

In [28], Uddin et al. established the following Chen’s inequality for a proper mixed totally geodesic
warped product bi-slant submanifold M = M1 × f M2 of a Kenmotsu manifold M̃ such that ξ is tangent to
M1, where M1 and M2 are a θ1-slant submanifold and a θ2-slant submanifold of M̃, respectively

∥σ∥2 ⩾ 2qcsc2θ1

(
cos2θ1 + cos2θ2

) (∥∥∥▽ln f
∥∥∥2
− 1

)
, (5.1)

where 2q = dimM2. From Theorem 4.9, we find that the inequality (5.1) becomes ∥σ∥2 ⩾ 0 since M is proper,
which means that the study of this Chen’s inequality is meaningless. Thus, in this section, we establish
the general improved Chen’s inequality for a non-mixed totally geodesic proper warped product bi-slant
submanifold.

Let M = M1 × f M2 be an m-dimensional proper warped product bi-slant submanifold of a (2n + 1)-
dimensional Kenmotsu manifold M̃ such that M1 and M2 are proper slant submanifolds with slant angles
θ1 andθ2, repectively. We denote the tangent bundles of M1 and M2 byD1 andD2 with their real dimensions
2p + 1 and 2q, respectively, such that ξ ∈ Γ

(
D1

)
. Based on the following remark

Remark 5.1. If M = M1 × f M2 is a warped product bi-slant submanifold of a Kenmotsu manifold M̃, then the
tangent bunble TM and the normal bunble T⊥M of M are respectively decomposed as

(i) TM = D1
⊕D2,

(ii) T⊥M = FD1
⊕ FD2

⊕ ν,

where ν is the φ-invariant normal subbundle of T⊥M, and ξ ∈ Γ
(
D1

)
.

We set that

(1) D1 = Span
{
e1, · · · , ep, ep+1 = secθ1T1e1, · · · , e2p = secθ1T1ep, ξ

}
,

(2) D2 = Span
{
e2p+2 = ê1, · · · , e2p+q+1 = êq, e2p+q+2 = êq+1 = secθ2T2ê1, · · · ,

e2p+2q+1 = ê2q = secθ2T2êq

}
,

(3) FD1 = Span
{
em+1 = ẽ1 = cscθ1Fe1, · · · , em+p = ẽp = cscθ1Fep,

em+p+1 = ẽp+1 = cscθ1secθ1FT1e1, · · · , em+2p = ẽ2p = cscθ1secθ1FT1ep

}
,

(4) FD2 = Span
{
em+2p+1 = ẽ2p+1 = cscθ2Fê1, · · · , em+2p+q = ẽ2p+q = cscθ2Fêq,

em+2p+q+1 = ẽ2p+q+1 = cscθ2secθ2FT2ê1, · · · , em+2p+2q = ẽ2p+2q = cscθ2secθ2FT22̂q

}
,

(5) ν = Span
{
em+2p+2q+1 = ẽ2p+2q+1, · · · , e2n+1 = ẽ2n+1−m

}
.

Theorem 5.2. Let Mm = M1 × f M2 be a proper warped product bi-slant submanifold of a Kenmotsu manifold(
M̃2n+1, φ, ξ, η, 1

)
such that ξ is tangent to M1, where M1 and M2 are a

(
2p + 1

)
-dimensional θ1-slant submanifold

and a 2q-dimensional θ2-slant submanifold of M̃, respectively, then we have the following:

(i) The squared norm of the second fundamental form σ of M satisfies

∥σ∥2 ⩾
(
4qcsc2θ2cos2θ1 + 4qcot2θ2

) (∥∥∥▽ln f
∥∥∥2
− 1

)
. (5.2)

(ii) If the equality holds in (33), then M1 is a totally geodesic submanifold of M̃ and M2 is a totally umbilical
submanifold of M̃. In other words, M is a minimal submanifold of M̃.
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Proof. For the proper warped product bi-slant submanifold Mm with dimension m, using the constructed
frame fields, we can write

∥σ∥2 =
∥∥∥∥σ (
D1,D1

)∥∥∥∥2
+ 2

∥∥∥∥σ (
D1,D2

)∥∥∥∥2
+

∥∥∥∥σ (
D2,D2

)∥∥∥∥2
. (5.3)

Then, using (2.8), we consider the each term in the right hand side of (5.3) as follows:∥∥∥∥σ (
D1,D1

)∥∥∥∥2
= 1

(
σ
(
D1,D1

)
,FD1

)2
+ 1

(
σ
(
D1,D1

)
,FD2

)2
+ 1

(
σ
(
D1,D1

)
, ν

)2
. (5.4)

As we have no relations for the warped products of the first and the third ν-component terms in (5.4), by
dropping these positive terms, we obtain

∥∥∥∥σ (
D1,D1

)∥∥∥∥2
≥ csc2θ2

2p+1∑
i, j=1

2q∑
r=1

1
(
σ
(
ei, e j

)
,Fêr

)2
.

Since e2p+1 = ξ, and from (4.2), it is known that σ (ξ,X) = 0, for any X ∈ TM. Then from (ii) of the Lemma
4.5,we get

∥∥∥∥σ (
D1,D1

)∥∥∥∥2
≥ csc2θ2

2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2
. (5.5)

Similarly, by dropping the ν-component positive term, using (i) of Lemma 4.5, we derive∥∥∥∥σ (
D1,D2

)∥∥∥∥2

=1
(
σ
(
D1,D2

)
,FD1

)2
+ 1

(
σ
(
D1,D2

)
,FD2

)2
+ 1

(
σ
(
D1,D2

)
, ν

)2

≥csc2θ1

2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2
+ csc2θ2

2p∑
i=1

2q∑
k,r=1

1 (σ (ei, êk) ,Fêr)
2

=csc2θ1

2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2
+ csc2θ2

2p∑
i=1

2q∑
k,r=1

{
1 (σ (êk, êr) ,Fei)

+
(
η (ei) − eiln f

)
1 (êk,T2êr) − T1eiln f1 (êk, êr)

}2 .

(5.6)

If we denote
(
η (ei) − eiln f

)
1 (êk,T2êr) − T1eiln f1 (êk, êr) by hi

kr, then we arrive at

∥∥∥∥σ (
D1,D2

)∥∥∥∥2

≥csc2θ1

2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2
+ csc2θ2

2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei)
2

+ 2csc2θ2

2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei) hi
kr + csc2θ2

2p∑
i=1

2q∑
k,r=1

(
hi

kr

)2
.

(5.7)

Since e2p+1 = ξ, we note that η (ei) = 0, i = 1, · · · , 2p. Then, using (2.1), (2.11), (2.13) and the orthogonality of
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the adopted frame fields, we compute the third term in the right hand side of (5.7) as follows

2csc2θ2

2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei) hi
kr

=2csc2θ2

2p∑
i=1

q∑
k,r=1

{
1 (σ (êk, êr) ,Fei)

(
−eiln f1 (êk,T2êr) − T1eiln f1 (êk, êr)

)
+sec2θ21 (σ (T2êk, êr) ,Fei)

(
−eiln f1 (T2êk,T2êr) − T1eiln f1 (T2êk, êr)

)
+sec2θ21 (σ (êk,T2êr) ,Fei)

(
−eiln f1

(
êk,T2

2 êr

)
− T1eiln f1 (êk,T2êr)

)
+sec4θ21 (σ (T2êk,T2êr) ,Fei)

(
−eiln f1

(
T2êk,T2

2 êr

)
− T1eiln f1 (T2êk,T2êr)

)}
=2csc2θ2

2p∑
i=1

q∑
k=1

{
−T1eiln f1 (σ (êk, êk) ,Fei) − eiln f1 (σ (T2êk, êk) ,Fei)

+eiln f1 (σ (êk,T2êk) ,Fei) − sec2θ2T1eiln f1 (σ (T2êk,T2êk) ,Fei)
}

= − 2csc2θ2

2p∑
i=1

2q∑
k=1

T1eiln f1 (σ (êk, êk) ,Fei) = 0. (5.8)

Similarly, applying the constructed frame fields, the forth term in the right hand side of (5.7) can be
decomposed as

csc2θ2

2p∑
i=1

2q∑
k,r=1

(
hi

kr

)2
=

2p∑
i=1

q∑
k,r=1

csc2θ2

{(
−eiln f1 (êk,T2êr) − T1eiln f1 (êk, êr)

)2

+sec2θ2
(
−eiln f1 (T2êk,T2êr) − T1eiln f1 (T2êk, êr)

)2
}

+ csc2θ2sec2θ2

{(
−eiln f1

(
êk,T2

2 êr

)
− T1eiln f1 (êk,T2êr)

)2

+sec2θ2

(
−eiln f1

(
T2êk,T2

2 êr

)
− T1eiln f1 (T2êk,T2êr)

)2
}

=

2p∑
i=1

2qcsc2θ2
(
T1eiln f

)2 + 2qcot2θ2
(
eiln f

)2

=

p∑
i=1

(
2qcsc2θ2 + 2qcot2θ2sec2θ1

) (
T1eiln f

)2

+
(
2qcsc2θ2cos2θ1 + 2qcot2θ2

) (
eiln f

)2

=

2p+1∑
i=1

(
2qcsc2θ2 + 2qcot2θ2sec2θ1

) (
T1eiln f

)2 .

Using (2.11), (2.14), and the fact that ξln f = 1, the above expression reduces to

csc2θ2

2p∑
i=1

2q∑
k,r=1

(
hi

kr

)2
=

(
2qcsc2θ2cos2θ1 + 2qcot2θ2

) (∥∥∥▽ln f
∥∥∥2
− 1

)
. (5.9)
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Plugging (5.8) and (5.9) into the (5.7), we get∥∥∥∥σ (
D1,D2

)∥∥∥∥2

≥csc2θ1

2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2
+ csc2θ2

2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei)
2

+
(
2qcsc2θ2cos2θ1 + 2qcot2θ2

) (∥∥∥▽ln f
∥∥∥2
− 1

)
.

(5.10)

Furthermore, we consider the third term of (5.3)∥∥∥∥σ (
D2,D2

)∥∥∥∥2
= 1

(
σ
(
D2,D2

)
,FD1

)2
+ 1

(
σ
(
D2,D2

)
,FD2

)2
+ 1

(
σ
(
D2,D2

)
, ν

)2
. (5.11)

Dropping the no relations for the warped products of the second and third positive terms in (5.11), then we
have ∥∥∥∥σ (

D2,D2
)∥∥∥∥2
≥ csc2θ1

2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei)
2 . (5.12)

Combining (5.5), (5.10) and (5.12), we conclude that

∥σ∥2 ≥
(
csc2θ2 + 2csc2θ1

) 2p∑
i, j=1

2q∑
r=1

1
(
σ (ei, êr) ,Fe j

)2

+
(
2csc2θ2 + csc2θ1

) 2p∑
i=1

2q∑
k,r=1

1 (σ (êk, êr) ,Fei)
2

+
(
4qcsc2θ2cos2θ1 + 4qcot2θ2

) (∥∥∥▽ln f
∥∥∥2
− 1

)
.

(5.13)

Since M is proper, the inequality (5.2) follows from (5.11) by leaving the first and second positive terms.
If the equality holds in (5.2), then from all the dropped terms in the right hand side of (5.4), (5.6), (5.11)

and (5.13), we deduce to

σ
(
D1,D1

)
= 0, σ

(
D2,D2

)
= 0, σ

(
D1,D2

)
⊂ FD2. (5.14)

If we denote the second fundamental forms of M1 or M2 in M and in M̃ by σ̂ and σ̃, respectively, then we
have σ̃ = σ+ σ̂, using this fact with (ii) of Remark 4.1, we conclude that M1 is a totally geodesic submanifold
and M2 is a totally umbilical submanifold of M̃. Also, from the definition 2.1, it is clear that M is minimal.
Hence, we complete the proof of Theorem 5.2.
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