Filomat 38:18 (2024), 6601–6608 https://doi.org/10.2298/FIL2418601A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Suffi**cient conditions for** *k***-connected graphs and** *k***-leaf-connected graphs**

Yonghong Ana,c, Guizhi Zhangb,c,[∗]

*^aSchool of Continuing Education, Hulunbuir University, Hailar, Inner Mongolia 021008, China ^bAcademic A*ff*airs O*ffi*ce, Hulunbuir University, Hailar, Inner Mongolia 021008, China ^cCenter for information and computing science, Hulunbuir University, Hailar, Inner Mongolia 021008, China*

Abstract. A connected graph *G* is said to be *k*-connected if it has more than *k* vertices and remains connected whenever fewer than *k* vertices are deleted. In this paper, we present a sufficient condition in terms of the number of *r*-cliques to guarantee the a graph with minimum degree at least δ to be *k*-connected, which extends the result of Feng et al. [Linear Algebra Appl. 524 (2017) 182–198]. For any integer *k* ≥ 2, a graph *G* is called *k*-leaf-connected, if $|V(G)| \geq k + 1$ and given any subset $S \subseteq V(G)$ with $|S| = k$, *G* always has a spanning tree *T* such that *S* is precisely the set of leaves of *T*. The forgotten index of a graph is the sum of degree cube of all the vertices in graph. Motivated by the degree sequence condition of Gurgel and Wakabayashi [J. Combin. Theory Ser. B 41 (1986) 1–16], we provide a sufficient condition for a connected graph to be *k*-leaf-connected in terms of the forgotten index of *G*, which improve and extend the result of Su et al. [Australas. J. Combin. 77 (2020) 269–284].

1. Introduction

Throughout this paper we only consider simple, undirected and connected graphs. Let *G* be a graph with vertex set $V(G)$ and edge set $E(G)$ such that $|V(G)| = n$ and $|E(G)| = e(G)$. The degree of vertex *v* in *G*, denoted by $d_G(v)$, is the number of edges of *G* containing *v*. The number of cliques of size *r* in *G* is denoted by *Nr*(*G*). Let *Kⁿ* and *R*(*n*, *t*) denote a complete graph of order *n* and a *t*-regular graph with *n* vertices, respectively. Let G_1 and G_2 be two vertex-disjoint graphs. We use $G_1 + G_2$ to denote the disjoint union of *G*₁ and *G*₂. The join *G*₁ ∨ *G*₂ is the graph obtained from *G*₁ + *G*₂ by adding all possible edges between them.

Let *G* be a graph of order *n*, *P* a property defined on *G*, and *l* a positive integer. A property *P* is said to be *l*-stable, if whenever $G + uv$ has the property *P* and $d_G(u) + d_G(v) \ge l$, then *G* itself has the property *P*. The *l*-closure *Cl*(*G*) [3, 18] of a graph *G* is the graph obtained from *G* by successively joining pairs of nonadjacent vertices whose degree sum is at least *l* until no such pair exists. Then we have

$$
d_{C_l(G)}(u) + d_{C_l(G)}(v) \leq l-1
$$

Keywords. *k*-connected, *k*-leaf-connected, *r*-clique, closure, forgotten index.

²⁰²⁰ *Mathematics Subject Classification*. Primary 05C50; Secondary 05C35.

Received: 07 October 2023; Revised: 11 February 2024; Accepted: 12 February 2024

Communicated by Paola Bonacini

Supported by National Natural Science Foundation of China (No. 12261032), Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2024JQ15 and 2024QN01020) and Research Program of Science and Technology of Inner Mongolia Autonomous Region (No. NJZY22280 and NJZY23050).

^{*} Corresponding author: Guizhi Zhang

Email address: anyh1979@126.com, zgz_hlbr@163.com (Guizhi Zhang)

for every pair of nonadjacent vertices *u* and *v* of *Cl*(*G*).

Füredi et al. [9] considered the number of cliques in *k*-hamiltonian graphs. Moreover, they listed some classes of graphs whose cliques number condition can be studied, such as *G* contains C_k ($l = 2n - k$), *G* contains a path P_k ($l = n - 1$), *G* contains a matching kK_2 ($l = 2k - 1$), *G* contains a *k*-factor ($l = n + 2k - 4$), *G* is *k*-connected ($l = n + k - 2$), *G* is *k*-wise hamiltonian (i.e., every $n - k$ vertices span a C_{n-k}) ($l = n + k - 2$). The corresponding question for the property containing long cycles (or Hamiltonian cycle) is well-studied [8, 14, 16]. Subsequently, Duan et al. [4] studied the *G* contains a matching kK_2 according to the number of cliques of size *r* in *G*.

A connected graph *G* is said to be *k*-connected if it has more than *k* vertices and remains connected whenever fewer than *k* vertices are deleted. Feng et al. [7] proved sufficient conditions based upon the size and spectral radius for a graph to be *k*-connected. Zhou et al. [23] further proposed some sufficient conditions for a graph to be *k*-connected in terms of signless Laplacian spectral radius, distance spectral radius and distance signless Laplacian spectral radius of *G*. Bondy and Chvátal [3] presented a closure theorem to guarantee that a graph to be *k*-connected.

Theorem 1.1 (Bondy and Chvátal [3]). *Let G be an graph of order n, and let* $1 \le k \le n - 2$ *be an integer. Then G is k-connected if and only if Cⁿ*+*k*−2(*G*) *is k-connected.*

Inspired by the works of $[4, 9]$, and using Pósa property, we prove a sufficient condition in terms of the number of *r*-cliques to guarantee a graph with minimum degree at least δ to be *k*-connected.

Let *n*,*r*, *k* and *q* be integers. Define

$$
\theta(n,r,k,q) = \binom{n-q+k-2}{r} + (q-k+2)\binom{q}{r-1}.
$$

Theorem 1.2. *Let n*,*r*, *k and* δ *be integers with r* ≥ 2 *and* 1 ≤ *k* ≤ *n* − 2*. Suppose that G is a graph of order n with minimum degree at least* δ *and* $k \leq \delta \leq \left\lfloor \frac{n+k-3}{2} \right\rfloor$ *. If*

$$
N_r(G) > \max\left\{\theta(n,r,k,\delta+1), \theta\left(n,r,k,\left\lfloor\frac{n+k-3}{2}\right\rfloor\right)\right\},\
$$

then G is k-connected unless $C_{n+k-2}(G) \cong K_{k-1} \vee (K_{n-\delta-1} + K_{\delta-k+2}).$

By maple, $\theta(n, 2, k, \delta + 1) \ge \theta\left(n, 2, k, \left\lfloor \frac{n+k-3}{2} \right\rfloor\right)$ for $n \ge 7\delta + 10k - 1$. The following corollary results from putting $r = 2$ in Theorem 1.2.

Corollary 1.1. Let G be a graph of order $n \ge 7\delta + 10k - 1$ with minimum degree at least δ and $k \le \delta \le \left\lfloor \frac{n+k-3}{2} \right\rfloor$. If

 $e(G) > \theta(n, 2, k, \delta + 1)$,

then G is k-connected unless $C_{n+k-2}(G) \cong K_{k-1} \vee (K_{n-δ-1} + K_{δ-k+2})$ *.*

Feng et al. [7] presented a sufficient condition in terms of *e*(*G*) for the graph to be *k*-connected.

Theorem 1.3 (Feng et al. [7]). *Let G be a graph of order* $n \ge k + 1$ *. If e*(*G*) ≥ $\binom{n-1}{2}$ + *k* − 1*, then G is k-connected unless G* \cong *K*_{*k*−1} \vee (*K*_{*n*−*k*} + *K*₁)*.*

It is easy to verify that $\binom{n-1}{2}$ + *k* − 1 ≥ $\theta(n, 2, k, \delta + 1)$ for $n \geq \frac{1}{2}(3\delta - k + 9)$. Hence our result improves Theorem 1.3 for $n \ge 7\delta + 10k - 1$.

Theorem 1.4. Let G be a graph of order $n \ge 7\delta + 10k - 1$ with minimum degree at least δ and $k \le \delta \le \left\lfloor \frac{n+k-3}{2} \right\rfloor$. If

$$
\rho(G) > \frac{\delta - 1}{2} + \sqrt{n^2 - (3\delta - 2k + 7)n + \frac{13}{4}\delta^2 - \left(4k - \frac{31}{2}\right)\delta + k^2 - 9k + \frac{73}{4}},
$$

then G is k-connected unless $C_{n+k-2}(G) \cong K_{k-1} \vee (K_{n-δ-1} + K_{δ-k+2})$ *.*

For any integer $k \ge 2$, a graph *G* is called *k*-leaf-connected if $|V(G)| \ge k + 1$ and given any subset *S* ⊆ *V*(*G*) with $|S| = k$, *G* always has a spanning tree *T* such that *S* is precisely the set of leaves of *T*. Note that a graph is 2-leaf-connected if and only if it is Hamilton-connected. Therefore, as a generalization of Hamilton-connectedness, the *k*-leaf-connectedness of a graph *G* is an NP-hard problem.

Up to now, there have been lots of research works to seek the sufficient conditions for a graph to be *k*-leaf-connected. Gurgel and Wakabayashi [11] presented that if *G* is a *k*-leaf-connected graph, then *G* is $(k + 1)$ -connected. Hence $\delta \geq k + 1$ is a trivial necessary condition for a graph to be *k*-leaf-connected. In the same paper, they also proposed sufficient conditions based on the minimum degree, the degree sum and the size to assure a graph to be *k*-leaf-connected, respectively. Egawa et al. [5] improved the degree sum condition of Gurgel and Wakabayashi [11]. Maezawa et al. [13] provided a Fan-type condition for a graph to be *k*-leaf-connected. Ao et al. [1] presented a new sufficient condition based on the size for a graph to be *k*-leaf-connected. Subsequently, Wu et al. [21] proved a sufficient condition for a graph to be *k*-leaf-connected in terms of the number of *r*-cliques, which generalized the result of Ao et al. [1]. For a graph to be *k*-leaf-connected, one can refer to [2, 15, 20].

The forgotten index [6, 10] of a graph *G* is defined as

$$
F(G) = \sum_{u \in V(G)} d(u)^{3} = \sum_{uv \in E(G)} (d(u)^{2} + d(v)^{2}).
$$

Su, Li and Shi [19] presented a sufficient condition for a graph to be Hamilton-connected in terms of the forgotten index of *G*.

Theorem 1.5 (Su, Li and Shi [19]). *Let G be a connected graph of order* $n \geq 3$ *. If*

$$
F(G) > n^4 - 7n^3 + 24n^2 - 38n + 30,
$$

then G is Hamilton-connected unless G $\cong K_3 \vee 3K_1$ *.*

Using the forgotten index *F*(*G*), we provide a sufficient condition for a graph to be *k*-leaf-connected graphs, which extends and improves the above result.

Theorem 1.6. *Let G be a connected graph of order n and minimum degree* δ ≥ k + 1*, where* $2 \leq k \leq n - 3$ *. If*

$$
F(G) \ge n^4 - 11n^3 + (6k + 51)n^2 - (24k + 105)n + 2k^3 + 6k^2 + 32k + 82,
$$

then G is k-leaf-connected unless $G \in \{K_3 \vee (K_{n-5} + 2K_1), K_6 \vee 6K_1, K_5 \vee 5K_1, K_4 \vee (K_{1,4} + K_1), K_4 \vee (K_2 + 3K_1), K_4 \vee 7K_2\}$ $4K_1, K_3 \vee (K_{1,3} + K_1).$

2. Proof of Theorems 1.2 and 1.4

Let *G* be a graph on *n* vertices. If there are at least *s* vertices in $V(G)$ with degree at most *q*, then we say *G* has (*s*, *q*)*-P´osa property*.

Lemma 2.1 (Xue, Liu and Kang [22]). *Let property P is l-stable and the complete graph Kⁿ has the property P. Suppose that G is a graph of order n with minimum degree at least* δ*. If G does not have property P, then there exists an integer q with* $\delta \le q \le \left\lfloor \frac{l-1}{2} \right\rfloor$ such that G has $(n-l+q,q)$ -Pósa property.

Fact 2.1 (Füredi, Kostochka and Luo[9]). If *G* has (s, q) -Pósa property and $n \geq s + q$, then

$$
N_r(G) \leq {n-s \choose r} + s {q \choose r-1}.
$$

Lemma 2.2 (Duan et al. [4]). *Suppose that G has n vertices and is stable under taking l-closure. Let q be the maximum integer such that G has (n − l + q, q)-Pósa property and q* $\leq \left\lfloor\frac{l-1}{2}\right\rfloor$ *. If U is the set of vertices in V(G) with degree greater than q, then G*[*U*] *is a complete graph.*

Proof of Theorem 1.2. Suppose that *G* is not *k*-connected. Let $H = C_{n+k-2}(G)$. By Theorem 1.1, *H* is not *k*-connected. By Lemma 2.1, there exists an integer *q* with $\delta \le q \le \left\lfloor \frac{n+k-3}{2} \right\rfloor$ such that *H* has $(q - k + 2, q)$ -Pósa property. Let q be the maximum one with the above Pósa property. First, we will prove the following claim.

Claim 2.1. $q = \delta$.

Proof. Assume that $\delta + 1 \le q \le \left\lfloor \frac{n+k-3}{2} \right\rfloor$. By Fact 2.1, we have

$$
N_r(H)\leq \binom{n-q+k-2}{r}+(q-k+2)\binom{q}{r-1}=\theta(n,r,k,q).
$$

Note that $G \subseteq H$. It follows that $N_r(G) \le \max\left\{\theta(n,r,k,\delta+1), \theta\left(n,r,k,\left\lfloor\frac{n+k-3}{2}\right\rfloor\right)\right\}$, which contradicts the assumption. \square

By Claim 2.1, Pósa property of *H* and the maximality of *q*, there are exactly $\delta - k + 2$ vertices of degree δ in *V*(*H*). Let *X* be the set of vertices with degree δ in *H* and *C* = *V*(*H*) \ *X*. Then |*X*| = δ − *k* + 2 and |*C*| = *n* − δ + *k* − 2. By Lemma 2.2, *C* forms a clique in *H*.

Let $Y = \{v : d_H(v) \ge n - \delta + k - 2\}$. Since $\delta \le \left\lfloor \frac{n+k-3}{2} \right\rfloor$, then $Y \subseteq C$. For $u \in X$ and $v \in Y$, we have $d_H(u) + d_H(v) \ge \delta + (n - \delta + k - 2) = n + k - 2$. Note that *H* is an $(n + k - 2)$ -closed graph. Then every vertex of *Y* is adjacent to all vertices of *X*, and thus *H*[*X*,*Y*] forms a complete bipartite graph.

Claim 2.2. $k - 1 \le |Y| \le δ$.

Proof. If $|Y| \ge \delta + 1$, then $d_H(u) \ge \delta + 1$ for $u \in X$, a contradiction. Moreover, we have $N_H(u) \subseteq X \cup Y$ for $u \in X$. Then $|X \cup Y| \ge \delta + 1$, and thus $|Y| \ge \delta + 1 - |X| = \delta + 1 - (\delta - k + 2) = k - 1$. Hence $k - 1 \le |Y| \le \delta$. □

Let $|Y|$ = *s*. By Claim 2.2, we have $k − 1 ≤ s ≤ δ$. **Case 1.** $s = k - 1$.

Figure 1: Graph K_{k-1} ∨ ($K_{n-δ-1}$ + $K_{δ-k+2}$).

Obviously, *H* \cong *K*_{*k*−1} ∨ (*K*_{*n*−δ−1} + *K*_{δ−*k*+2}) (see Fig. 1). Note that *H* − *V*(*K*_{*k*−1}) is not connected. By the definition of *k*-connected, we know that *H* is not *k*-connected. Therefore, $H \cong K_{k-1} \vee (K_{n-\delta-1} + K_{\delta-k+2})$.

Case 2. $k \leq s \leq \delta$.

Recall that *H*[*X*, *Y*] forms a complete bipartite graph and $d_H(v) = \delta$ for $v \in X$. Then $H \cong K_s \vee (K_{n-s-\delta+k-2} +$ *R*(δ−*k*+2, δ−*s*)) (see Fig. 2). Clearly, there exist at least *k* internal disjoint paths for any two distinct vertices of *H*. Hence *H* −*S* remains connected when *S* ⊆ *V*(*H*) with |*S*| ≤ *k* −1. It follows that *K^s* ∨(*Kn*−*s*−δ+*k*−² +*R*(δ− $(k+2,\delta-s)$) is *k*-connected, a contradiction. □

Lemma 2.3 (Hong, Shu and Fang [12], Nikiforov [17]). *Let G be a graph with minimum degree* δ. *Then*

$$
\rho(G)\leq \frac{\delta-1}{2}+\sqrt{2e(G)-\delta n+\frac{(\delta+1)^2}{4}}.
$$

Y. An, G. Zhang / *Filomat 38:18 (2024), 6601–6608* 6605

Figure 2: Graph *K^s* ∨ (*Kn*−*s*−δ+*k*−² + *R*(δ − *k* + 2, δ − *s*)).

Proof of Theorem 1.4. By Lemma 2.3, we have

$$
\rho(G) \le \frac{\delta - 1}{2} + \sqrt{2e(G) - \delta n + \frac{(\delta + 1)^2}{4}}.
$$

Since $\rho(G) > \frac{\delta - 1}{2} + \sqrt{n^2 - (3\delta - 2k + 7)n + \frac{13}{4}\delta^2 - (4k - \frac{31}{2})\delta + k^2 - 9k + \frac{73}{4}}$, then

$$
e(G) > \frac{n^2}{2} - (\delta - k + \frac{7}{2})n + \frac{3}{2}\delta^2 - (2k - \frac{15}{2})\delta + \frac{1}{2}k^2 - \frac{9}{2}k + 9 = \theta(n, 2, k, \delta + 1).
$$

By Corollary 1.1, *G* is *k*-connected unless $C_{n+k-2}(G) \cong K_{k-1} \vee (K_{n-\delta-1} + K_{\delta-k+2}).$

3. Proof of Theorem 1.6

Gurgel and Wakabayashi [11] proved a sufficient condition in terms of the degree sequence for a graph to be *k*-leaf-connected.

Lemma 3.1 (Gurgel and Wakabayashi [11]). *Let k and n be such that* 2 ≤ *k* ≤ *n*−3. *Let G be a graph with degree* sequence $d_1 \leq d_2 \leq \cdots \leq d_n$. Suppose that there is no integer $k \leq i \leq \frac{n+k-2}{2}$ such that $d_{i-k+1} \leq i$ and $d_{n-i} \leq n-i+k-2$. *Then G is k-leaf-connected.*

Proof of Theorem 1.6. Suppose, to the contrary, that *G* is not *k*-leaf-connected, where 2 ≤ *k* ≤ *n* − 3 and $\delta \ge k+1$. Let (d_1, d_2, \ldots, d_n) be the degree sequence of *G* with $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 3.1, there exists an integer *i* with $k \le i \le \frac{n+k-2}{2}$ such that $d_{i-k+1} \le i$ and $d_{n-i} \le n-i+k-2$. Then

$$
F(G) = \sum_{u \in V(G)} d^{3}(u) = \sum_{j=1}^{i-k+1} d_{j}^{3} + \sum_{j=i-k+2}^{n-i} d_{j}^{3} + \sum_{j=n-i+1}^{n} d_{j}^{3}
$$

\n
$$
\leq (i-k+1)i^{3} + (n-2i+k-1)(n-i+k-2)^{3} + i(n-1)^{3}
$$

\n
$$
= n^{4} - 11n^{3} + (6k+51)n^{2} - (24k+105)n + 2k^{3} + 6k^{2} + 32k + 82
$$

\n
$$
+(i-k-1)[3i^{3} - (7n+5k-17)i^{2} + (9n^{2} - 40n + 11kn + 4k^{2} - 21k + 47)i
$$

\n
$$
-4n^{3} - (6k-33)n^{2} - (4k^{2} - 25k + 85)n - k^{3} + 10k^{2} - 22k + 74].
$$

By the assumptions $F(G) \ge n^4 - 11n^3 + (6k + 51)n^2 - (24k + 105)n + 2k^3 + 6k^2 + 32k + 82$, we have

$$
(i-k-1)[3i3 - (7n + 5k - 17)i2 + (9n2 - 40n + 11kn + 4k2 - 21k + 47)i
$$

-4n³ - (6k - 33)n² - (4k² - 25k + 85)n - k³ + 10k² - 22k + 74] \ge 0.

Note that *i* ≥ *d*_{*i*−*k*+1} ≥ *δ* ≥ *k* + 1. Next we will evaluate the value of *i*.

Case 1. $i = k + 1$.

Then $F(G) = n^4 - 11n^3 + (6k + 51)n^2 - (24k + 105)n + 2k^3 + 6k^2 + 32k + 82$, and all inequalities in the above arguments must be equalities. Then the degree sequence of *G* is

$$
d_1 = d_2 = k + 1, d_3 = d_4 = \cdots = d_{n-k-1} = n - 3, d_{n-k} = d_{n-k+1} = \cdots = d_n = n - 1.
$$

Hence *G* \cong *K*_{*k*+1} ∨ (*K*_{*n*−*k*−3} + 2*K*₁). By [1], we know that *K*_{*k*+1} ∨ (*K*_{*n*−*k*−3} + 2*K*₁) is *k*-leaf-connected for *k* ≥ 3, a contradiction. However, it is easy to see that $K_3 \vee (K_{n-5} + 2K_1)$ is not Hamilton-connected, and thus *G* ≅ K_3 ∨ $(K_{n-5} + 2K_1)$.

Case 2. $i \neq k + 1$.

Note that $i \ge k + 1$. Then $i \ge k + 2$ and $f(i) = 3i^3 - (7n + 5k - 17)i^2 + (9n^2 - 40n + 11kn + 4k^2 - 21k + 47)i$ $4n^3 - (6k - 33)n^2 - (4k^2 - 25k + 85)n - k^3 + 10k^2 - 22k + 74 \ge 0$. Since $k + 2 \le i \le \frac{n+k-2}{2}$, then $n \ge k + 6$. Then we shall divide the following six cases.

Subcase 2.1. $n \ge k + 11$.

We claim that $\max_{k+2 \leq i \leq \frac{n+i-2}{2}} f(i) = f\left(\frac{n+k-2}{2}\right)$. In fact,

$$
f'(i) = 9i^2 - 2(7n + 5k - 17)i + 9n^2 - 40n + 11kn + 4k^2 - 21k + 47.
$$

By maple, we can obtain that $\Delta = -4[32n^2 + (29k - 122)n + 11k^2 - 19k + 134]$ < 0. Hence $f'(i) > 0$ for *k* + 2 ≤ *i* ≤ $\frac{n+k-2}{2}$. Then *f*(*i*) is a strictly monotonically increasing function on $\left[k + 2, \frac{n+k-2}{2}\right]$, and hence $max_{k+2 \le i \le \frac{n+k-2}{2}} f(i) = f\left(\frac{n+k-2}{2}\right).$

Note that *i* is an integer. If $n + k$ is even and $n \geq k + 11$, then

$$
f\left(\frac{n+k-2}{2}\right) = -\frac{7}{8}n^3 + \left(\frac{3}{8}k+13\right)n^2 + \left(\frac{3}{8}k^2 - \frac{1}{2}k-41\right)n + \frac{1}{8}k^3 + \frac{5}{2}k^2 + 5k + 41 < 0.
$$

If $n + k$ is odd and $n > k + 11$, then

$$
f\left(\frac{n+k-3}{2}\right)=-\frac{7}{8}n^3+\left(\frac{3}{8}k+\frac{87}{8}\right)n^2+\left(\frac{3}{8}k^2-\frac{9}{4}k-\frac{261}{8}\right)n+\frac{1}{8}k^3+\frac{15}{8}k^2+\frac{51}{8}k+\frac{253}{8}<0.
$$

Therefore, $\max_{k+2 \leq i \leq \frac{n+k-2}{2}} f(i) < 0$. It follows that $f(i) < 0$, a contradiction.

Subcase 2.2. $n = k + 10$.

Note that $k+2 \le i \le \frac{n+k-2}{2}$ is an integer. Then $k+2 \le i \le k+4$. If $i = k+2$, then $f(i) = -18k^2 - 216k - 570 < 0$, a contradiction. If $i = k + 3$, then $f(i) = -9k^2 - 108k - 231 < 0$, a contradiction. If $i = k + 4$, then $f(i) = -6k + 56$. For $k \ge 10$, we have $f(i) < 0$, a contradiction. For $2 \le k \le 9$, we have $f(i) = -6k + 56 > 0$. Note that $d_5 \le k + 4$, $d_6 \leq k + 4$ and

$$
k^4 + 37k^3 + 423k^2 + 2007k + 3132 \le F(G) \le k^4 + 37k^3 + 423k^2 + 1989k + 3300.
$$

Then the degree sequence of the permissible graphs is

$$
d_1 = d_2 = \cdots = d_6 = k + 4, \ d_7 = d_8 = \cdots = d_{k+10} = k + 9.
$$

This implies that *G* \cong *K*_{*k*+4} ∨ 6*K*₁. One can check that *K*_{*k*+4} ∨ 6*K*₁ is *k*-leaf-connected for *k* ≥ 3, a contradiction. But $K_6 \vee 6K_1$ is not Hamilton-connected. Hence $G \cong K_6 \vee 6K_1$.

Subcase 2.3. $n = k + 9$.

Note that $k+2 \le i \le \frac{n+k-2}{2}$ is an integer. Then $k+2 \le i \le k+3$. If $i = k+2$, then $f(i) = -12k^2 - 126k - 262 < 0$, a contradiction. If $i = k + 3$, then $f(i) = -3k^2 - 33k - 19 < 0$, a contradiction.

Subcase 2.4.
$$
n = k + 8
$$
.

Then $k + 2 \le i \le k + 3$. If $i = k + 2$, then $f(i) = -6k^2 - 54k - 68 < 0$, a contradiction. If $i = k + 3$, then $d_4 \leq k + 3$ and $d_5 \leq k + 3$. Note that

$$
k^4 + 29k^3 + 249k^2 + 871k + 970 \le F(G) = \sum_{u \in V(G)} d^3(u) \le k^4 + 29k^3 + 255k^2 + 919k + 1164.
$$

By a simple calculation, we obtain that

$$
\sum_{j=6}^{k+8} d_j^3 = F(G) - \sum_{j=1}^{5} d_j^3
$$

\n
$$
\geq k^4 + 29k^3 + 249k^2 + 871k + 970 - 5(k+3)^3
$$

\n
$$
= k^4 + 24k^3 + 204k^2 + 736k + 835.
$$

We claim that $d_7 = d_8 = \cdots = d_{k+8} = k + 7$. Otherwise,

$$
\sum_{j=6}^{k+8} d_j^3 \le 2(k+6)^3 + (k+1)(k+7)^3 = k^4 + 24k^3 + 204k^2 + 706k + 775,
$$

a contradiction. So we have $d_6^3 \ge k^4 + 24k^3 + 204k^2 + 736k + 835 - (k+2)(k+7)^3 = k^3 + 15k^2 + 99k + 149$. Then $d_6 = k + 7$ or $d_6 = k + 6$.

If $d_6 = k + 7$, then the degree sequence of *G* must be

$$
d_1 = d_2 = \cdots = d_5 = k + 3, \ d_6 = d_7 = \cdots = d_{k+8} = k + 7.
$$

This means that *G* \cong *K*_{*k*+3}∨5*K*₁. It is easy to check that *K*_{*k*+3}∨5*K*₁ is *k*-leaf-connected for *k* ≥ 3, a contradiction. However, $K_5 \vee 5K_1$ is not Hamilton-connected, and hence $G \cong K_5 \vee 5K_1$.

If $d_6 = k + 6$, then the degree sequence of *G* must be

$$
d_1 = k + 2, d_2 = \cdots = d_5 = k + 3, d_6 = k + 6, d_7 = \cdots = d_{k+8} = k + 7.
$$

When $k \ge 9$, we have $F(G) = k^4 + 29k^3 + 249k^2 + 865k + 1018 < k^4 + 29k^3 + 249k^2 + 871k + 970$, a contradiction. When $2 \le k \le 8$, we have $G \cong K_{k+2} \vee (K_{1,4} + K_1)$. One can determine that $K_{k+2} \vee (K_{1,4} + K_1)$ is *k*-leaf-connected for *k* ≥ 3, a contradiction. But K_4 ∨ ($K_{1,4}$ + K_1) is not Hamilton-connected, and thus $G \cong K_4$ ∨ ($K_{1,4}$ + K_1). **Subcase 2.5.** $n = k + 7$.

Then $i = k + 2$, and hence $d_3 \leq k + 2$, $d_5 \leq k + 3$. Note that

$$
k^4 + 25k^3 + 180k^2 + 522k + 474 \le F(G) \le k^4 + 25k^3 + 180k^2 + 522k + 510.
$$

Then the degree sequence of *G* is

$$
d_1 = d_2 = d_3 = k + 2, \ d_4 = d_5 = k + 3, \ d_6 = d_7 = \cdots = d_{k+7} = k + 6.
$$

This implies that *G* \cong *K*_{*k*+2} \vee (*K*₂ + 3*K*₁). It is easy to see that *K*_{*k*+2} \vee (*K*₂ + 3*K*₁) is *k*-leaf-connected for $k \ge 3$, a contradiction. But $K_4 \vee (K_2 + 3K_1)$ is not Hamilton-connected, and hence $G \cong K_4 \vee (K_2 + 3K_1)$. **Subcase 2.6.** $n = k + 6$.

Then $i = k + 2$, and hence $d_3 \leq k + 2$, $d_4 \leq k + 2$. Note that

$$
k^4 + 21k^3 + 123k^2 + 287k + 208 \le F(G) \le k^4 + 21k^3 + 129k^2 + 323k + 282.
$$

Then we have

$$
\sum_{j=5}^{k+6} d_j^3 = F(G) - \sum_{j=1}^4 d_j^3
$$

\n
$$
\geq k^4 + 21k^3 + 123k^2 + 287k + 208 - 4(k+2)^3
$$

\n
$$
= k^4 + 17k^3 + 99k^2 + 239k + 176.
$$

We assert that $d_6 = d_7 = \cdots = d_{k+6} = k+5$. Otherwise,

$$
\sum_{j=5}^{k+6} d_j^3 \le 2(k+4)^3 + k(k+5)^3 = k^4 + 17k^3 + 99k^2 + 221k + 128,
$$

a contradiction. Hence d_5^3 ≥ k^4 + 17 k^3 + 99 k^2 + 239 k + 176 − $(k+1)(k+5)^3$ = k^3 + 9 k^2 + 39 k + 51. Then $d_5 = k+5$ or $d_6 = k + 4$.

If $d_5 = k + 5$, then the degree sequence of *G* is

$$
d_1 = d_2 = d_3 = d_4 = k + 2, \ d_5 = d_6 = \cdots = d_{k+6} = k + 5.
$$

Hence $G \cong K_{k+2} \vee 4K_1$. It is easy to check that $K_{k+2} \vee 4K_1$ is *k*-leaf-connected for $k \geq 3$, a contradiction. However, $K_4 \vee 4K_1$ is not Hamilton-connected, and thus $G \cong K_4 \vee 4K_1$.

If $d_5 = k + 4$, then the degree sequence of *G* is

$$
d_1 = k + 1, d_2 = d_3 = d_4 = k + 2, d_5 = k + 4, d_6 = \cdots = d_{k+6} = k + 5.
$$

Then *G* \cong *K*_{*k*+1} ∨ (*K*_{1,3} + *K*₁). One can check that *K*_{*k*+1} ∨ (*K*_{1,3} + *K*₁) is *k*-leaf-connected for *k* ≥ 3, a contradiction. But *K*₃ ∨ (*K*_{1,3} + *K*₁) is not Hamilton-connected. Hence *G* \cong *K*₃ ∨ (*K*_{1,3} + *K*₁). □

References

- [1] G.Y. Ao, R.F. Liu, J.J. Yuan, R. Li, Improved sufficient conditions for *k*-leaf-connected graphs, *Discrete Appl. Math.* **314** (2022) 17–30.
- [2] G.Y. Ao, R.F. Liu, J.J. Yuan, G.L. Yu, Wiener-type invariants and *k*-leaf-connected graphs, *Bull. Malays. Math. Sci. Soc.* **46** (2023) 10.
- [3] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [4] X. Duan, B. Ning, X. Peng, J. Wang, W. Yang, Maximizing the number of cliques in graphs with given matching number, *Discrete Appl. Math.* **287** (2020) 110–117.
- [5] Y. Egawa, H. Matsuda, T. Yamashita, K. Yoshimoto, On a spanning tree with specified leaves, *Graphs Combin.* **24** (2008) 13–18.
- [6] B. Furtula, I. Gutman, A forgotten topological index, *J. Math. Chem.* **53** (2015) 1184–1190.
- [7] L.H. Feng, P.L. Zhang, H. Liu, W.H. Liu, M.M. Liu, Y.Q. Hu, Spectral conditions for some graphical properties, *Linear Algebra Appl.* **524** (2017) 182–198.
- [8] Z. Füredi, A. Kostochka, R. Luo, Extensions of a theorem of Erdös on nonhamiltonian graphs, J. Graph Theory 89 (2) (2018) 176–193.
- [9] Z. Füredi, A. Kostochka, R. Luo, A variation of a theorem by Pósa, *Discrete Math.* **342** (2019) 1919–1923.
- [10] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, total π-electron energy of alternant hydroncarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [11] M.A. Gurgel, Y. Wakabayashi, On *k*-leaf-connected graphs, *J. Combin. Theory Ser. B* **41** (1986) 1–16.
- [12] Y. Hong, J.L. Shu, K.F. Fang, A sharp upper bound of the spectral radius of graphs, *J. Combin. Theory Ser. B* **81** (2001) 177–183.
- [13] S.I. Maezawa, R. Matsubara, H. Matsuda, A Fan-type condition for graphs to be *k*-leaf-connected, *Discrete Math.* **344** (2021) 112260.
- [14] R. Luo, The maximum number of cliques in graphs without long cycles, *J. Combin. Theory Ser. B* **128** (2018) 219–226.
- [15] T.Y. Ma, G.Y. Ao, R.F. Liu, L.G. Wang, Y. Hu, An improvement of sufficient condition for *k*-leaf-connected graphs, *Discrete Appl. Math.* **331** (2023) 1–10.
- [16] B. Ning, X. Peng, Extensions of the Erdos-Gallai theorem and luo's theorem, ¨ *Comb. Probab. Comput.* **29** (1) (2020) 128–136.
- [17] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, *Comb. Probab. Comput.* **11** (2002) 179–189.
- [18] O. Ore, Note on Hamilton circuits, *Am. Math. Mon.* **67** (1960) 55.
- [19] G.F. Su, Z.H. Li, H.C. Shi, Sufficient conditions for a graph to be *k*-edge-hamiltonian, *k*-path-coverable, traceable and Hamiltonconnected. *Australas. J. Combin.* **77** (2020) 269–284.
- [20] M. Tsugaki, T. Yamashita, On a spanning tree with specified leaves in a bipartite graph, *Australas. J. Combin.* **77** (2020) 69–86.
- [21] J.D. Wu, Y.S. Xue, L.Y. Kang, Some sufficient conditions for graphs being *k*-leaf-connected, *Discrete Appl. Math.* **339** (2023) 11–20.
- [22] Y. Xue, Y. Liu, L. Kang, Stability of generalized Turan number for linear forests, arXiv preprint arXiv:2211.07822, 2022. ´
- [23] Q.N. Zhou, L.G. Wang, Y. Lu, Some sufficient conditions on *k*-connected graphs, Appl. Math. Comput. **325** (2018) 332–339.