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Abstract. The stabilization of (partial) differential equations by (stochastic) feedback control based on
discrete-time state observations and intermittent control is considered in this paper. It is the first time to
obtain the stabilization of differential equations with nonlocal delays based on discrete-time state obser-
vations and obtain the uniform bound for nonlinear differential equations. Some examples are given to
illustrate our results.

1. Introduction

In the real world, the method that by using the discrete-time state observations or intermittent control
to stabilize the solutions is often used in control theory. Recently, Mao [1, 2] obtained the stabilization
by discrete observation. Then there are a lot of authors considering the similar question: You et al. [3]
obtained the stabilization of hybrid systems by feedback control based on discrete-time state observations
and they considered many kinds of stability including H∞ stability and asymptotic stability; Dong et al.
[4] obtained the almost sure exponential stabilization by stochastic feedback control based on discrete-
time observations; Li-Mao [5] obtained the stabilisation of highly nonlinear hybrid stochastic differential
delay equations by delay feedback control; Fei et al. [6] considered the stabilization of highly nonlinear
hybrid systems by feedback control based on discrete-time state observations, also see [7]; Liu-Wu [8]
obtained the intermittent stochastic stabilization based on discrete-time observation with time delay; Shen
et al. [9, 10] obtained the stabilization for hybrid stochastic systems by aperiodically intermittent control
and stabilization of stochastic differential equations driven by G-Levy process with discrete-time feedback
control; Mao et al. [11] obtained the stabilization by intermittent control for hybrid stochastic differential
delay equations. Guo et al. [12] generalized the results of [1, 2] to the polynomial case similar to [13]. Just
recently, Zhou et al. [22] considered the consensus of NMASs with MSTs subjected to DoS attacks under
event-triggered control.
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However, we find there are some cases which are not considered. The previous results focus on the
stabilization, i.e., adding some control term make the unstable solution to become stable. For nonlocal delayed
differential equations, there is no result about the stabilization by feedback control. In addition, there is only a small
amount of research on this issue: adding some control term make the finite time blowup solution to become global
exist. In this paper, we give positive answer for deterministic case. The method we used here is borrowing
from [14, 15]: by introducing new variable, we translate the differential equations with nonlocal delays into
system without delay, and then by using the time-homogeneous property, we obtain the desired results.

On the other hand, we notice that Azouani et al. [16] introduced a new method to study the data
assimilation problem. Based on ideas that have been developed for designing finite-dimensional feedback
controls for dissipative dynamical systems, a new continuous data assimilation algorithm is introduced,
see [17] for similar method. In [16, 17], the authors used finite-dimensional feedback control scheme
to stabilize solutions of infinite-dimensional dissipative evolution equations including reaction-diffusion
systems. More precisely, they considered the two-dimensional Navier-Stokes system

 ∂u
∂t − ν∆u + (u · ∇)u + ∇q = f + µ(Ih(v) − Ih(u)),
∇ · u = 0,

(1)

where v is a solution of (1) with µ = 0 and Ih is a linear interpolants. The no-slip Dirichlet boundary
conditions and periodic boundary conditions are included. They obtained that under some assumptions
on h, µ, ν it holds that limt→∞ ∥u − v∥L2(D) = 0. Later, Foias et al. [18] considered a discrete data assimilation
scheme for the solutions of the two-dimensional Navier-Stokes equations. In this paper, we reconsider the
reaction-diffusion equations in stochastic sense. Our aim is to stabilize the solutions by adding discrete-time
observations. More precisely, we consider ∂u

∂t − ν∆u = αu − ku(δ(t), x)χδ(t)(t),
∇ · u = 0,

(2)

where χt(s) = 1 when t = s and χ = 0 otherwise. There is a big difference from [16, 17] because the
method used here is different. We first translate (2) into ODEs and obtain the asymptotic behavior by using
the results of differential equations. In addition, we consider the stochastic cases and want to show the
difference between the discrete-time observations and intermittent control.

The rest of this paper is organized as follows. In Section 2, we consider the deterministic cases. Section
3 is concerned with stochastic cases. Some examples are given in Section 4.

2. Deterministic Cases

We first consider the deterministic case. Considerx′(t) = αx(t), t > 0,
x|t=0 = x0,

(3)

where α > 0. It is easy to see that the solution of (3) is x(t) = x0eαt, which implies that x(t) → ∞ as t → ∞.
We want to stabilize the solution of (3), i.e., the solution x(t) decays to zero as time goes to infinity. Inspired
by Mao [2], we first prove that the discrete time observations can stabilize the solution. Now, we considerx′(t) = αx(t) − σx(δ(t)), t > 0,

x|t=0 = x0,
(4)

where σ > α > 0, δ(t) = [ t
τ ]τ, [ t

τ ] is the integer part of t
τ and τ > 0. Let tk = kτ for k = 0, 1, 2, . . . and xk = x(tk).

It is easy to see that when t ∈ [tk, tk+1],

x(t) = eα(t−tk)(1 −
σ
α

)xk +
σ
α

xk,
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which implies that

xk+1 = eατ(1 −
σ
α

)xk +
σ
α

xk. (5)

Note that

(1 −
σ
α

)(eατ − 1) < 0, f or τ > 0, (6)

so there exists a positive number ε such that

eατ(1 −
σ
α

) +
σ
α
< e−ετ. (7)

Submitting (7) into (5), we get

xk+1

xk
≤ e−ετ. (8)

In fact, we note that eατ(1 − σ
α ) + σ

α < 1 for any τ > 0. Thus when eατ(1 − σ
α ) + σ

α > 0, we can find ε > 0 such
that

eατ(1 −
σ
α

) +
σ
α
= e−ετ. (9)

Consequently, we have

x(t) ≤ e−ετxk, ∀t ∈ [tk, tk+1].

By induction, for any t > 0 there exists k ∈N such that t ∈ [kτ, (k + 1)τ] and then by using (8), we get

x(t) ≤ e−ετxk ≤ e−2ετxk−1 ≤ · · · ≤ e−kετx0 ≤ x0eετe−εt, ∀t ∈ [tk, tk+1].

Combining the above discussions, we obtain the following result.

Theorem 2.1. Let σ > α. The solution of (4) will decay exponentially with the rate ε provided that (7) holds.

We remark that the discrete time observations can make the solution x(t) of (3) stable, i.e., in order to
get x(t) ≤ Ce−εt, we only need take τ > 0 satisfying (9). Comparing Theorem 2.1 with the stochastic case [2,
Theorem 2.1], we have that in our Theorem 2.1 the solution has exact decay rate. Moreover, we can get any
decay rate ε. But for the stochastic case, it is hard to obtain those.

We can interpret the result of Theorem 2.1: if t ∈ [0, τ], (4) becomesx′(t) = αx(t) − σx0, 0 ≤ t ≤ τ,
x|t=0 = x0.

Obviously, x′(0) < 0 implies that x(t) decreases at time 0. And we can conclude that x(t) is a decreasing
function, but it is hard to get the exponential decay.

Now, we study the nonlocal differential equation:x′(t) = αx(t) +
∫ t

−∞
βe−β(t−s)x(s)ds, t > 0,

x(t) = x0(t) ≥ 0, t ≤ 0,
(10)

where α, β > 0. Obviously, the solutions of (10) will go to infinity as time goes to infinity. In the following,
we use the discrete-time observations to control the solutions.x′(t) = αx(t) +

∫ t

−∞
βe−β(t−s)x(s)ds − kx(δ(t)), t > 0,

x(t) = x0(t) ≥ 0, t ≤ 0.
(11)
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Due to the solution of (10) does not satisfy the time-homogeneous property, the method of [2] is not suitable
directly. Fortunately, if we let

y(t) =
∫ t

−∞

βe−β(t−s)x(s)ds, (12)

we can translate (11) into the following system
x′(t) = αx(t) + y(t) − kx(δ(t)), t > 0,
y′(t) = β(x(t) − y(t)), t > 0,

x|t=0 = x0(0), y|t=0 =
∫ 0

−∞
βeβsx(s)ds.

(13)

We will use a similar method [2] to deal with (13). The reference equations for (13) read
x̂′(t) = −(k − α)x̂(t) + ŷ(t), t > 0,
ŷ′(t) = β(x̂(t) − ŷ(t)), t > 0,

x|t=0 = x0(0), y|t=0 =
∫ 0

−∞
βeβsx(s)ds.

(14)

We first obtain the properties of reference equations (14).

Lemma 2.2. Assume that k > α + β + 1. It holds that

|x̂(t)| + |ŷ(t)| ≤ 4(|x0(0)| + |y0|)e−γt, t ≥ 0, (15)

where γ = β(1 − 1
k−α−β ).

Proof. From the first equation of (10), we have that if there exists some point t0 > 0 such that x(t0) = 0,
then we get x′(t0) > 0. Consequently, we have x(t) ≥ 0 for t ≥ 0. It follows from constant variation method
that

x̂(t) = e−(k−α)tx0 +

∫ t

0
e−(k−α)(t−s)

∫ s

−∞

βe−β(s−r)x̂(r)drds,

= e−(k−α)tx0 + e−(k−α)t
∫ t

0
e−(k−α−β)s

∫ s

−∞

βeβrx̂(r)drds (16)

≤ e−βt
(
x0 +

∫ 0

−∞

βeβsx0(s)ds
)
+

β

k − α − β
e−βt

∫ t

0
eβsx̂(s)ds. (17)

Consequently, by Gronwall’s inequality, we get

|x̂(t)| ≤ 2(|x0(0)| + |y0|)e
−β

(
1− 1

k−α−β

)
t, t ≥ 0.

Submitting this into ŷ, we get

|ŷ(t)| ≤ 2(|x0(0)| + |y0|)e
−β

(
1− 1

k−α−β

)
t, t ≥ 0.

The proof is complete. □
The next lemma is concerned with the difference between the solutions of (11) and (13).

Lemma 2.3. It holds that

|x(t) − x̂(t)| + |y(t) − ŷ(t)| ≤ K(τ, k)(|x0(0)| + |y0|)
[
e
(

β
β+α+k+α+β+1

)
t
− 1

]
, t ≥ 0,

where K(τ, k) is defined in (29).
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Proof. We first get that

x(t) = eαtx0 + eαt
∫ t

0
e−αs

∫ s

−∞

βe−β(s−r)x(r)drds − keαt
∫ t

0
eαsx(δ(s))ds,

which implies that

max
0≤s≤t

|x(s)| ≤ eαt
|x0(0)| + eαt

∫ t

0
e−αs

∫ s

−∞

βe−β(s−r) max
0≤z≤r

|x(z)|drds

+ keαt
∫ t

0
e−αs max

0≤z≤s
|x(z)|ds (18)

≤ eαt
(
|x0(0)| +

|y0|

α + β

)
+ eαt

∫ t

0
βeβr max

0≤z≤r
|x(z)|dr

∫ t

r
e−(α+β)sds (19)

+ keαt
∫ t

0
e−αs max

0≤z≤s
|x(z)|ds (20)

≤ eαt(1 ∨
1

α + β
)(|x0(0)| + |y0|) (21)

+

(
β

β + α
+ k

)
eαt

∫ t

0
βe−αr max

0≤z≤r
|x(z)|dr. (22)

By using Gronwall’s inequality again, we get

max
0≤s≤t

|x(s)| ≤ 2(1 ∨
1

α + β
)(|x0(0)| + |y0|)e

(
β
β+α+k+α

)
t, t ≥ 0. (23)

Submitting the above inequality into the definition of y, we get

max
0≤s≤t

|y(s)| ≤ 2(1 ∨
1

α + β
)(|x0(0)| + |y0|)e

(
β
β+α+k+α

)
t, t ≥ 0. (24)

Then we obtain

|x(t) − x(δ(t))| =
∣∣∣∣ ∫ t

δ(t)
dx(s)

∣∣∣∣ = ∣∣∣∣ ∫ t

δ(t)
[αx(s) +

∫ s

0
βe−β(s−r)x(r)dr − kx(δ(s))]ds

∣∣∣∣
≤ 2(α + 1 + k)(1 ∨

1
α + β

)(|x0(0)| + |y0|)τe
(

β
β+α+k+α

)
t. (25)

It follows from (13) and (14) that

(x(t) − x̂(t))′ = −(k − α)(x(t) − x̂(t)) + y(s) − ŷ(s) + k(x(t) − x(δ(t))),
(y(t) − ŷ(t))′ = β[(x(t) − x̂(t)) − (y(t) − ŷ(t))], (26)

which implies that

|x(t) − x̂(t)| + |y(t) − ŷ(t)| ≤ (β + 1)
∫ t

0
[|x(s) − x̂(s)| + |y(s) − ŷ(s)|]

+

∫ t

0
k|x(s) − x(δ(s))|ds. (27)

The Gronwall inequality yields that

|x(t) − x̂(t)| + |y(t) − ŷ(t)| ≤ ke(β+1)t
∫ t

0
|x(s) − x(δ(s))|ds.
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Using (25), we obtain

|x(t) − x̂(t)| + |y(t) − ŷ(t)|

≤ K(τ, k)(|x0(0)| + |y0|)
[
e
(

β
β+α+k+α+β+1

)
t
− 1

]
, (28)

where

K(τ, k) := 2k(α + 1 + k)(1 ∨
1

α + β
)τ. (29)

The proof is complete. □
Now the main result is as followings.

Theorem 2.4. Assume that k > α + β + 1. Then there exists a τ∗ > 0 such that for any τ ∈ (0, τ∗), the solution of
(13) will decay exponentially, where τ∗ is the unique root of

K(τ, k)
[
e
(

β
β+α+k+α+β+1

)
(τ+log( 1

4ε )/γ)
− 1

]
= 1 − ε, (30)

and ε ∈ (0, 1), γ is defined as in Lemma 2.2.

Proof. It is easy to see that the right hand side of (30) is a continuously increasing function of τ ≥ 0 and
equals to zero when τ = 0. Thus (30) must have a unique root τ∗. Let τ ∈ (0, τ∗). Choose a positive integer k̄
such that

log( 1
4ε )

γτ
≤ k̄ < 1 +

log( 1
4ε )

γτ
,

where γ is defined as in Lemma 2.2. Thus we have 4e−γk̄τ
≤ ε. By Lemma 2.2, we have

|x̂(k̄τ)| + |ŷ(k̄τ)| ≤ 4(|x0(0)| + |y0|)e−γk̄τ, t ≥ 0. (31)

Note that

|x(k̄τ)| + |y(k̄τ)| ≤ |x̂(k̄τ)| + |ŷ(k̄τ)| + |x(k̄τ) − x̂(k̄τ)| + |y(k̄τ) − ŷ(k̄τ)|

≤ (|x0(0)| + |y0|)
[
ε + K(τ, k)

(
e
(

β
β+α+k+α+β+1

)
k̄τ
− 1

)]
. (32)

It follows from the definition of k̄ that

ε + K(τ, k)
(
e
(

β
β+α+k+α+β+1

)
k̄τ
− 1

)
≤ ε + K(τ, k)

(
e
(

β
β+α+k+α+β+1

)
(τ+log( 1

4ε )/γ)
− 1

)
< 1. (33)

We may therefore write

ε + K(τ, k)
(
e
(

β
β+α+k+α+β+1

)
k̄τ
− 1

)
= e−λk̄τ.

Consequently, we get

|x(k̄τ)| + |y(k̄τ)| ≤ e−λk̄τ.

Due to the time-homogeneous property of (13), we therefore see easily that

|x(ik̄τ)| + |y(ik̄τ)| ≤ |x((i − 1)k̄τ)| + |y((i − 1)k̄τ)|e−λk̄τ
≤ e−λik̄τ, ∀i = 1, 2, . . . .
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It follows from (23) and (24) that

max
0≤s≤k̄τ

[|x(s)| + |y(s)|] ≤ N(|x0(0)| + |y0|), t ≥ 0.

where N = 2(1 ∨ 1
α+β )e

(
β
β+α+k+α

)
k̄τ. Similarly, we can get

max
ik̄τ≤s≤(i+1)k̄τ

[|x(s)| + |y(s)|] ≤ N(|x(ik̄τ)| + |y(ik̄τ)|), t ≥ 0.

Therefore, for any t > 0, there exists i such that ik̄τ ≤ t ≤ (i + 1)k̄τ and

[|x(t)| + |y(t)|] ≤ Ne−λt, t ≥ 0.

Due to that (11) is equivalent to (13), the proof is complete. □

Remark 2.5. The reason why the deterministic ordinary differential equations with nonlocal delays can be stabilized
by discrete-time observations is that we only consider the absolute value of x(t). Comparing with stochastic case, we
will consider x2(t) because the second variation of Brownian motion is finite. And we will not get the similar result
to Theorem 2.6.

Next, we consider the intermittent control. One can add the intermittent control to (3) to get the
exponential decay, and here we omit it. We study another problem: the intermittent control can hinder
blowup in finite time. In order to show that, we consider the following equationx′(t) = xα(t), t > 0,

x|t=0 = x0 > 0,
(34)

where α > 1. It is easy to see that the solution of (34) is

x(t) =
(
x1−α

0 − (α − 1)t
)− 1

α−1 ,

which blows up in finite time. Due to that we can not get the exact solution similar to (4), we consider the
intermittent control. Considerx′(t) = xα(t) − kh(t)xα(t), t > 0,

x|t=0 = x0,
(35)

where k > 0 and

h(t) =
{

1, t ∈ [ti, si),
0, t ∈ [si, ti+1), i = 0, 1, 2, · · · .

Here we assume 0 = t0 < s0 < t1 < s1 < t2 < s2 < . . . . The feedback controller only works at time span [ti, si)
and will vanish in time span [si, ti+1), i = 0, 1, 2, · · · . Now we need some notations on the intermittent control
strategy. Let infi(si− ti) = φ > 0, supi(ti+1− ti) = ω > 0, ψ = lim supi→∞ ψi > 0, whereψi = (ti+1− si)(ti+1− ti)−1

and ψ is the maximum proportion of the rest width ti+1 − si in the time span ti+1 − ti. It is easy to see that the
solution of (35) is

x(t) =



(
x1−α

0 + (α − 1)(k − 1)t
)− 1

α−1 , t ∈ [0, s0],(
x1−α

0 + k(α − 1)s0 − (α − 1)t
)− 1

α−1 , t ∈ [s0, t1],(
x1−α

0 + k(α − 1)s0 − k(α − 1)t1 + (α − 1)(k − 1)t
)− 1

α−1 , t ∈ [t1, s1],(
x1−α

0 + k(α − 1)s0 − k(α − 1)t1 + k(α − 1)s1 − (α − 1)t
)− 1

α−1 , t ∈ [s1, t2],
. . . .
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If we want to get the solution x(t) of (35) does not blow up in finite time, we need assume that
ks0 > t1,

k(s0 + s1 − t1) > t2,

k(s0 + s1 − t1 + s2 − t2) > t3,

. . . .

Thus we obtain the following result.

Theorem 2.6. Let k > 1 and ω < kφ. The solution of (35) will exist globally.

Theorem 2.6 shows that under the condition that the total work-time
∑n

i=1(si − ti) before t times k is larger
than t, the solution will exist. That is to say, the total rest time should be not too large. For equation (34),
the discrete observations feedback control is not suitable because we can not get the exact solution of (34)
with discrete observations feedback control. But in the next section, we will find the difference between the
discrete observations feedback control and intermittent control.

Lastly, we consider the stabilization of reaction-diffusion equations
∂tu = ∆u + αu − ku(δ(t), x)χδ(t)(t), t > 0, x ∈ D,

u(x, 0) = u0(x), x ∈ D,

u(x, t) = 0, t > 0, x ∈ ∂D,

(36)

where α, k > 0. Obviously, if k = 0, the well-posedness of (36) was established by many authors and
when α > λ1, we can not conclude that the solution decay exponentially, where λ1 is the first eigenvalue
corresponding to elliptic equation:−∆ϕ = λϕ, in D,

ϕ = 0, on ∂D.

Then, all the eigenvalues are strictly positive, increasing and the eigenfunction ϕ1 corresponding to the
smallest eigenvalue λ1 does not change sign in domain D, as shown in [19]. In the followings, we will
show that if k > (α − λ1), then ∥u∥L2(D) will decay exponentially. When k > 0, the well-posedness of (36)
can be established by using the results of the delayed reaction-diffusion equations and here we focus on
the stabilization by discrete-time observations. Multiplying u on both sides of (36), integrating over D and
using Poincare inequality, we get

1
2
∂tv(t) = (∆u,u) + αv − kv(δ(t))

≤ (α − λ1)v − kv(δ(t)) (37)

with initial data v(0) = (u0,u0), where v = (u,u). Now we can deal with (37) similar to (4) and obtain the
following result.

Theorem 2.7. Let k > α − λ1. The solutions of (37) will decay exponentially with the rate ε provided that

e(α−λ1)τ

(
1 −

k
α − λ1

)
+

k
α − λ1

< e−ετ.

In other words, the solution u of (36) will decay exponentially in the norm of L2(D).
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3. Stochastic Cases

In this section, we consider the stochastic case under the condition that α− λ1 > 0. We first consider the
stochastic reaction-diffusion equation

du = (∆u + αu)dt + σu(δ(t), x)χδ(t)(t)dBt, t > 0, x ∈ D,

u(x, 0) = u0(x), x ∈ D,

u(x, t) = 0, t > 0, x ∈ ∂D,

(38)

where α > 0, σ ∈ R, Bt is a one-dimensional Brownian motion. In fact, equation (38) can be regarded as a
stochastic differential delay equation if one define δ : [0,∞) → [0, τ) by δ(t) = t − kτ for t ∈ [kτ, (k + 1)τ),
k = 0, 1, 2, . . . . The well-posedness of (38) can be obtained by the abstract result in [20]. Similar to (36), we
can translate (38) into the following equation

1
2

dv(t) = [(∆u,u) + αv]dt + σv(δ(t))dBt

≤ [(α − λ1)v]dt + σv(δ(t))dBt (39)

with initial data v(0) = (u0,u0). In order to do so, we recall the first result of [2]. Consider the scalar linear
stochastic equation

dX(t) = αX(t) + σX
([ t
τ

]
τ
)

dB(t) (40)

on t ≥ 0 with initial value x(0) = x0 ∈ R, where τ is a positive constant. Noting that v = (u,u) ≥ 0 almost
surely, so the method used in [2] is suitable for (39). Because the proof is highly similar to [2, Theorem 2.1],
we omit the details. But we only interpret the difference. It is easy to see that

vk+1 ≤ vk(e(α−λ1)τ + σ̂Zk), Zk ∼ N(0, 1), σ̂ =

√
σ2

2(α − λ1)
(e2(α−λ1)τ − 1).

Due to vk ≥ 0 for all k ≥ 0, we can take absolute value on both sides and the rest of proof is just same as that
of Theorem in [2].

Proposition 3.1. If α−λ1 −
σ2

2 < 0, then there is a positive number τ∗ such that for any initial value u0, the solution
of (38) satisfies ∥u(t)∥L2(D) → 0 almost surely as t→ 0 provided τ ∈ (0, τ∗).

In the above Proposition 3.1, we did not give a concrete bound for τ∗. In fact, τ∗ is a unique solution of some
equation similar to [2, Theorem 2.1].

As for stochastic reaction-diffusion equations on bounded domain
du = (∆u + αu)dt + σu(δ(t), x)dBt, t > 0, x ∈ D,

u(x, 0) = u0(x), x ∈ D,

u(x, t) = 0, t > 0, x ∈ ∂D,

(41)

and
du = (∆u + αu)dt − ku(δ(t), x) + σudBt, t > 0, x ∈ D,

u(x, 0) = u0(x), x ∈ D,

u(x, t) = 0, t > 0, x ∈ ∂D,

(42)
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we obtain the similar decay property. In fact, letting v = (u, ϕ1), we have (41) and (42) are equivalent todv = (α − λ1)vdt + σv(δ(t))dBt, t > 0,

v(0) = (u0, ϕ1),
(43)

and dv = (α − λ1)vdt − kv(δ(t)) + σvdBt, t > 0,

v(0) = (u0, ϕ1),
(44)

respectively. However, the method has a disadvantage: we can not prove that the solutions of (41) and (42)
are positive almost surely, and so we only get the decay of |(u, ϕ1)| and can not get the decay of u.

But for intermittent control, we can prove the positive of solutions. More precisely, we consider
du = (∆u + αu − kh(t)u)dt + σudBt, t > 0, x ∈ D,

u(x, 0) = u0(x) ≥ 0, x ∈ D,

u(x, t) = 0, t > 0, x ∈ ∂D,

(45)

where h(t) is defined as in Section 2. It follows from [21, Theorem 3.1] that the solution of (45) keeps positive
almost surely. So, similar to (41), letting v(t) = (u, ϕ1), we can translate (45) intodv = (α − λ1 − kh(t))vdt + σvdBt, t > 0,

v(0) = (u0, ϕ1).
(46)

Similar to [9, 11], we can obtain the stabilization result. It is easy to see that the solution of (46) can be
written as

v(t) =



v0 exp
(
(α − λ1 − k − 1

2σ
2)t + σBt

)
, t ∈ [0, s0],

v0 exp
(
(α − λ1 −

1
2σ

2)t − ks0 + σBt

)
, t ∈ [s0, t1],

v0 exp
(
(α − λ1 − k − 1

2σ
2)t − ks0 + kt1 + σBt

)
, t ∈ [t1, s1],

v0 exp
(
(α − λ1 −

1
2σ

2)t − ks0 + kt1 − ks1 + σBt

)
, t ∈ [s1, t2],

. . . .

Note that ∥u(t)∥L1(D) ≤ (infD ϕ1)−1v(t) and

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.,

we have the following result.

Theorem 3.2. If (α − λ1 −
1
2σ

2)ω < kφ, then v(t)→ 0 almost surely as t→ 0. That is to say, the solution of (45) u
satisfies

∥u(t)∥L1(D) → 0, as t→ 0, almost surely.

4. Examples

Example 1: Considerx′(t) = x(t) − 2x(δ(t)), t > 0,
x|t=0 = x0.

(47)
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Figure 1: Plot of the computed result x(t).

Take ε = 4/7 and τ = ln(7/4), x0 = 1, and then (7) holds. Fig.1 shows that the solution of (47) decays
exponentially with parameter ε = 4/7 by Theorem 2.1.

Example 2: Considerx′(t) = x(t) +
∫ t

−∞
e−(t−s)x(s)ds − 4x(δ(t)), t > 0,

x(t) = x0(t) ≥ 0, t ≤ 0.
(48)

Let τ > 0 satisfy

48τ
[
e

15
2 (τ+log 16)

− 1
]
=

15
16
.

we take x0 = 0, Fig 2. shows that the solution of (48) decays exponentially with parameter ε = 4/7 by
Theorem 2.4.
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Figure 2: Plot of the computed result x(t).

Example 3: Considerx′(t) = x(t)α − 4h(t)xα(t), t > 0,
x|t=0 = x0.

(49)



X. Wang et al. / Filomat 38:18 (2024), 6371–6383 6382

Set ω = 1, φ = 1/2, α = 1.5 and x0 = 0. Fig 3. shows that the solution of (49) keeps bounded for all time by
Theorem 2.6.
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Figure 3: Plot of the computed result x(t).

Example 4: Consider the following stochastic heat equation
du = (∆u + αu)dt − ku(δ(t), x) + σudBt, t > 0, x ∈ (0, 1),

u(x, 0) = u0(x), x ∈ (0, 1),

u(x, t) = 0, t > 0, x = 0 or 1.

(50)

Let v(t) = (u(t), ϕ1), then v(t) satisfies

v(t)′ = (α − λ1)v(t) − kv(δ(t)) + σv(t)dB(t), v(0) = (u0, ϕ1). (51)

Take α − λ1 = 0.1, v0 = 0.5 and k = 0, then the solutions of (51) will not decay to zero, see Fig 4(a). But if we
take k = 0.3, then the solutions of (51) will decay to zero, see Fig 4(b).

Fig 4a: v does not go to zero Fig 4b: v does go to zero
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