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Abstract. This paper deals with the construction of approximants and the existence of solutions to the
following higher-order viability problem :

x(k)(t) ∈ F(t, x(t), x(1)(t), ..., x(k−1)(t)) a.e. on [0,T[ and x(t) ∈ D for all t ∈ [0,T], where F : [0,T]×D×
k−1∏
i=1

Ωi → 2E

is a non-convex and non-compact multifunction and D is a closed subset of a separable Banach space E. It
extends our result established in the first-order case [6].

1. Introduction

Let E be a separable Banach space with a norm ∥.∥, D a nonempty closed subset of E, Ω1, ...Ωk−1 (k ≥ 2)
are nonempty open subsets of E, T a strictly positive real. Put I := [0,T] and denote Wk,1(I,E) the space

of functions possessing absolutely continuous derivatives up to order k. Let F : I × D ×
k−1∏
i=1

Ωi → 2E be a

multifunction. The aim of this work is to study, for any fixed (x0, y1
0, ..., y

k−1
0 ) ∈ D ×

k−1∏
i=1

Ωi, the existence of

solutions and the construction of approximants to the following problem :
x(k)(t) ∈ F(t, x(t), x(1)(t), ..., x(k−1)(t)) a.e. on [0,T[;

(x(0), x(1)(0), ..., x(k−1)(0)) = (x0, y1
0, ..., y

k−1
0 );

x(t) ∈ D, ∀ t ∈ I.

(1)

By a solution to (1), we mean x(.) ∈ Wk,1(I,E) satisfying (1). Here F is a separately measurable on I and

separately upper semi-continuous multifunction on D ×
k−1∏
i=1

Ωi with non-convex and non-compact values

2020 Mathematics Subject Classification. 34A60; 28B20.
Keywords. viability, measurable multifunction, selection, non-Lipschitz multifunction.
Received: 02 October 2023; Revised: 16 February 2024; Accepted: 04 March 2024
Communicated by Maria Alessandra Ragusa
* Corresponding author: Saı̈d Sajid
Email addresses: charradi84@gmail.com (Nabil Charradi), saidsajid@hotmail.com (Saı̈d Sajid)



N. Charradi, S. Sajid / Filomat 38:18 (2024), 6549–6561 6550

in E, uniformly continuous with respect to the last argument.
This result is an extension of our paper [6], where it has been proved the existence of solutions to the
following first-order viability problem :

ẋ(t) ∈ F(t, x(t)) a.e. on [0,T[;

x(0) = x0;

x(t) ∈ D, ∀ t ∈ I.

(2)

assuming that the right-hand side (t, x) → F(t, x) is measurable on t and uniformly continuous on x in the
following sense :

∀ ε > 0, ∃ δ(ε) > 0, ∀(t, x, y) ∈ I ×D ×D, ∥x − y∥ ≤ δ(ε)⇒ dH(F(t, x),F(t, y)) ≤ ε,

where dH stands for the Hausdorff distance. Solution to (2) is obtained under the following tangency
condition :

For all t ∈ [0,T[ and x ∈ D, for all measurable selection σ(.) of the multifunction t→ F(t, x)

lim inf
h→0+

1
h

dD

(
x +
∫ t+h

t
σ(s)ds

)
= 0.

As mentioned in [6], this result extends those of Larrieu [8] and Duc Ha [7] where these authors have
studied problem (2) with Carathéodory Lipschitz single-valued map for the first author, while the second
author gives a multivalued version of Larrieu’s result.
Similar problem of (1) in the case of non-covex Carathéodory Lipschitz right-hand side where proved by
Aitalioubrahim and Sajid [1].
In this paper, we prove the existence of solutions to problem (1) where the right- hand side is a Carathéodory-
upper semi-continuous multifunction, uniformly continuous with respect to the last variable whose values
are not necessarily convex not compact in separable Banach spaces and satisfying the following condition :

For all (t, x, y1, ..., yk−1) ∈ [0,T[×D×
k−1∏
i=1

Ωi, for all measurable selectionσ(.) of the multifunction t→ F(t, x, y1, ..., yk−1)

lim inf
h→0+

k!
hk

d
(
x +

k−1∑
i=1

hi

i!
yi +

hk−1

k!

∫ t+h

t
σ(s)ds,D

)
= 0. (3)

As far as we know, higher-order viability problem was first investigated by Marco and Murillo [10]. It has
been proved a necessary and sufficient condition for the problem (1), to have a solution. More precisely,
they assume the following tangency condition :

∀ (x, x1, ..., xk−1) ∈ D ×
k−1∏
i=1

Ωi,F(x, x1, ..., xk−1) ∩ Ak
D(x, x1, ..., xk−1) , ∅

where Ak
D(x0, x1, ..., xk−1) is the tangent set of k-th-order defined by

Ak
D(x0, x1, ..., xk−1) =

{
y ∈ E : lim inf

h→0+

k!
hk

d
( k−1∑

i=0

hi

i!
xi +

hk

k!
y,D
)
= 0
}
.

Though under very strong assumptions, namely the multifunction F does not depend on the time with
convex and compact values in finite dimensional space and the graph of the multifunction (x0, x1, ..., xk−1)→
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Ak
D(x0, x1, ..., xk−1) is locally compact.

In this paper, when F does not depend on the time (F(t, x) = F(x)), the tangency condition (3) becomes :

For all (x, y1, ..., yk−1) ∈ D ×
k−1∏
i=1

Ωi, F(x, y1, ..., yk−1) ⊂ Ak
D(x, y1, ..., yk−1).

Clearly this tangency condition is rather strong than the one of Marco and Murillo. However, it is
counterbalanced in this paper by weaker hypotheses, in particular the right-hand side is non-convex
and non-compact not only in Euclidien spaces but in Banach spaces and the graph of the multifunction
(x, y1, ..., yk−1)→ Ak

D(x, y1, ..., yk−1) is not necessarily locally compact.

2. Notations, definitions and main result

In all the paper, E is a separable Banach space with the norm ∥.∥. We denote by Wk,1(I,E) the space
of functions possessing absolutely continuous derivatives up to order k − 1. For x ∈ E and r > 0, let
B(x, r) := {y ∈ E : ∥y − x∥ < r} be the open ball centered at x with radius r and B(x, r) be its closure and put
B = B(0, 1). For x ∈ E and for nonempty bounded subsets A,B of E, we denote by dA(x) or d(x,A) the real
inf{∥x − y∥ : y ∈ A}; e(A,B) := sup{dB(x); x ∈ A} and dH(A,B) =max(e(A,B), e(B,A)). Let L(I) the σ-algebra of
Lebesgue measurable subsets of I, and B(E) is the σ-algebra of Borel subsets of E for the strong topology. A
multifunction is said to be measurable if its graph (is measurable) belongs to L(I) ⊗ B(E). For more details
on measurability theory, we refer the reader to the book by Castaing-Valadier [5].

Let F : I × D ×
k−1∏
i=1

Ωi → 2E be a multifunction with nonempty closed values in E. On F we make the

following assumptions :

(A1) For each (x, y1, ..., yk−1) ∈ D ×
k−1∏
i=1

Ωi, t→ F(t, x, y1, ..., yk−1) is measurable.

(A2) For any t ∈ I, (x, y1, ..., yk−1)→ F(t, x, y1, ..., yk−1) is upper semi-continuous :

∀ ε > 0, ∀ t ∈ I, ∀ (x, y1, ..., yk−1) ∈ D ×
k−1∏
i=1

Ωi, ∃ α > 0, ∀ (x′, z1, ..., zk−1) ∈ D ×
k−1∏
i=1

Ωi,

max
1≤i≤k−1

{∥x − x′∥, ∥yi − zi∥} < α⇒ F(t, x′, z1, ..., zk−1) ⊂ F(t, x, y1, ..., yk−1) + B(0, ε)

(A3) ∀ ε > 0, ∃ δ(ε) > 0, ∀ t ∈ I, ∀ x, x′ ∈ D, and (y1, ..., yk−1), (z1, ..., zk−1) ∈
k−1∏
i=1

Ωi

∥yk−1 − zk−1∥ ≤ δ(ε)⇒ dH

(
F(t, x, y1, ..., yk−1),F(t, x′, z1, ..., zk−1)

)
≤ ε

(A4) There exists M > 0, for all (t, x, y1, ..., yk−1) ∈ I ×D ×
k−1∏
i=1

Ωi

sup
z∈F(t,x,y1,...,yk−1)

∥z∥ ≤M.
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(A5) For all t ∈ [0,T[ and (x, y1, ..., yk−1) ∈ D ×
k−1∏
i=1

Ωi, for all measurable selection σ(.) of the multifunction

t→ F(x, y1, ..., yk−1)

lim inf
h→0+

k!
hk

d
(
x +

k−1∑
i=1

hi

i!
yi +

hk−1

k!

∫ t+h

t
σ(s)ds,D

)
= 0.

Let (x0, y1
0, ..., y

k−1
0 ) ∈ D ×

k−1∏
i=1

Ωi. Under hypotheses (A1)-(A5) we shall prove the following main result :

Theorem 2.1. There exists x(.) ∈Wk,1(I,E), such that
x(k)(t) ∈ F(t, x(t), x(1)(t), ..., x(k−1)(t)) a.e. on [0,T[;

(x(0), x(1)(0), ..., x(k−1)(0)) = (x0, y1
0, ..., y

k−1
0 );

x(t) ∈ D, ∀t ∈ I.

3. Preliminary results

We will need the following lemmas which deal with measurability results.

Lemma 3.1. [3] Let Ω be a nonempty set in E. Let G :
[
a, b] ×Ω → 2E be a multifunction with nonempty closed

values satisfying :
- For every x ∈ Ω, G(., x) is measurable on [a, b].
- For every t ∈ [a, b], G(t, .) is (Hausdorff) continuous on Ω.
Then for any measurable function x(.) : [a, b]→ Ω the multifunction G(., x(.)) is measurable on [a, b].

For the proof, see Lemma 8.2.3

Lemma 3.2. [5] Let R : I → 2E be a measurable multifunction with nonempty closed values in E. Then R admits a
measurable selection : there exists a measurable function r : I→ E that is r(t) ∈ R(t) for all t ∈ I.

Lemma 3.3. [6] Let G : I → 2E be a measurable multifunction with nonempty closed values and z(.) : I → E a
measurable function. Then for any positive measurable function r(.) : I→ R+, there exists a measurable selection 1(.)
of G such that for all t ∈ I,

∥1(t) − z(t)∥ ≤ d(z(t),G(t)) + r(t).

4. Proof of the main result

The approach is based on two steps, it consists of the construction of a sequence of approximate solutions
in the first one; while in the second step, we prove the convergence of such approximate solutions.

Step 1 Construction of approximants.

For any i = 1, ..., k − 1, Ωi is nonempty open subsets of E, then there exists ηi > 0 such that B(yi
0, ηi) ⊂ Ωi.

Put η = min
1≤i≤k−1

ηi, then
k−1∏
i=1

B(yi
0, η) ⊂

k−1∏
i=1

Ωi.

Let us define the sequence (cp)p∈N as following :
c0 = max

1≤i≤k−1
∥yi

0∥,

cp = kcp−1 +M + 1, ∀ p ≥ 1. (4)



N. Charradi, S. Sajid / Filomat 38:18 (2024), 6549–6561 6553

For each integer n > max(T; 1), put τn :=
T
n

and consider the following partition of the interval I with the

points : tn
i = iτn, i = 0, 1, ...,n. Remark that I =

n−1⋃
i=0

[tn
i , t

n
i+1].

Since t→ F(t, x0, y1
0, ..., y

k−1
0 ) is measurable with closed values, then by Lemma 3.2, there exists a measurable

function f0(.) such that for all t ∈ I, f0(t) ∈ F(t, x0, y1
0, ..., y

k−1
0 ). Note that by (A4), f0(.) ∈ L1(I,E).

For any n ∈N∗, put f n
0 (.) = f0(.). We shall prove the following theorem :

Theorem 4.1. For all n ∈ N∗, there exist φ0(n) ∈ N∗, (xn
1 , y

1
1,n, ..., y

k−1
1,n ) ∈ D ×

k−1∏
i=1

Ωi, un
0(.), f n

1 (.) ∈ L1(I,E) such

that :

(i) xn
1 := x0 +

k−1∑
i=1

τi
φ0 (n)

i!
yi

0 +
τk
φ0 (n)

k!
un

0(0) ∈ D,

(ii) yi
1,n =

k−1∑
j=i

τ j−i
φ0 (n)

( j − i)!
y j

0 +
τk−i
φ0 (n)

(k − i)!
un

0(0), i ∈ {1, ..., k − 1},

(iii) (y1
1,n, ..., y

k−1
1,n ) ∈

k−1∏
i=1

B(yi
0, η),

(iv) un
0(t) ∈ F(t, x0, y1

0, ..., y
k−1
0 ) +

1
2n B, ∥un

0(t) − f n
0 (t)∥ ≤

1
2n , a.e. on [tn

0 , t
n
1[,

(v) f n
1 (t) ∈ F(t, xn

1 , y
1
1,n, ..., y

k−1
1,n ), ∥ f n

1 (t) − f n
0 (t)∥ ≤

1
2n+1 , for all t ∈ I.

Proof. By (A5) for all t ∈ [0,T[,

lim inf
n→+∞

k!
τk

n
dD

(
x0 +

k−1∑
i=1

τi
n

i!
yi

0 +
τk−1

n

k!

∫ t+τn

t
f n
0 (s)ds

)
= 0.

Then for all t ∈ [0,T[, there exists an integer φt (n) > n such that

k!
τk
φt (n)

dD

(
x0 +

k−1∑
i=1

τi
φt (n)

i!
yi

0 +
τk−1
φt (n)

k!

∫ t+τ
φt (n)

t
f n
0 (s)ds

)
≤

1
2n+2 .

Hence, by the characterization of the lower bound, there exists ξ1(t) ∈ D such that

k!
τk
φt (n)

∥ξ1(t) − x0 −

k−1∑
i=1

τi
φt (n)

i!
yi

0 −
τk−1
φt (n)

k!

∫ t+τ
φt (n)

t
f n
0 (s)ds∥ ≤

1
2n+2 +

1
2n+2 ,

then

∥
ξ1(t) − x0 −

∑k−1
i=1

τi
φt (n)

i! yi
0

τk
φt (n)

k!

−
1
τφt (n)

∫ t+τ
φt (n)

t
f n
0 (s)ds∥ ≤

1
2n+1 .
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

∥
1
τφt (n)

∫ t+τ
φt (n)

t
f n
0 (s)ds − f n

0 (t)∥ ≤
1

2n+1 a.e. on I,

therefore

∥
ξ1(t) − x0 −

∑k−1
i=1

τi
φt (n)

i! yi
0

τk
φt (n)

k!

− f n
0 (t)∥ ≤

1
2n a.e. on I.

Set

un
0(t) =

ξ1(t) − x0 −
∑k−1

i=1

τi
φt (n)

i! yi
0

τk
φt (n)

k!

,

then for all t ∈ [0,T[ ξ1(t) = x0 +
∑k−1

i=1

τi
φt (n)

i! yi
0 +

τk
φt (n)

k! un
0(t) ∈ D,

and

∥un
0(t) − f n

0 (t)∥ ≤
1
2n a.e. on I. (5)

Then
un

0(t) ∈ F(t, x0, y1
0, ..., y

k−1
0 ) +

1
2n B.

Particularly

x0 +

k−1∑
i=1

τi
φt (n)

i!
yi

0 +
τk
φt (n)

k!
un

0(t) ∈ D, ∀ t ∈ [tn
0 , t

n
1[;

and
un

0(t) ∈ F(t, x0, y1
0, ..., y

k−1
0 ) +

1
2n B, a.e. on [tn

0 , t
n
1[.

Let δn = δ( 1
2n+2 ) be the real given by (A3) and for every n ∈N∗, choose an integer φ0 (n) that is

φ0 (n) > max(
T(M + 1)
δn

,
41Tc1

η
) (6)

and set

xn
1 := ξ1(tn

0) = x0 +

k−1∑
i=1

τi
φ0 (n)

i!
yi

0 +
τk
φ0 (n)

k!
un

0(0) ∈ D.

For all n ∈N∗ and for i = 1, ..., k − 1, denote

yi
1,n =

k−1∑
j=i

τ j−i
φ0 (n)

( j − i)!
y j

0 +
τk−i
φ0 (n)

(k − i)!
un

0(0). (7)

thus

∥yi
1,n − yi

0∥ ≤

k−1∑
j=i+1

τ j−i
φ0 (n)

( j − i)!
∥y j

0∥ +
τk−i
φ0 (n)

(k − i)!
∥un

0(0)∥,
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For all j ∈N∗, since

0 < τ j
φ0 (n) < τφ0 (n) and

τ j
φ0 (n)

j!
< 1,

we deduce, according relations (A4), (5) and (6) that

∥yi
1,n − yi

0∥ ≤

(
(k − 1) max

1≤i≤k−1
∥yi

0∥ +M + 1
)
τφ0 (n)

≤

(
(k − 1)c0 +M + 1

)
τφ0 (n)

≤ c1τφ0 (n)

≤
η

41 ,

then

(y1
1,n, ..., y

k−1
1,n ) ∈

k−1∏
i=1

B(yi
0, η).

By relation (7), for i = k − 1

∥yk−1
1,n − yk−1

0 ∥ =
T
φ0 (n)

∥un
0(0)∥

≤
T
φ0 (n)

(M + 1),

< δn,

then by (A3)

dH(F(t, xn
1 , y

1
1,n, ..., y

k−1
1,n ),F(t, x0, y1

0, ..., y
k−1
0 )) ≤

1
2n+2 ∀ t ∈ I,

thus

d( f n
0 (t),F(t, xn

1 , y
1
1,n, ..., y

k−1
1,n )) ≤

1
2n+2 , ∀ t ∈ I.

In view of Lemma 3.3, there exists a function f n
1 (.) ∈ L1(I,E) such that

f n
1 (t) ∈ F(t, xn

1 , y
1
1,n, ..., y

k−1
1,n ) and for all t ∈ I

∥ f n
1 (t) − f n

0 (t)∥ ≤ d( f n
0 (t),F(t, xn

1 , y
1
1,n, ..., y

k−1
1,n )) +

1
2n+2

≤
1

2n+1 .

By induction, for p ∈ {2, ...,n}, assume that have been constructed

φp−2 (n) ∈N∗, xn
p−1 ∈ D, yi

p−1,n ∈ Ωi, i ∈ {1, ..., k−1}, un
p−2(.) : [tn

p−2, t
n
p−1[→ E, and f n

p−1(t) ∈ F(t, xn
p−1
, y1

p−1,n, ..., y
k−1
p−1,n)

satisfying the following relations :

(i) For all j ∈ {0, ..., p − 2}, φ j (n) >
4 j+1Tc j+1

η
,

(ii) xn
p−1 := ξp(tn

p−2) = xn
p−2 +

k−1∑
i=1

τi
φp−2 (n)

i!
yi

p−2,n +

τk
φp−2 (n)

k!
un

p−2(tn
p−2) ∈ D,
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(iii) yi
p−1,n =

k−1∑
j=i

τ j−i
φp−2 (n)

( j − i)!
y j

p−2,n +
τk−i
φp−2 (n)

(k − i)!
un

p−2(tn
p−2),

(iv) For all j ∈ {1, ..., p − 1}, ∥yi
j,n∥ ≤ c j,

(v) For all i ∈ {1, ..., k − 1}, and for j ∈ {1, ..., p − 1}, ∥yi
j,n − yi

j−1,n∥ ≤
η

4 j ,

(vi) (y1
p−1,n, ..., y

k−1
p−1,n) ∈

k−1∏
i=1

B(yi
0, η),

(vii) ∥un
p−2(t) − f n

p−2(t)∥ ≤
1
2n a.e. on [tn

p−2, t
n
p−1[,

(iix) un
p−2(t) ∈ F(t, xn

p−2, y
1
p−2,n, ..., y

k−1
p−2,n) +

1
2n B a.e. on [tn

p−2, t
n
p−1[,

(ix) ∥ f n
p−1(t) − f n

p−2(t)∥ ≤
1

2n+1 for all t ∈ I.

Let us define xn
p , (yi

p,n)i=1,...,k−1, f n
p (.) , un

p−1(.) and φp−1 (n) that is φp−1 (n) > φp−2 (n).

Indeed, for all t ∈ [0,T[, by applying (A5) for the measurable selection f n
p−1(t) ∈ F(t, xn

p−1
, y1

p−1,n, ..., y
k−1
p−1,n), we

have

lim inf
n→+∞

k!
τk

n
dD

(
xn

p−1 +

k−1∑
i=1

τi
n

i!
yi

p−1,n +
τk−1

n

k!

∫ t+τn

t
f n
p−1(s)ds

)
= 0.

Then for all t ∈ [0,T[, there exists φp−1
t (n) ∈N such that φp−1

t (n) > φp−2
t (n),

k!
τk
φ

p−1
t (n)

dD

(
xn

p−1 +

k−1∑
i=1

τi
φ

p−1
t (n)

i!
yi

p−1,n +

τk−1
φ

p−1
t (n)

k!

∫ t+τ
φ

p−1
t (n)

t
f n
p−1(s)ds

)
≤

1
2n+2 ,

hence, by the characterization of the lower bound, there exists ξp(t) ∈ D such that

k!
τk
φ

p−1
t (n)

∥ξp(t) − xn
p−1 −

k−1∑
i=1

τi
φ

p−1
t (n)

i!
yi

p−1,n −

τk−1
φ

p−1
t (n)

k!

∫ t+τ
φ

p−1
t (n)

t
f n
p−1(s)ds∥ ≤

1
2n+2 +

1
2n+2 ,

then

∥

ξp(t) − xn
p−1 −

∑k−1
i=1

τi

φ
p−1
t (n)

i! yi
p−1,n

τk

φ
p−1
t (n)

k!

−
1
τ
φ

p−1
t (n)

∫ t+τ
φ

p−1
t (n)

t
f n
p−1(s)ds∥ ≤

1
2n+1 .

On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

∥
1
τ
φ

p−1
t (n)

∫ t+τ
φ

p−1
t (n)

t
f n
p−1(s)ds − f n

p−1(t)∥ ≤
1

2n+1 a.e. on I,
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therefore

∥

ξp(t) − xn
p−1 −

∑k−1
i=1

τi

φ
p−1
t (n)

i! yi
p−1,n

τk

φ
p−1
t (n)

k!

− f n
p−1(t)∥ ≤

1
2n a.e. on I.

Set

un
p−1(t) =

ξp(t) − xn
p−1 −

∑k−1
i=1

τi

φ
p−1
t (n)

i! yi
p−1,n

τk

φ
p−1
t (n)

k!

,

then for all t ∈ [0,T[ ξp(t) = xn
p−1 +

∑k−1
i=1

τi

φ
p−1
t (n)

i! yi
p−1,n +

τk

φ
p−1
t (n)

k! un
p−1(t) ∈ D,

and

∥un
p−1(t) − f n

p−1(t)∥ ≤
1
2n a.e. on I,

from which, we deduce that

un
p−1(t) ∈ F(t, xn

p−1, y
1
p−1,n, ..., y

k−1
p−1,n) +

1
2n B.

Then we have

xn
p−1 +

k−1∑
i=1

τi
φ

p−1
t (n)

i!
yi

p−1,n +

τk
φ

p−1
t (n)

k!
un

p−1(t) ∈ D, ∀ t ∈ [tn
p−1, t

n
p[,

and
un

p−1(t) ∈ F(t, xn
p−1, y

1
p−1,n, ..., y

k−1
p−1,n) +

1
2n B, a.e. on [tn

p−1, t
n
p[.

Choose

φp−1 (n) > max(φp−1
tnp−1

(n);
4pTcp

η
)

Put

xn
p := ξp(tn

p−1) = xn
p−1 +

k−1∑
i=1

τi
φp−1 (n)

i!
yi

p−1,n +
τk
φp−1 (n)

k!
un

p−1(tn
p−1) ∈ D,

for all n ∈N∗ and for i = 1, ..., k − 1, denote

yi
p,n =

k−1∑
j=i

τ j−i
φp−1 (n)

( j − i)!
y j

p−1,n +
τk−i
φp−1 (n)

(k − i)!
un

p−1(tn
p−1), (8)

Fix i ∈ {1, ..., k − 1}, by the same previous reasoning

∥yi
p,n − yi

p−1,n∥ ≤

k−1∑
j=i+1

τ j−i
φp−1 (n)

( j − i)!
∥y j

p−1,n∥ +

τk−i
φp−1 (n)

(k − i)!
∥un

p−1(tn
p−1)∥

≤

(
(k − 1)cp−1 +M + 1

)
τφp−1 (n)

≤ cpτφp−1 (n)

≤
η

4p .



N. Charradi, S. Sajid / Filomat 38:18 (2024), 6549–6561 6558

So that

∥yi
p,n − yi

0,n∥ ≤

p−1∑
j=0

∥yi
j+1,n − yi

j,n∥

≤

p∑
j=1

η

4 j

≤
η

2
,

and

∥yi
p,n∥ ≤ ∥yi

p,n − yi
p−1,n∥ + ∥y

i
p−1,n∥

≤

(
(k − 1)cp−1 +M + 1

)
+ cp−1

≤ kcp−1 +M + 1 = cp.

In view of relation (8), as yk−1
p,n = yk−1

p−1,n + τφp−1 (n) u
n
p−1(tn

p−1), one has

∥yk−1
p,n − yk−1

p−1,n∥ =
T

φp−1 (n)
∥un

p−1(tn
p−1)∥

≤
T

φp−1 (n)
(M + 1)

< δn,

hence, by (A3)

dH(F(t, xn
p , y

1
p,n, ..., y

k−1
p,n ),F(t, xn

p−1, y
1
p−1,n, ..., y

k−1
p−1,n)) ≤

1
2n+2 ∀ t ∈ I,

thus

d( f n
p−1(t),F(t, xn

p , y
1
p,n, ..., y

k−1
p,n )) ≤

1
2n+2 , ∀ t ∈ I.

By Lemma 3.3, there exists a measurable function f n
p (.) ∈ L1(I,E) such that

f n
p (t) ∈ F(t, xn

p , y1
p,n, ..., yk−1

p,n ) and for all t ∈ I

∥ f n
p (t) − f n

p−1(t)∥ ≤ d( f n
p−1(t),F(t, xn

p , y
1
p,n, ..., y

k−1
p,n )) +

1
2n+2 .

Then

∥ f n
p (t) − f n

p−1(t)∥ ≤
1

2n+1 . (9)

Put qn = φn (n). Remark that the previous relations are satisfied for qn.

Now, let us define the step functions.

For all n ≥ 1, for all t ∈ [0,T[, set θn(t) = tn
p−1, whenever t ∈ [tn

p−1, t
n
p[, and consider the functions

fn(t) =
n∑

p=1

χ
[tnp−1 ,t

n
p [

(t) f n
p−1(t) and un(t) =

n∑
p=1

χ
[tnp−1 ,t

n
p [

(t)un
p−1(t),

when χJ (.) denotes the characteristic function for any interval J.
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On each interval [tn
p−1, t

n
p], define by induction

11,n(t) =
∫ t

tn
p−1

un(s)ds.

and for all i ∈ {2, ..., k}

1i,n(t) =
∫ t

tn
p−1

1i−1,n(s)ds,

and consider

xn(t) = xn
p−1 +

k−1∑
i=1

(t − tn
p−1)i

i!
yi

p−1 + 1k,n(t).

It is clear that xn(.), un(.) and fn(.) satisfy the following relations :

xn(.) ∈Wk,1(I,E), xn(θn(t)) = xn
p−1 ∈ D, ∀ t ∈ [0,T[,

x(k)
n (t) = un(t) ∈ F

(
t, xn(θqn (t)), x(1)

n (θqn (t)), ..., x(k−1)
n (θqn (t))

)
+

1
2n B a.e. on I, (10)

and

∥un(t) − fn(t)∥ ≤
1
2n a.e. on I. (11)

Step 2 The convergence of (xn(.))

By construction for all t ∈ I

fn(t) ∈ F
(
t, xn(θqn (t)), x(1)

n (θqn (t)), ..., x(k−1)
n (θqn (t))

)
.

On the other hand let t ∈ I and p = 1, 2, ...,n, by relation (9)

∥ f n
p (t) − f n

p−1(t)∥ ≤
1

2n+1 ,

then, by induction

∥ f n
p (t) − f n

0 (t)∥ ≤
p

2n+1 ,

from which we deduce that
∥ fn(t) − f0(t)∥ ≤

n
2n+1 ,

then

∥ fn+1(t) − fn(t)∥ ≤ ∥ fn+1(t) − f0(t)∥ + ∥ fn(t) − f0(t)∥

≤
3(n + 1)

2n+2 .

Let t ∈ I and (m,n) ∈N∗ ×N∗ with m > n

∥ fm(t) − fn(t)∥ ≤ ∥ fm(t) − fm−1(t)∥ + ∥ fm−1(t) − fm−2(t)∥....∥ fn+1(t) − fn(t)∥

≤
3
2

( m
2m +

m − 1
2m−1 + ... +

n + 1
2n+1

)
.
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Put vn =
n
2n , by a classical argument (the d’Alembert’s criterion), the numerical series

+∞∑
i=0

vi converges,

hence (Sn) = (
n∑

i=0

vi) is a Cauchy sequence.

Since
∥ fm(t) − fn(t)∥ ≤

3
2

(Sm − Sn)

then ( fn(.))n≥1 is a Cauchy sequence in L1(I,E), denotes f (.) its limit.
Thus, by (11), the sequence (un)n∈N converges to f (.) in L1(I,E), which implies, in view of (10), that the
subsequence (x(k)

n (.))n converges to f (.) in L1(I,E).

Furthermore, by (10), we get
∥x(k)

n (t)∥ ≤M + 1,

again, by dominated convergence theorem, (x(k−1)
n (.))n converges strongly in L1(I,E).

as
∥x(k−1)

n (t)∥ ≤ ∥yk−1
0 ∥ + (M + 1)T,

By induction, for all i ∈ {1, 2, 3, ..., k − 1},we prove that for all t ∈ I,

∥x(k−i)
n (t)∥ ≤

i∑
p=1

∥yk−p
0 ∥T

i−p
+ (M + 1)T

i
.

Since

x(k−i−1)
n (t) = x(k−i−1)(0) +

∫ t

0
x(k−i)

n (s)ds,

then by the dominated convergence theorem, we deduce that for all i ∈ {1, 2, 3, ..., k − 1}, the sequence
(x(i)

n (.))n converges strongly in L1(I,E). We prove easily that for each i = 1, ..., k − 1; lim
n→∞

x(i)
n (.) = x(i)(.) where

x(.) = lim
n→∞

xn(.) in L1(I,E).
Recall that

|θqn (t) − t| <
T
qn
.

Since

∥x(k−1)
n (θqn (t)) − x(k−1)(t)∥ ≤ ∥x(k−1)

n (θqn (t)) − x(k−1)
n (t)∥ + ∥x(k−1)

n (t) − x(k−1)(t)∥

≤

∫ t

θqn (t)
(M + 1)ds + ∥x(k−1)

n (t) − x(k−1)(t)∥,

then x(k−1)
n (θqn (.)) converges strongly to x(k−1)(.) in L1(I,E).

By the same reasoning, for i ∈ {1, ..., k − 2},we have

∥x(i)
n (θqn (t)) − x(i)(t)∥ ≤ ∥x(i)

n (θqn (t)) − x(i)
n (t)∥ + ∥x(i)

n (t) − x(i)(t)∥

≤

∫ t

θqn (t)
∥x(i+1)

n (s)∥ds + ∥x(i)
n (t) − x(i)(t)∥,

so that the subsequences (xn(θqn (.))n and (x(i)
n (θqn (.))n for i ∈ {1, ..., k − 1}, converge strongly to x(.) and x(i)(.)

respectively in L1(I,E).
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We are able to finish the proof of the main result. For all t ∈ I

x(k−1)(t) = lim
n→∞

x(k−1)
n (t) = lim

n→∞
(yk−1

0 +

∫ t

0
un(s)ds)

Since (un)n∈N converges to f (.) in L1(I,E), then

x(k−1)(t) = yk−1
0 +

∫ t

0
f (s)ds,

hence,
f (t) = x(k)(t) a.e. on I.

On the other hand, it is easy to check that x(0) = x0 and x(i)
0 (0) = yi

0, ∀i ∈ {1, ..., k − 1}.

In addition, for every t ∈ [0,T[ we have xn(θqn (t)) ∈ D. Since D is closed, then x(t) ∈ D. Moreover, as x(.) is
(M + 1)−Lipschitz then x(t) ∈ D, ∀ t ∈ [0,T].

Since F(t, ., ..., .) is upper semi-continuous at
(
x(t), x(1)(t), ..., x(k−1)(t)

)
, x(k)

n (θqn (.)) converges strongly in L1(I,E)

to x(k)(.) and F is closed values in E, then, x(k)(t) = f (t) ∈ F
(
t, x(t), x(1)(t), ..., x(k−1)(t)

)
for a.e. t ∈ I. This

completes the proof of Theorem 2.1.
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