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Abstract. This paper is concerned with the asymptotic stability for nonlinear stochastic systems driven by
fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1). First, some new asymptotic stability
conditions are given for nonlinear stochastic systems with fBm by using the characteristic of the mild
solution, the fBm, and the semigroup. Then, the results obtained are extended to the linear case, and some
asymptotic stability conditions are derived. Furthermore, the methods proposed are utilized to solve the
consensus control problem of the stochastic multi-agent systems (SMAS) with fBm. Finally, simulations are
provided to illustrate the effectiveness of the proposed theoretical results.

1. Introduction

Many phenomena in the natural world are inevitable and categorized as deterministic phenomena.
However, not all events in the objective world are assured to either happen or not happen. In reality,
practical systems like population ecosystems, communication networks, economic systems, and industrial
control systems necessitate interactions with the external environment, which are susceptible to various
environmental noises. Noted that the primary performance to consider is whether the system can reliably
maintain its intended motion or operational state, which is stability. Nowadays, numerous results on the
stability analysis of various stochastic systems with Brownian motion were obtained [1–5].

Over the past several decades, a large number of statistical data and experiments in real-world problems
show that fBm can better model stochastic processes with long-term dependences, such as hydrology [6],
climate [7, 8], finance [9, 10], network traffic [11], and so on. In the 1940s, Kolmogorov [12] first proposed
the stochastic process with long memory. Subsequently, Mandelbrot [13] defined the fBm BH(t) with Hurst
parameter H ∈ (0, 1) and studied its properties. However, since fBm with H , 1/2 is neither a semi-
martingale nor an independent incremental process, the qualitative analysis for SPDE driven by fBm is
generally complicated and challenging. Recently, Duncan et al. [14–18] have established the existence and
uniqueness theorem of mild solutions for stochastic differential equations (SDEs) driven by fBm. Then, the
stability for SDEs with fBm has been considered in [19–23]. Note that the theory results obtained in [19–23]
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are not related to the asymptotic behavior. Nowadays, Zeng [24] established the Lyapunov techniques
for achieving moment exponential stability of SDEs driven by fBm. Zhang [25] and Ma [26] established
conditions for achieving exponential stability of neutral SDEs with fBm by using the fractional power Aβ

with β ∈ (0, 1]. Furthermore, Yan [27] obtained sufficient conditions for achieving exponential stability of a
stochastic delay equation with fBm by using the fractional power Aα with α ∈ (0,H). Duc [28] proved the
exponential stability of the stochastic systems with fBm under the strong dissipative assumption. Then,
based on the works of Duc [28], some relevant results on the asymptotic stability of SDEs with fBm have
been presented [29–31].

In the domain of fractional stochastic differential equations, researchers employ numerical simulations
to dissect intricacies. Moghaddam et al. [32] put forth a computational scheme for tackling nonlinear
equations featuring delay, while their subsequent work [33] introduced a spline-based method tailored
for equations with constant time delay. Investigating the Hurst index in fractional stochastic dynamical
systems, Shahnazi-Pour et al. [34] contributed insights into system behavior. Moghaddam et al.’s algorithm
[35] specifically addressed nonlocal nonlinear stochastic delayed systems with variable-order fBm, and
Shahnazi-Pour et al.’s technique [36] was designed for nonlinear nonlocal stochastic dynamical systems
with variable-order fractional Brownian noise. These diverse numerical approaches serve to deepen our
comprehension and enhance the practical utility of fractional stochastic models.

Based on the above discussions, this paper aims to give novel sufficient conditions for achieving the
asymptotic stability of the stochastic systems driven by fBm. We respectively suppose that the stochastic
system affected by multiplicative noises is described by dx(t) = λx(t)dt + f (t, x(t))dt + τ(x(t))dBH(t), t > 0,

x(0) = x0,
(1)

and the stochastic system affected by additive noises is described by dx(t) = λx(t)dt + f (t, x(t))dt + 1(t)dBH(t), t > 0,

x(0) = x0,
(2)

where x(t) ∈ Rn represents the state of the system at time t. λ ∈ R is a constant, f (·, ·) ∈ L1 ([0,∞) ×Rn;Rn),
τ(·) ∈ L2(Rn;L(U,Rn)) and 1(·) ∈ L2([0,∞);L(U,Rn)) are continuous differentiable nonlinear functions;
BH(t) is a U-valued Q-fBm with H ∈

(
1
2 , 1

)
. It is noted that achieving asymptotic stability in nonlinear

stochastic systems influenced by fBm presents several fundamental challenges. One primary challenge
lies in the integral properties of fBm. As a non-Markovian process, integrating fBm involves specialized
stochastic integration techniques. This complexity adds intricacies to system modeling and analysis and
imposes higher requirements on control strategy design. On another note, the property of fBm causing
variance to diverge as time approaches infinity poses a unique challenge. In mathematical terms, this di-
vergence is distinct from traditional stochastic processes. Such behavior can directly impact the asymptotic
stability of the system, as the infinite growth of variance may lead to unstable system behavior. The main
contributions of this paper include some new asymptotic stability conditions:

(i) Some novel asymptotic stability conditions are given for nonlinear stochastic systems (1) and (2),
respectively. Without using the fractional power such as [25–27], the asymptotic stability analysis in this
paper is finished by using the characteristic of the mild solution, the fBm, and the semigroup, directly.

(ii) Some asymptotic stability conditions are derived for the linear stochastic systems driven by fBm.
(iii) Sufficient conditions are obtained for achieving the mean-square consensus of the nonlinear SMAS

with fBm.
The paper is organized as follows. Some useful preliminaries are provided in Section 2. The new

asymptotic stability conditions for nonlinear stochastic systems driven by fBm are derived in Section 3.
Then, the mean-square consensus control of the SMAS with fBm is investigated in Section 4. Furthermore,
a numerical example is presented in Section 5. Finally, the conclusions are given in Section 6.

Notations: Throughout this paper, denote R as the set of real numbers, Rn as the n-dimensional
Euclidean space, and Rn×m as the set of n × m dimensional real matrix. Denote ∥ · ∥ as the norm. Let
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(Ω,F , {Ft}t≥0,P) be a complete filtered probability space satisfying the usual conditions. Let ⊗ be the
Kronecker product, (·)T be the transpose of a real matrix, and λmin(·) (λmax(·)) be the minimum (maximum)
nonzero eigenvalue of a real symmetric square matrix. Let Lp(Ω,F ,P) = Lp be the space of all random
variables ξ : Ω→ R such that ∥ξ∥p = (E∥ξ∥p)1/p < +∞.

2. Preliminaries

Definition 2.1. [37] Let Hurst parameter H ∈ (0, 1). A fBm {BH(t), t ≥ 0} is a continuous centered Gaussian process
on (Ω,F ,P) with the following conditions:

(i) BH(0) = 0; (ii) E[BH(t)] = 0; (iii) RH(t, s) = 1
2

(
|t|2H + |s|2H

− |t − s|2H
)
.

Lemma 2.2. [15] Let {en,n ∈ N} be a complete orthonormal basis in a separable Hilbert space U and {βH
n (t),n ∈

N, t ≥ 0} be a sequence of independent, real valued standard fBm with H ∈ (1/2, 1). For a non-negative self-adjoint,

trace class operator Q on U, i.e., Qen = λnen, Q = Q∗ with Trace(Q) =
∞∑

n=1
λn < ∞ for all n ∈ N. The U-valued

Q-fBm BH(t) with H ∈ (1/2, 1) is defined by

BH(t) =
∞∑

n=1

√
λnβ

H
n (t)en =

∞∑
n=1

βH
n (t)Q

1
2 en, t ≥ 0.

Let H be a Hilbert space, and L2
S(U,H) = L2(Q

1
2U,H) be the space of Hilbert-Schmidt operators:

Q
1
2U→Hwith norm

∥Ψ∥2S =

∞∑
n=1

∥∥∥∥√
λnΨen

∥∥∥∥2
=

∥∥∥∥ΨQ
1
2

∥∥∥∥2
= Trace(ΨQΨ∗), for any Ψ ∈ U.

Lemma 2.3. [15] Let H ∈
(

1
2 , 1

)
, Ψ : [0,T]→ L2

S(U,H). If
∞∑

n=1

∥∥∥Ψ(t)Q
1
2 en

∥∥∥ is uniformly convergent for t ∈ [0,T],

then

E

∥∥∥∥∥∥
∫ t2

t1

Ψ(s)dBH(s)

∥∥∥∥∥∥2

≤ c(2H2
−H)(t2 − t1)2H−1

∫ t2

t1

∥Ψ(s)∥2Sds, ∀0 ≤ t1 < t2 ≤ T, (3)

where c > 0 is a constant depends on H.

Lemma 2.4. [39] Let T > 0, r ≥ 0, p(·) be a Borel measurable bounded nonnegative function on [0,T], and q(·) be a
nonnegative integrable function on [0,T], if

p(t) ≤ r +
∫ t

0
p(s)q(s)ds, then p(t) ≤ r exp

(∫ t

0
q(s)ds

)
.

Lemma 2.5. [39] Let p(·) and q(·) be nonnegative real valued continuous functions on [0,∞). Suppose that the
real-valued function r(t) is integrable on every closed and bounded subinterval of [0,∞). For all t ≥ 0, if

p(t) ≤ r(t) +
∫ t

0
p(s)q(s)ds, then p(t) ≤ r(t) +

∫ t

0

[
r(s)q(s) exp

(∫ t

s
q(u)du

)]
ds.

Lemma 2.6. [40](Hölder’s inequality) Suppose that x > 1, 1
x +

1
y = 1. If p ∈ Lx(Ω), q ∈ Ly(Ω), then

∫
Ω

p(s)q(s)ds ≤
(∫
Ω

|p(s)|xds
) 1

x
(∫
Ω

|q(s)|yds
) 1

y

.
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Graph theory. [41] LetG = (V,E,A) be a directed graph with N nodes, whereV = {1, 2, . . . ,N}, E ⊆ V×V,
and A = [ai j]N×N ∈ RN×N respectively represent the set of nodes, the set of edges, and the weighted
adjacency matrix. A directed edge from j to i is defined as (i, j) ∈ E; ai j is defined as the communication
quantity between agent i and agent j that satisfies ai j > 0 when (i, j) ∈ E, and ai j = 0, otherwise. LetNi = { j ∈
V : (i, j) ∈ E} represents the neighbors set of node i. The Laplacian of G is defined as L = [li j]N×N ∈ RN×N

with lii =
∑

j,i ai j and li j = −ai j for i , j. A sequence of edges (ik, ik−1), (ik−1, ik−2), · · · , (i2, i1) is called a directed
path from node i1 to node ik, where i j ∈ V. A directed spanning tree is a directed tree, where every vertex
except on the root vertex has exactly one parent and the root vertex can be connected to any other vertices
through paths.

3. Asymptotic stability for stochastic systems driven by fBm

3.1. Stochastic systems with multiplicative noises

Consider the following nonlinear stochastic system: dx(t) = −λx(t)dt + f (t, x(t))dt + τ(x(t))dBH(t), t > 0,

x(0) = x0,
(4)

where x(t) ∈ Rn represents the state of the system at time t. λ > 0 is a positive constant, f (·, ·) ∈
L

1 ([0,∞) ×Rn;Rn) and τ(·) ∈ L2(Rn;L(U,Rn)) are continuous differentiable nonlinear mapping functions,
and BH(t) is aU-valued Q-fBm with H ∈

(
1
2 , 1

)
.

Assumption 3.1. f (t, 0) = 0 and τ(0) = 0, ∀t ≥ 0. And, there exists a positive constant ρ > 0 such that

∥ f (t, a) − f (t, b)∥ ∨ ∥τ(a) − τ(b)∥ ≤ ρ∥a − b∥, ∀a, b ∈ Rn.

Theorem 3.2. Under Assumption 3.1, if

λ >
(
3c(2H2

−H)ρ2
∥Q∥ + 3ρ2

)1/2
, (5)

then the stochastic system (4) is asymptotic stability in the mean-square sense.

Proof. From Theorem 3.3 in [16], the mild solution of Eq. (4) is

x(t) = S(t)x0 +

∫ t

0
S(t − s) f (s, x(s))ds +

∫ t

0
S(t − s)τ(x(s))dBH(s), with S(t) = e−λt. (6)

From Eq. (6), then

E∥x(t)∥2 ≤ 3∥S(t)x0∥
2 + Ξ1(t) + Ξ2(t), (7)

with

Ξ1(t) = 3E

∥∥∥∥∥∥
∫ t

0
S(t − s) f (s, x(s))ds

∥∥∥∥∥∥2

, Ξ2(t) = 3E

∥∥∥∥∥∥
∫ t

0
S(t − s)τ(x(s))dBH(s)

∥∥∥∥∥∥2

.
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From Lemma 2.6 and Assumption 3.1, then

Ξ1(t) = 3E
∥∥∥∥∫ t

0 S(t − s) f (s, x(s))ds
∥∥∥∥2

≤ 3E
∥∥∥∥∫ t

0 ∥S(t − s)∥
1
2 · ∥S(t − s)∥

1
2 · ∥ f (s, x(s))∥ds

∥∥∥∥2

≤ 3E
∥∥∥∥∥ (∫ t

0 ∥S(t − s)∥ds
) 1

2
( ∫ t

0 ∥S(t − s)∥ · ∥ f (s, x(s))∥2ds
) 1

2
∥∥∥∥∥2

= 3
∫ t

0 ∥S(t − s)∥ds
∫ t

0

[
∥S(t − s)∥E∥ f (s, x(s))∥2

]
ds

≤ 3ρ2
∫ t

0 ∥S(t − s)∥ds
∫ t

0

[
∥S(t − s)∥E∥x(s)∥2

]
ds

≤ 3ρ2
∫ t

0 e−λ(t−s)ds
∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds.

(8)

According to Lemma 2.3 and Assumption 3.1, then

Ξ2(t) = 3E
∥∥∥∥∫ t

0 S(t − s)τ(x(s))dBH(s)
∥∥∥∥2

≤ 3c(2H2
−H)t2H−1

∫ t

0 ∥S(t − s)τ(x(s))∥2S ds

≤ c1t2H−1
∫ t

0

[
∥S(t − s)∥2 E∥x(s)∥2

]
ds

≤ c1t2H−1
∫ t

0 e−2λ(t−s)E∥x(s)∥2ds,

(9)

where c1 = 3c(2H2
−H)ρ2

∥Q∥. Substituting (8) and (9) into the (7) leads to

E∥x(t)∥2 ≤ c0e−λt + 3ρ2
∫ t

0 e−λ(t−s)ds
∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds + c1t2H−1

∫ t

0 e−2λ(t−s)E∥x(s)∥2ds

= c0e−λt + 3ρ2 1
λ (1 − e−λt)

∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds + c1t2H−1e−2λt

∫ t

0

(
e2λsE∥x(s)∥2

)
ds

= c0e−λt + 3ρ2 1
λ (e−λt

− e−2λt)
∫ t

0

(
eλsE∥x(s)∥2

)
ds + c1t2H−1e−2λt

∫ t

0

(
e2λsE∥x(s)∥2

)
ds

≤ c0e−λt + 3ρ2 1
λ e−λt

∫ t

0

(
eλsE∥x(s)∥2

)
ds + c1t2H−1e−2λt

∫ t

0

(
e2λsE∥x(s)∥2

)
ds

= c0e−λt + e−λt
∫ t

0

(
c1t2H−1e−λteλs + c2

) (
eλsE∥x(s)∥2

)
ds,

where c0 = 3∥x0∥
2 and c2 = 3ρ2/λ. Then, one has

eλtE∥x(t)∥2 ≤ c0 +

∫ t

0

(
c1t2H−1e−λteλs + c2

) (
eλsE∥x(s)∥2

)
ds.

From Lemma 2.4, then

eλtE∥x(t)∥2 ≤ c0 exp
(∫ t

0

(
c1t2H−1e−λteλs + c2

)
ds

)
= c0 exp

(
c1t2H−1 1

λ (1 − e−λt) + c2t
)

≤ c0 exp
(
c1t2H−1 1

λ + c2t
)
.

Since H ∈
(

1
2 , 1

)
, then 2H − 1 ∈ (0, 1). Furthermore, for 0 ≤ t < 1, one has eλtE∥x(t)∥2 ≤ c0e(c1/λ+c2t); for t ≥ 1,

one has eλtE∥x(t)∥2 ≤ c0e(c1/λ+c2)t, such that E∥x(t)∥2 ≤ c0e(c1/λ+c2−λ)t.When condition (5) is satisfied, we have
c1/λ + c2 − λ < 0. Therefore, lim

t→+∞
E∥x(t)∥2 = 0.

The proof of Theorem 3.2 is completed.
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Remark 3.3. The proposed stability condition λ > (3c(2H2
−H)ρ2

∥Q∥ +3ρ2)1/2 depends on the Lipschitz constant
ρ of the nonlinearities and the Hurst parameter H of the fBm, which reflect real-world systems’ dynamics. As H
increases from 1/2 to 1, the term 2H2

−H in the inequality’s right-hand side increases, resulting in an overall increase
in the square root term. Consequently, λ increases with the increase in H.

Consider the following linear stochastic system: dx(t) = −λx(t)dt + τ(x(t))dBH(t), t > 0,

x(0) = x0.
(10)

Assumption 3.4. τ(0) = 0, and there exists a positive constant ρ > 0 such that

∥τ(a) − τ(b)∥ ≤ ρ∥a − b∥, ∀a, b ∈ Rn.

Corollary 3.5. Under Assumption 3.4, if

λ >
(
2c(2H2

−H)ρ2
∥Q∥

)1/2
, (11)

then the stochastic system (10) is asymptotic stability in the mean-square sense.

3.2. Stochastic systems with additive noises
Consider the following nonlinear stochastic system: dx(t) = −λx(t)dt + f (t, x(t))dt + 1(t)dBH(t), t > 0,

x(0) = x0,
(12)

where x(t) ∈ Rn represents the state of the system at time t. λ > 0 is a positive constant, f (·, ·) ∈
L

1 ([0,∞) ×Rn;Rn) is a continuous differentiable nonlinear function, BH(t) is a U-valued Q-fBm with
H ∈

(
1
2 , 1

)
. 1(·) ∈ L2([0,∞);L(U,Rn)) represents the noise intensity function, which is a continuous differ-

entiable function.

Assumption 3.6. f (t, 0) = 0 , ∀t ≥ 0. And, there exists a positive constant ρ > 0 such that

∥ f (t, a) − f (t, b)∥ ≤ ρ∥a − b∥, ∀a, b ∈ Rn.

Theorem 3.7. Under Assumption 3.6, if the following condition is satisfied:∫
∞

0
eλs
∥1(s)∥2ds < ∞, (13)

then the stochastic system (12) is asymptotic stability in the mean-square sense.

Proof. From Theorem 3.3 in [16], the mild solution of Eq. (12) is

x(t) = S(t)x0 +

∫ t

0
S(t − s) f (s, x(s))ds +

∫ t

0
S(t − s)1(s)dBH(s), with S(t) = e−λt. (14)

From (13) and (14), then

E∥x(t)∥2 ≤ w0∥S(t)∥2 + 3ρ2
∫ t

0 ∥S(t − s)∥ds
∫ t

0

[
∥S(t − s)∥ · E∥x(s)∥2

]
ds + w1t2H−1

∫ t

0

[
∥S(t − s)∥2 ∥1(s)∥2

]
ds

≤ w0e−λt + 3ρ2
∫ t

0 e−λ(t−s)ds
∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds + w1t2H−1

∫ t

0 e−2λ(t−s)
∥1(s)∥2ds

= w0e−λt + 3ρ2 1
λ (1 − e−λt)

∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds + w1t2H−1e−λt

∫ t

0

(
e−λ(t−s)eλs

∥1(s)∥2
)

ds

≤ w0e−λt + 3ρ2 1
λ

∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds + w1t2H−1e−λt

∫
∞

0 eλs
∥1(s)∥2ds

= w0e−λt + w2t2H−1e−λt + w3

∫ t

0

(
e−λ(t−s)E∥x(s)∥2

)
ds,



X. Yuan et al. / Filomat 38:18 (2024), 6355–6369 6361

where w0 = 3∥x0∥
2, w1 = 3c(2H2

−H)∥Q∥, w2 = w1

∫
∞

0 eλs
∥1(s)∥2ds, and w3 = 3ρ2/λ. From Lemma 2.5, then

E∥x(t)∥2 ≤ w0e−λt + w2e−λtt2H−1 + w3

∫ t

0

[ (
w1e−λs + w2s2H−1e−λs

)
e−λ(t−s) exp

(∫ t

s e−λ(t−u)du
) ]

ds.

= w0e−λt + w2e−λtt2H−1 + w1w3e−λt
∫ t

0

[
exp

(∫ t

s e−λ(t−u)du
)]

ds

+w2w3e−λt
∫ t

0

[
s2H−1 exp

(∫ t

s e−λ(t−u)du
)]

ds.

Noted that

exp
(∫ t

s
e−λ(t−u)du

)
= exp

( 1
λ

(
1 − e−λ(t−s)

))
≤ e1/λ, ∀t ≥ s.

Then,

E∥x(t)∥2 ≤ w0e−λt + w2e−λtt2H−1 + w1w3e1/λe−λtt +
1

2H
w2w3e1/λe−λtt2H.

Therefore,

lim
t→+∞

E∥x(t)∥2 = 0.

The proof of Theorem 3.7 is completed.
Consider the following linear stochastic system: dx(t) = −λx(t)dt + 1(t)dBH(t), t > 0,

x(0) = x0.
(15)

Corollary 3.8. If the following condition is satisfied:∫
∞

0
eλs
∥1(s)∥2ds < ∞, (16)

then the stochastic system (15) is asymptotic stability in the mean-square sense.

4. Consensus of stochastic multi-agent systems with fBm

Suppose that the dynamics of each agent is described by dϕi(t) = p(t, ϕi(t))dt + ui(t)dt + σ(ϕi(t))dBH(t), t > 0, i ∈ V,

ϕi(0) = ϕi0,
(17)

where ϕi(t) ∈ Rn and ui(t) ∈ Rn represents the state and control input of the ith agent at time t, respectively.
p(·, ·) ∈ L1 ([0,∞) ×Rn;Rn) and σ(·) ∈ L2(Rn;L(U,Rn)) are continuous differentiable nonlinear mapping
functions, BH(t) is aU-valued Q-fBm with H ∈

(
1
2 , 1

)
.

Consider the following distributed controller:

ui(t) = k
∑
j∈Ni

ai j

[
ϕ j(t) − ϕi(t)

]
, i ∈ V, (18)

where k > 0 is the control gain to be designed later.
To continue, the following assumptions are necessary.
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Assumption 4.1. p(t, 0) = 0 and σ(0) = 0. And, there exists a positive constant ℓ > 0 such that

∥p(t, a) − p(t, b)∥ ∨ ∥σ(a) − σ(b)∥ ≤ ℓ∥a − b∥, ∀a, b ∈ Rn.

Assumption 4.2. The directed graphG has a spanning tree, and the root node cannot receive information from other
nodes.

Under Assumption 4.2, without loss of generality, rearrange the agents so that the root node is the first
agent. Denote G =

(
V,E,A

)
with V = V \ {1}. The Laplacian matrix of graph G is denoted as L =[

l̄i j

]
(N−1)×(N−1)

∈ R(N−1)×(N−1).

Theorem 4.3. Under Assumptions 4.1 and 4.2, with the controller (18), the consensus of the SMAS (17) can be
achieved in the mean-square sense, if the following condition is satisfied:

max{ℜ(λι)} < −2
√

c̄1 + 3Mℓ2, (19)

where λι is the ιth eigenvalue of −k(L +D), D = dia1{a21, . . . , aN1}, c̄1 = 3cM(2H2
− H)ℓ2∥Q∥, andM > 0 is a

positive constant which will be given in the following analysis.

Proof. Under Assumption 4.2, one has u1(t) = 0. Then, with the controller (18), we have

dϕ1(t) =p(t, ϕ1(t))dt + σ(ϕ1(t))dBH(t), (20)

dϕi(t) =p(t, ϕi(t))dt + k
∑
j∈Ni

ai j

[
ϕ j(t) − ϕi(t)

]
dt + σ(ϕi(t))dBH(t), i ∈ V. (21)

Denote the tracking error as

εi(t) = ϕi(t) − ϕ1(t), i ∈ V. (22)

Let p(t, εi(t)) = p(t, ϕi(t)) − p(t, ϕ1(t)), σ(εi(t)) = σ(ϕi(t)) − σ(ϕ1(t)), for i ∈ V. Then, one has

dεi(t) = p(t, εi(t))dt + k
∑

j∈Ni\{1}
ai j

[
ϕ j(t) − ϕi(t)

]
dt + kai1

(
ϕ1(t) − ϕi(t)

)
dt + σ(εi(t))dBH(t)

= p(t, εi(t))dt + k
∑

j∈Ni\{1}
ai j

[
ε j(t) − εi(t)

]
dt − kai1εi(t)dt + σ(εi(t))dBH(t).

(23)

Let

ε(t) =
[
εT

2 (t), εT
3 (t), . . . , εT

N(t)
]T
, Σ(ε(t)) =

[
σT(ε2(t)), σT(ε3(t)), . . . , σT(εN(t))

]T
,

P(t, ε(t)) =
[
pT(t, ε2(t)), pT(t, ε3(t)), . . . , pT(t, εN(t))

]T
.

Then, the compact form of the tracking error can be written as dε(t) = Λε(t)dt + P(t, ε(t))dt + Σ(ε(t))dBH(t), t > 0,

ε(0) = ε0,
(24)

where Λ = −k(L +D) ⊗ In. The mild solution of Eq. (24) is

ε(t) = S(t)ε0 +

∫ t

0
S(t − s)P(s, ε(s))ds +

∫ t

0
S(t − s)Σ(ε(s))dBH(s), with S(t) = eΛt. (25)
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From Eq. (25), then

E∥ε(t)∥2 ≤ 3∥S(t)ε0∥
2 +Ψ1(t) +Ψ2(t), (26)

with

Ψ1(t) = 3E

∥∥∥∥∥∥
∫ t

0
S(t − s)P(s, ε(s))ds

∥∥∥∥∥∥2

, Ψ2(t) = 3E

∥∥∥∥∥∥
∫ t

0
S(t − s)Σ(ε(s))dBH(s)

∥∥∥∥∥∥2

.

From Lemma 2.6 and Assumption 4.1, then

Ψ1(t) = 3E
∥∥∥∥∫ t

0 S(t − s)P(s, ε(s))ds
∥∥∥∥2

≤ 3E
∥∥∥∥∫ t

0 ∥S(t − s)∥
1
2 · ∥S(t − s)∥

1
2 · ∥P(s, ε(s))∥ds

∥∥∥∥2

≤ 3E
∥∥∥∥∥ (∫ t

0 ∥S(t − s)∥ds
) 1

2
( ∫ t

0 ∥S(t − s)∥ · ∥P(s, ε(s))∥2ds
) 1

2
∥∥∥∥∥2

= 3
∫ t

0 ∥S(t − s)∥ds
∫ t

0

[
∥S(t − s)∥E∥P(s, ε(s))∥2

]
ds

≤ 3ℓ2
∫ t

0 ∥S(t − s)∥ds
∫ t

0

[
∥S(t − s)∥E∥ε(s)∥2

]
ds.

According to Lemma 2.3 and Assumption 4.1, then

Ψ2(t) = 3E
∥∥∥∥∫ t

0 S(t − s)Σ(ε(s))dBH(s)
∥∥∥∥2

≤ 3c(2H2
−H)ℓ2∥Q∥t2H−1

∫ t

0

[
∥S(t − s)∥2 E∥ε(s)∥2

]
ds.

Under Assumption 4.2, all eigenvalues of −k(L +D) have negative real parts, that is ℜ(λι) < 0, ∀ι ∈ V.
Noted that there exists a nonsingular matrix P such that −k(L+D) = PJP−1, where J is the Jordan canonical
form of −k(L +D), with

J =


J1 0 0 · · · 0 0
0 J2 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 Jr

 , and Jι =


λι 1 0 · · · 0 0
0 λι 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · λι 1
0 0 0 · · · 0 λι


,

where Jι (ι = 1, 2, . . . , r) is the Jordan block corresponding to the eigenvalue λι (ι = 1, 2, . . . , r). Since
ek(L−D)t = ePJP−1t = PeJtP−1 and

Dι(t) =



1 t t2

2! · · ·
tnι−2

(nι−2)!
tnι−1

(nι−1)!

0 1 t · · ·
tnι−3

(nι−3)!
tnι−2

(nι−2)!

...
...
...
. . .

...
...

0 0 0 · · · 1 t
0 0 0 · · · 0 1


,

where nι is the multiplicity of the eigenvalue λι. Take β = −max{ℜ(λι)}, then

∥ek(L−D)t
∥ ≤ ∥P∥∥P−1

∥∥eJt
∥ ≤ ∥P∥∥P−1

∥

r∑
ι=1

∥Dι(t)∥e−βt. (27)
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Since ∥Dι(t)∥ is the polynomial of t and β > 0, then there exists a positive constantM such that ∥P∥∥P−1
∥

r∑
ι=1

∥Dι(t)∥e−βt/2 ≤ M. Denote ω = β/2, the ∥S(t)∥ = ∥eΛt
∥ ≤ Me−ωt. From the above analysis, then

E∥ε(t)∥2 ≤ c̄0e−ωt + 3Mℓ2
∫ t

0 e−ω(t−s)ds
∫ t

0

(
e−ω(t−s)E∥ε(s)∥2

)
ds + c̄1t2H−1

∫ t

0 e−2ω(t−s)E∥ε(s)∥2ds

= c̄0e−ωt + 3Mℓ2 1
ω (1 − e−ωt)

∫ t

0

(
e−ω(t−s)E∥ε(s)∥2

)
ds + c̄1t2H−1e−2ωt

∫ t

0

(
e2ωsE∥ε(s)∥2

)
ds

≤ c̄0e−ωt + c̄2e−ωt
∫ t

0

(
eωsE∥ε(s)∥2

)
ds + c̄1t2H−1e−2ωt

∫ t

0

(
e2ωsE∥ε(s)∥2

)
ds,

where c̄0 = 3M∥ε0∥
2, c̄1 = 3cM(2H2

−H)ℓ2∥Q∥, and c̄2 = 3Mℓ2/ω. Then, one has

eωtE∥ε(t)∥2 ≤ c̄0 +

∫ t

0

(
c̄1t2H−1e−ωteωs + c̄2

) (
eωsE∥ε(s)∥2

)
ds.

From Lemma 2.4, then

eωtE∥ε(t)∥2 ≤ c0 exp
(∫ t

0

(
c̄1t2H−1e−ωteωs + c̄2

)
ds

)
= c̄0 exp

(
c̄1t2H−1 1

ω (1 − e−ωt) + c̄2t
)

≤ c̄0 exp
(
c̄1t2H−1 1

ω + c̄2t
)
.

Since H ∈
(

1
2 , 1

)
, then 2H − 1 ∈ (0, 1). Furthermore, for 0 ≤ t < 1, one has eωtE∥ε(t)∥2 ≤ c̄0e(c̄1/ω+c̄2t); for t ≥ 1,

one has eωtE∥ε(t)∥2 ≤ c̄0e(c̄1/ω+c̄2)t, such that E∥ε(t)∥2 ≤ c̄0e(c̄1/ω+c̄2−ω)t. When condition (19) is satisfied, we have
c̄1/ω + c̄2 − ω < 0. Therefore, lim

t→+∞
E∥ε(t)∥2 = 0, such that

lim
t→+∞

E
∥∥∥ϕi(t) − ϕ1(t)

∥∥∥2
= 0, ∀i ∈ V.

The proof of Theorem 4.3 is completed.

Remark 4.4. The mathematical framework employed in the paper may be tailored to the distinctive properties of fBm,
and its adaptability to alternative stochastic processes requires a thorough assessment of compatibility. Since different
stochastic processes exhibit diverse characteristics and the paper’s methods are intricately linked to the unique features
of fBm, then their direct application to other processes might pose challenges.

5. Simulation

The Wood-Chan algorithm given in [42] is taken in this paper, whose main idea is to establish a cyclic
matrix based on the covariance function of fBm. The sample trajectories of fBm with H = 0.65, 0.75, 0.85, 0.95
are depicted in Fig. 1. It can be seen from Fig. 1 that the roughness of the sample trajectory of fBm
can intuitively reflect the degree of autocorrelation and the long-term dependence of incremental fBm.
In this example, we consider the mean-square consensus control of SMAS described by (17) over the
communication topology that is depicted in Fig. 2. Suppose that n = 3, N = 11, H = 0.75, ϕi(t) = [ϕi1(t),
ϕi2(t), ϕi3(t)]T, and

p(t, ϕi(t)) =


tanh

(
ϕi1(t)

)
sin

(
ϕi2(t)

)
cos

(
ϕi3(t)

)
 , σ(ϕi(t)) =


tanh

(
ϕi2(t)

)
cos

(
ϕi1(t)

)
sin

(
ϕi3(t)

)
 . (28)



X. Yuan et al. / Filomat 38:18 (2024), 6355–6369 6365

The initial values are chosen as

ϕ1(0) = [1,−1, 10]T , ϕ2(0) = [3,−3,−9]T , ϕ3(0) = [ 5,−5, 8 ]T , ϕ4(0) = [7,−7,−6]T ,

ϕ5(0) = [9,−9, 7 ]T , ϕ6(0) = [−2, 2,−1]T , ϕ7(0) = [−4, 4,−2]T , ϕ8(0) = [−6, 6, 5 ]T ,

ϕ9(0) = [−8, 8,−3]T , ϕ10(0) = [−10, 10, 2]T , ϕ11(0) = [−12, 12, 1]T .

The state trajectories of all agents without controller are depicted in Fig. 3. Then, state trajectories of all
agents with controller (18) are depicted in Fig. 4. It could see from Fig. 4 that the mean-square consensus
of the SMAS (17) is achieved with controller (18), which is consistent with the conclusion of Theorem 4.3.

0 2 4 6 8 10 12

Time (sec)

-2

-1

0

1

2

3

4

5

6

7

H=0.65

H=0.75

H=0.85

H=0.95

Figure 1: Sample trajectory of fBm with H = 0.65, 0.75, 0.85, 0.95.

Figure 2: The communication topology.
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Figure 3: State trajectories of all agents without controller.
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Figure 4: State trajectories of all agents with controller (18).
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6. Conclusions

In this paper, novel asymptotic stability conditions were presented for nonlinear stochastic systems
driven by fBm with Hurst parameter H ∈ (1/2, 1). Subsequently, the obtained results were extended to
the linear case, and asymptotic stability conditions were derived. Moreover, the proposed methods were
employed to address the consensus control problem of the SMAS with fBm. Finally, a numerical example
was given to demonstrate the effectiveness of the theoretical results.
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Ann Appl Probab. 12 (1) (2002), 23–68.
[12] A.N. Kolmogorov, Wienersche spiralen und einige andere interessante kurven in hillberschen raum, Dokl. Akad. Nauk. URSS. 26 (1940),

115–118.
[13] B.B. Mandelbot, J.W.V. Ness, Fractional Brownian motion, fractional noise and applications, SIAM Review. 10 (1968), 422–437.
[14] T.E. Duncan, Y. Hu, B. Pasik-Duncan, Fractional Brownian motion, fractional noise and applications, SIAM J Control Optim. 38 (2020),

582–612.
[15] T. Duncan, B. Pasik-Duncan, Fractional Brownian and stochastic equations in hilbert spaces, Stoch Dynam. 2 (2) (2002), 225–250.
[16] T. Duncan, B. Maslowski, B. Pasik-Duncan, Semilinear stochastic equations in a hilbert space with a fractional Brownian motion, SIAM

J Math Ana. 40 (6) (2009), 2286–2315.
[17] X. Zhou, X. Liu, S. Zhong, Stochastic volterra integro-differential equations driven by a fractional Brownian motion with delayed impulses,

Filomat. 31 (19) (2017), 5965–5978.
[18] Z. Li, On the existence of solutions for stochastic differential equations driven by fractional Brownian motion, Filomat. 33 (6) (2019),

1695–1700.
[19] P. Revathi, R. Sakthivel, D.Y. Song, Y. Ren, P. Zhang, Existence and stability results for second-order stochastic equations driven by

fractional Brownian motion, Transport Theor Stat. 42 (6-7) (2013), 299–317.
[20] P. Tamilalagan, P. Balasubramaniam, Moment stability via resolvent operators of fractional stochastic differential inclusions driven by

fractional Brownian motion, Appl Math Optim. 305 (2017), 299–307.
[21] K. Khandani, V.J. Majd, M. Tahmasebi, Integral sliding mode control for robust stabilisation of uncertain stochastic time-delay systems

driven by fractional Brownian motion, Int J Syst Sci. 48 (4) (2017), 828–837.
[22] H. Yu, T-stability of the Euler method for impulsive stochastic differential equations driven by fractional Brownian motion, Filomat. 32 (18)

(2018), 6493–6503.
[23] M. Li, Y. Hu, C. Huang, X. Wang, Mean square stability of stochastic theta method for stochastic differential equations driven by fractional

Brownian motion, J Comput Appl Math. 420 (2023), 114804.
[24] C. Zeng, Q. Yang, Y. Chen, Lyapunov techniques for stochastic differential equations driven by fractional Brownian motion, Abstr Appl

Anal. (2014), 292653.
[25] X. Zhang, D. Ruan, Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and

fractional Brownian motion, J Inequal Appl. 201 (2018).
[26] Y. Ma, G. Arthi, S.M. Anthoni, Exponential stability behavior of neutral stochastic integrodifferential equations with fractional Brownian

motion and impulsive effects, Adv Differ Equ. 1 (2018), 1–20.
[27] L. Yan, X. Yu, Asymptotic behaviours of a stochastic delay equation driven by an fBm in Hilbert space, Stochastics. 91 (8) (2019), 1164–1185.
[28] L.H. Duc, P.T. Hong, N.D. Cong, Asymptotic stability for stochastic dissipative systems with a Holder noise, SIAM J Control Optim. 57

(4) (2019), 3046–3071.
[29] C. Wei, Almost sure exponential stability of nonlinear stochastic delay hybrid systems driven by G-Brownian motion, Bound Value Probl.

1 (2022), 73.
[30] Y. Wang, G. Gao, P.E. Kloeden, Mean-square stability analysis of stochastic delay evolution equations driven by fractional Brownian motion

with Hurst index H ∈ (0, 1), Discrete Cont Dyn. 2023, Doi: 10.3934/dcdss.2023121.



X. Yuan et al. / Filomat 38:18 (2024), 6355–6369 6369

[31] L. Zhang, Y. Wang, Y. Hu, Stochastic calculus for tempered fractional Brownian motion and stability for SDEs driven by TFBM, Stoch
Anal Appl. 2023, DOI: 10.1080/07362994.2023.2192267.

[32] B.P. Moghaddam, A. Mendes Lopes, J.A. Tenreiro Machado, Z.S. Mostaghim, Computational scheme for solving nonlinear fractional
stochastic differential equations with delay, Stoch Anal Appl. 37 (6) (2019), 893–908.

[33] B.P. Moghaddam, Z.S. Mostaghim, A.A. Pantelous, J.A. Tenreiro Machado, An integro quadratic spline-based scheme for solving
nonlinear fractional stochastic differential equations with constant time delay, Commun Nonlinear Sci. 92 (2021), 105475.

[34] A. Shahnazi-Pour, B.P. Moghaddam, A. Babaei, Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical
systems driven by fractional Brownian motion, J. Comput Appl Math. 386 (2021), 113210.

[35] B.P. Moghaddam, M. Pishbin, Z.S. Mostaghim, O.S. Iyiola, A. Galhano, A numerical algorithm for solving nonlocal nonlinear stochastic
delayed systems with variable-order fractional Brownian noise, Fractal Fract. 7 (4) (2023), 29.

[36] A. Shahnazi-Pour, B.P. Moghaddam, A. Babaei, A computational technique for nonlinear nonlocal stochastic dynamical systems with
variable order fractional Brownian noise, J. Appl Nonli Dyna. 12 (1) (2023), 75–85.

[37] F. Biagini, Y. Hu, B.ϕksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, New York, Springer-Verlag,
2008.

[38] L. Decreusefond, A. Ustunel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1998), 177–214.
[39] D. Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin, 1981.
[40] R. Bhatia, Matrix analysis, Springer, Berlin, 1996.
[41] C. Godsil, G. Royle, Algebraic Graph Theory, Cambridge University, Press, 1974.
[42] A.T.A. Wood, G. Chan, Simulation of stationary Gaussian processes in [0, 1]d, J. Comput Graph Stat. 3 (4) (1994), 409–432.


