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Total outer-independent domination in regular graphs
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Abstract. Let G be a connected graph of order n. A set D ⊆ V(G) is a total outer-independent dominating
set of G if N(v) ∩ D , ∅ for every v ∈ D and N(v) ⊆ D for every v ∈ V(G) \ D. The total outer-independent
domination number of G, denoted by γoi

t (G), is the minimum cardinality among all total outer-independent
dominating sets of G. We show that if G is a k-regular graph with k ≥ 3, then

(
k

2k−1

)
n ≤ γoi

t (G) ≤
(

k
k+1

)
n.

In addition, we characterize the k-regular graphs satisfying the above bounds, except for the case of cubic
graphs attaining the upper bound. Finally, we obtain improved bounds (with respect to the previous ones)
on γoi

t (G) for the case in which G is a claw-free regular graph.

1. Introduction

Let G be a finite and undirected graph with vertex set V(G) and edge set E(G). Given a vertex v ∈ V(G), the
open neighbourhood of v, denoted by N(v), is the set of neighbours of v; that is, N(v) = {x ∈ V(G) : xv ∈ E(G)}.
The values δ(G) = min{|N(x)| : x ∈ V(G)} and ∆(G) = max{|N(x)| : x ∈ V(G)} denote the minimum and
maximum degrees of G, respectively. If δ(G) = ∆(G) = k, then we say that G is a k-regular graph. Given a set
D ⊆ V(G), D denotes the complement of D; that is, D = V(G) \ D. In addition, G[D] denotes the subgraph
of G induced by D. On the other hand, we say that D is a packing of G if its vertices are pairwise at distance
at least three apart in G. The set of packings of G will be denoted as P(G). As usual, we use the notation
Kn, Nn and K1,n−1 for complete graphs, edgeless graphs and star graphs of order n, respectively. For k ≥ 1
an integer, we use the standard notation [k] = {1, . . . , k}.

A dominating set of G is a set D ⊆ V(G) that satisfies that N(v)∩D , ∅ for every v ∈ D. The set of dominating
sets of G will be denoted as D(G). The domination number of G is defined as γ(G) = min{|D| : D ∈ D(G)}.
This parameter was formally defined by Berge in 1958, although it has roots in many sources, including
defense strategies, games such as chess, computer communication networks, and network surveillance and
security [7].

The principal variations of the dominating sets in a graph G are based on conditions that are imposed
on the subgraphs G[D] and/or G[D], with D ∈ D(G). We next define one of the variants of dominating sets
well studied in the last decade.

A total outer-independent dominating set of G is a set D ⊆ V(G) which satisfies that G[D] has no isolated
vertex and G[D] is isomorphic to an edgeless graph; that is, N(v) ∩D , ∅ for every v ∈ D and N(v) ⊆ D for
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every v ∈ D. The set of total outer-independent dominating sets of G will be denoted as Doi
t (G). The total

outer-independent domination number of G is defined to be,

γoi
t (G) = min{|D| : D ∈ Doi

t (G)}.

A γoi
t (G)-set is a total outer-independent dominating set of G of cardinality γoi

t (G). This concept was
introduced by Soner et al. [11] and studied further, for example, in [3–5, 9, 10].

In this article we study the total outer-independent domination number of regular graphs. In particular,
we show that if G is a connected k-regular graph of order n with k ≥ 3, then

(
k

2k−1

)
n ≤ γoi

t (G) ≤
(

k
k+1

)
n.

In addition, we characterize the k-regular graphs satisfying the above bounds, except for the case of cubic
graphs attaining the upper bound. Finally, we obtain improved bounds (with respect to the previous ones)
on γoi

t (G) for the case in which G is a claw-free regular graph.

2. Results

We will begin this section by presenting general lower and upper bounds on the total outer-independent
domination number of a k-regular graph. For this purpose, we shall need the following useful lemma.

Lemma 2.1. Let G be a connected k-regular graph with k ≥ 3. Let D be a γoi
t (G)-set and Di = {v ∈ D : |N(v)∩D| = i}

for every i ∈ [k]. Then |Dk| ≤ |D1|.

Proof. If Dk = ∅, then we are done. Let us assume that Dk , ∅, and let x ∈ Dk. By definition of Dk, it follows
that N(x) ⊆ D. If N(x) ⊆ D \ D1, then D \ {x} ∈ Doi

t (G), a contradiction. Hence, N(x) ∩ D1 , ∅. Therefore,
every vertex in Dk has a private neighbour in D, which is clearly in D1. As a consequence, we obtain that
|Dk| ≤ |D1|, which completes the proof.

Theorem 2.2. If G is a connected k-regular graph of order n with k ≥ 3, then(
k

2k − 1

)
n ≤ γoi

t (G) ≤
(

k
k + 1

)
n.

Proof. Let D be a γoi
t (G)-set and Di = {v ∈ D : |N(v) ∩ D| = i} for every i ∈ [k]. Observe that D = ∪i∈[k]Di

and Di ∩D j , ∅ for any different subscripts i, j ∈ [k]. The following chain of equalities arise from counting
argument on the number of edges joining D with D.∑

i∈[k−1]

(k − i)|Di| = k|D| = k(n − |D|) = kn − k|D|. (1)

By equality (1) and the fact that
∑

i∈[k−1] |Di| = |D| − |Dk|we deduce that

|D| − |Dk| +
∑

i∈[k−2]

(k − i − 1)|Di| = kn − k|D|,

which leads to the following chain of equalities.

|D| =
(

k
k + 1

)
n −

∑
i∈[k−2](k − i − 1)|Di| − |Dk|

k + 1

=

(
k

k + 1

)
n −

∑
i∈[k−2]\{1}(k − i − 1)|Di|

k + 1
−

(k − 2)|D1| − |Dk|

k + 1
.

(2)

By Lemma 2.1 we have that |Dk| ≤ |D1|. So, (k − 2)|D1| − |Dk| ≥ 0 due to the fact that k ≥ 3. Combining this
previous bound with the chain of equalities (2), it is easy to deduce that |D| ≤

(
k

k+1

)
n.
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Now, by (1) and the fact that
∑

i∈[k−1](k − i)|Di| = (k − 1)|D| −
∑

i∈[k]\{1}(i − 1)|Di|we deduce that

(k − 1)|D| −
∑

i∈[k]\{1}

(i − 1)|Di| = kn − k|D|,

which leads to the following equality.

|D| =
(

k
2k − 1

)
n +

∑
i∈[k]\{1}(i − 1)|Di|

2k − 1
. (3)

So, |D| ≥
(

k
2k−1

)
n is an immediate consequence of equality (3). Therefore, the proof is complete.

The complete graph K4 and the cube graph Q3 are examples of cubic graphs satisfying the equality
associated with the upper bound given in Theorem 2.2. Hence, this upper bound is the best possible for the
case k = 3. We next proceed to characterize the k-regular graphs satisfying the bounds given in Theorem 2.2,
except for the case of cubic graphs attaining the upper bound. Before, we shall need the following useful
lemma.

Lemma 2.3. Let G be a connected k-regular graph of order n with k ≥ 3. Let D be a γoi
t (G)-set and Di = {v ∈ D :

|N(v) ∩D| = i} for every i ∈ [k]. The following statements hold.

(i) If k ≥ 4 and |D| =
(

k
k+1

)
n, then D = Dk−1, and as a consequence, D ∈ P(G).

(ii) If |D| =
(

k
2k−1

)
n, then D = D1.

Proof. We first assume that k ≥ 4 and |D| =
(

k
k+1

)
n. In the proof of Theorem 2.2 we deduce the chain of

equalities (2). In particular, we obtain that

|D| =
(

k
k + 1

)
n −

∑
i∈{2,...,k−2}(k − i − 1)|Di|

k + 1
−

(k − 2)|D1| − |Dk|

k + 1
. (4)

By Lemma 2.1 it follows that |Dk| ≤ |D1|. If Dk , ∅, then (k − 2)|D1| − |Dk| > 0 due to the fact that k ≥ 4.
Combining this previous bound with the equality (4) we obtain that |D| <

(
k

k+1

)
n, a contradiction. Hence

Dk = ∅, which implies that D1 = · · · = Dk−2 = ∅. Therefore, D = Dk−1. Now, we proceed to prove that
D ∈ P(G). If |D| = 1, then D ∈ P(G). Let us assume that |D| ≥ 2 and let x, y ∈ D be any two different vertices.
By definition, it follows that xy < E(G). If there exists a vertex v ∈ N(x) ∩N(y), then v ∈ D = Dk−1, which is
a contradiction. Therefore, N(x) ∩N(y) = ∅. As a consequence, D ∈ P(G), which completes the proof of (i).

Now, we proceed to prove (ii). In the proof of Theorem 2.2 we deduce the equality (3), which establishes
the following.

|D| =
(

k
2k − 1

)
n +

∑
i∈[k]\{1}(i − 1)|Di|

2k − 1
.

If we assume that |D| =
(

k
2k−1

)
n, then it is straightforward that Di = ∅ for every i ∈ [k] \ {1}. Therefore

D = D1, which completes the proof.

Theorem 2.4. Let G be a connected k-regular graph of order n with k ≥ 4. Then γoi
t (G) =

(
k

k+1

)
n if and only if

G � Kk+1.

Proof. If G � Kk+1, then γoi
t (G) = k =

(
k

k+1

)
n, as required. On the other hand, let us assume that G satisfies that

γoi
t (G) =

(
k

k+1

)
n. Let D be a γoi

t (G)-set. By Lemma 2.3-(i) we have that D = Dk−1 and that D ∈ P(G). Let x ∈ D.

Now, suppose that |D| ≥ 2. Observe that n = |D| + |D| ≥ |N(x)| + 2 = k + 2. This implies that G[N(x) ∪ {x}] is
not a complete graph Kk+1. Let x1, x2 ∈ N(x) ⊆ D = Dk−1 such that x1x2 < E(G), and let D′ = (D\ {x1, x2})∪{x}.
Since k ≥ 4 and D \ {x} ∈ P(G), it is easy to verify that D′ ∈ Doi

t (G), which is a contradiction. Hence D = {x},
and as a consequence of the fact that D = Dk−1, it follows that V(G) = N(x)∪ {x}. Therefore G � Kk+1, which
completes the proof.
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In order to characterize the connected k-regular graph G with γoi
t (G) =

(
k

2k−1

)
|V(G)|, we need to define the

next family of graphs.

Definition 2.5. Let k ≥ 3 be an integer. We say that a connected k-regular graph G belongs to the familyGk whenever
|V(G)| = (2k − 1)r for some r ≥ 1 and its vertex set V(G) can be partitioned into two vertex sets A and B such that
G[A] � ( kr

2 )K2 and G[B] � Nr(k−1).

It is easy to check that Gk , ∅ for any k ≥ 3. For example, let Fk be a k-regular graph of order n = 4k − 2
defined as follows:

• V(Fk) =
(
∪i∈[k]{xi, yi}

)
∪

(
∪i∈[k−1]{vi,wi}

)
.

• E(Fk) =
(
∪i∈[k]xiyi

)
∪

(
∪i∈[k]

(
∪ j∈[k−1]{xiv j, yiw j}

))
.

Observe that Fk ∈ Gk. In this case, and following the parameters used in the Definition 2.5, we have that
r = 2, A = ∪i∈[k]{xi, yi} and B = ∪i∈[k−1]{vi,wi}. Figure 1 shows the graph F4 ∈ G4.

x1 y1 x2 y2 x3 y3 x4 y4

v1 w1 v2 w2 v3 w3

Figure 1: The graph F4.

Theorem 2.6. Let G be a connected k-regular graph of order n with k ≥ 3. Then γoi
t (G) =

(
k

2k−1

)
n if and only if

G ∈ Gk.

Proof. We first assume that G satisfies that γoi
t (G) =

(
k

2k−1

)
n. Let D be a γoi

t (G)-set. By Lemma 2.3-(ii) we have

that D = D1, which implies that G[D] � sK2. In addition, we have that G[D] � Nn−2s due to the fact that D
is an independent set of G of cardinality |D| = n− 2s. Since |D| =

(
k

2k−1

)
n, it follows that n ≡ 0 (mod 2k− 1).

Hence, n = (2k − 1)r for some r ≥ 1 and so, s = |D|
2 =

kr
2 . As a consequence of the previous equalities,

it follows that V(G) is partitioned into two vertex sets D and D where G[D] � ( kr
2 )K2 and G[D] � Nr(k−1).

Therefore G ∈ Gk, as required.
On the other hand, we assume that G ∈ Gk; that is, G is a connected k-regular graph of order n = (2k−1)r

(for some r ≥ 1) with a vertex partition (A,B) such that G[A] � ( kr
2 )K2 and G[B] � Nr(k−1). It is easy to observe

that A ∈ Doi
t (G). Hence, γoi

t (G) ≤ |A| = kr =
(

k
2k−1

)
n. By the lower bound given in Theorem 2.2 it follows

that γoi
t (G) =

(
k

2k−1

)
n, which completes the proof.

2.1. Claw-free regular graphs

A graph is claw-free if it contains no induced K1,3. In this subsection we obtain lower and upper bounds
on the total outer-independent domination number of claw-free regular graphs.

Theorem 2.7. Let k ≥ 3 be an integer. If G is a connected claw-free k-regular graph of order n > k + 1, then(
k

k + 2

)
n ≤ γoi

t (G) ≤
(

k − 1
k

)
n.
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Proof. Cabrera-Martı́nez et al. [6, Theorem 8-(ii)] showed that if G is a connected claw-free graph of order
n with δ(G) ≥ 3, then γoi

t (G) = n − α(G), where α(G) denotes the classical independence number of G; that
is, the maximum cardinality among all independent sets of G. Brooks’ theorem [1, Theorem V.1.6] implies
that if G � K∆+1 is a connected graph of order n with maximum degree ∆, then α(G) ≥ n/∆. Hence, if k ≥ 3
and G is a connected claw-free k-regular graph of order n > k + 1, then γoi

t (G) = n − α(G) ≤ n − n
k =

(
k−1

k

)
n,

as desired.
Finally, we proceed to prove the lower bound. If k = 3, then we are done by Theorem 2.2. From now

on, we assume that k ≥ 4. Let D be a γoi
t (G)-set. Observe that D = ∪i∈[k]Di and Di ∩D j , ∅ for any different

subscripts i, j ∈ [k]. Let us suppose that there exists a vertex x ∈ Dk. Since G is claw-free, it is easy to see
that N(x) ⊆ D \ D1. This implies that D \ {x} ∈ Doi

t (G), a contradiction. Hence, Dk = ∅. If there exists a
vertex x ∈ ∪ j∈[k−3]D j, then there exist three vertices x1, x2, x3 ∈ N(x) \D, which is a contradiction because the
subgraph induced by the set {x, x1, x2, x3} is isomorphic to K1,3. Therefore, D j = ∅ for every j ∈ [k− 3], which
implies that D = Dk−1 ∪ Dk−2. Now, from a counting argument on the number of edges joining D with D,
we deduce the following.

2|Dk−2| + |Dk−1| = k|D| = k(n − |D|) = kn − k|D|. (5)

By equality (5) and the fact that |D| = |Dk−2| + |Dk−1| we deduce that 2|D| − |Dk−1| = kn − k|D|, which leads to
the following equality.

|D| =
(

k
k + 2

)
n +
|Dk−1|

k + 2
. (6)

So, |D| ≥
(

k
k+2

)
n is an immediate consequence of equality (6). Therefore, the proof is complete.

The following result show that the lower bound given in Theorem 2.7 is tight for any even integer k ≥ 4.

Proposition 2.8. Let k ≥ 4 be any even integer. If G is a connected k-regular graph of order n = k + 2, then
γoi

t (G) = k.

Proof. We first observe that G is a claw-free graph. Let u, v be any two non-adjacent vertices of G. It is easy
to see that V(G) \ {u, v} ∈ Doi

t (G). Hence γoi
t (G) ≤ |V(G) \ {u, v}| = k. On the other hand, Theorem 2.7 leads to

γoi
t (G) ≥

(
k

k+2

)
n = k. Therefore, γoi

t (G) = k, which completes the proof.

We conclude this subsection by showing that every connected {claw,diamond}-free cubic graph achieves
the equality associated with the upper bound given in Theorem 2.7. Recall that a diamond is the graph K4−e,
where e denotes an arbitrary edge of the complete graph K4.

Theorem 2.9. If G is a connected {claw,diamond}-free cubic graph of order n ≥ 6, then

γoi
t (G) =

2n
3
.

Proof. First, we proceed to prove that any two triangles of G are vertex-disjoint. Let T1 and T2 be two different
triangles of G. Suppose that there exists a vertex x ∈ V(T1)∩V(T2). Since |N(x)| = 3 and |N(x)∩V(Ti)| ≥ 2 for
every i ∈ [2], it follows that there exists a vertex y ∈ N(x)∩V(T1)∩V(T2). This implies that xy ∈ E(T1)∩E(T2).
By the fact that T1 and T2 are two different triangles of G and n ≥ 6, it is easy to deduce that G[V(T1)∪V(T2)]
is isomorphic to a diamond, which is a contradiction. Hence V(T1) ∩ V(T2) = ∅, as required. Moreover,
we observe that every vertex of G is contained in a triangle because G is a claw-free graph. From the two
previous statements, it follows that every vertex of G is contained in a unique triangle, which implies that
G is a vertex-disjoint union of triangles. Therefore V(G) = ∪i∈[n/3]V(Ti), where T1, . . . ,Tn/3 are pairwise
different triangles of G.

Let D be a γoi
t (G)-set. By definition, it follows that |D ∩ V(Ti)| ≥ 2 for every i ∈ [n/3]. Hence, |D| =∑

i∈[n/3] |D ∩ V(Ti)| ≥ 2n
3 . Now, by Theorem 2.7 we have that |D| ≤ 2n

3 . Therefore |D| = 2n
3 , which completes

the proof.
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3. Open problems

We conclude our article with the following problems that we have yet to settle.

Problem 3.1. Characterize the connected cubic graphs that achieve equality in the upper bound given in Theorem 2.2;
that is, characterize the connected cubic graphs G of order n satisfying γoi

t (G) = 3n
4 .

Problem 3.2. For k ≥ 4, Theorem 2.4 establishes that the equality in the upper bound of Theorem 2.2 is achieved if
and only if G � Kk+1. In such a sense, it is interesting to determine the smallest positive constant c(k) < k

k+1 such
that every k-regular graph G of order n > k + 1 satisfies that γoi

t (G) ≤ c(k) · n.

Problem 3.3. Characterize the connected claw-free k-regular graphs that achieve equalities in the lower and upper
bounds given in Theorem 2.7; that is, characterize the claw-free k-regular graphs G of order n > k+ 1 satisfying either
γoi

t (G) =
(

k
k+2

)
n or γoi

t (G) =
(

k−1
k

)
n.
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