
Filomat 38:18 (2024), 6385–6394
https://doi.org/10.2298/FIL2418385B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Inequalities involving extreme eigenvalues and positive linear maps
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Abstract. In this paper, we discuss some inequalities involving unital positive linear maps and extreme
eigenvalues of positive semidefinite (or positive definite) matrices. We also obtain a lower bound for the
condition number; and a lower bound for Kantorovich ratio. In addition, some inequalities involving
traces and extreme eigenvalues of a given n×n complex matrix are obtained when all of its eigenvalues are
nonnegative.

1. Introduction

Throughout this paper, letMk be the set of all k × k complex matrices and tr (A) be the trace of A ∈Mk.
Recall that a linear map Φ : Mk → Mn is positive (or strictly positive) if Φ (A) is positive semidefinite (or
positive definite) whenever A is positive semidefinite (or positive definite), and it is said to be unital if
Φ (Ik) = In, where In stands for the identity matrix of n × n order. A positive linear functional φ :Mk → C is
a special case of such a map; see [3]. Beginning with Kadison, several authors have studied unital positive
linear maps, see [2–6, 8, 9, 12, 18]. In [8], Kadison showed that for any Hermitian matrix A ∈Mk, we have

Φ
(
A2

)
≥ (Φ (A))2 , (1)

where Φ : Mk → Mn is any unital positive linear map. A complementary inequality of (1) was obtained
by Bhatia and Davis [2] which states that if A is any Hermitian element ofMk whose spectrum lies in the
interval [m,M], then

Φ
(
A2

)
− (Φ (A))2

≤ (MIn −Φ (A)) (Φ (A) −mIn) ≤
(M −m

2

)2

In. (2)

A refinement in (2) for unital positive linear functionals was obtained by Sharma and Kumari [18]:

φ
(
A2

)
−

(
φ (A)

)2
≤

φ
(
A2

)
2φ (A)


2

≤

(M −m
2

)2

, (3)
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for φ
(
A2

)
≥ 2

(
φ (A)

)2 > 0 and A is any positive semidefinite matrix. Suppose that A ∈ Mn has real
eigenvalues. In literature, several authors have obtained bounds for extreme eigenvalues; see [10, 12, 17,
20, 22] and references therein. In particular, Wolkowicz and Styan [22] proved that if A ∈ Mn has real
eigenvalues contained in the interval [m,M], then

M ≥
tr (A)

n
+

√
tr

(
B2

)
n (n − 1)

. (4)

Inequality (4) was sharpened by Sharma et al. [21]. They proved that

M ≥
tr (A)

n
+

(
n2
− 3n + 3

n3(n − 1)3

) 1
4 tr

(
B2

)
(tr (B4))

1
4

, (5)

where B = A − tr(A)
n In.

In [17], Sharma et al. showed that for every positive definite matrix A =
(
ai j

)
∈ Mn, A2 =

(
ci j

)
∈ Mn, we

have

M ≥
tr

(
A2

)
± 2β

tr (A) ± 2α
, (6)

where α = ℜai j

(
or ℑai j

)
and β = ℜci j

(
or ℑci j

)
, andℜ (A) and ℑ (A) are the real and imaginary parts of A,

respectively.
Let A ∈ Mn be a positive definite matrix whose spectrum lies in the interval [m,M]. Then the quantity

k (A) =
M −m
M +m

is known as the Kantorovich ratio. It is important in the study of positive definite as it

governs the rate of convergence for solving the linear system of equation Ax = b. see [1]. One lower bound
for k (A) was obtained by Barnes and Hoffmann [1]; for any indices i and j,

(k (A))2
≥

Bi j (A)(
aii + a j j

)2
+ Bi j (A)

, (7)

where Bi j =
∣∣∣aii − a j j

∣∣∣2 + 2
∑

k,i |aik|
2 + 2

∑
k, j |a jk|

2.
For a positive definite matrix A ∈Mn, we denote c(A) by the condition number of A, and it is defined as the
ratio of the largest eigenvalue M of A to the smallest eigenvalue m of A, that is, c(A) = M

m . In this context,
Bhatia and Sharma [4] proved that

c (A) ≥


√√
φ

(
A2

)
−

(
φ (A)

)2(
φ (A)

)2 +

√√
1 +

(φ
(
A2

)
−

(
φ (A)

)2(
φ (A)

)2


2

, (8)

where φ is any unital strictly positive linear functional defined onMn.
Let A ∈ Mn, (n ≥ 3), and let λ1 (A) , λ2 (A) , ..., λn (A) be the eigenvalues of A. The spread of A denoted
spd(A), is defined by spd(A) = maxi, j |λi (A) − λ j (A) |. This quantity was first introduced by Mirsky [13]. In
literature, inequalities for spreads have been studied by several authors; see [1, 4, 5, 10, 11, 13, 16, 20–22]
and references therein.
In this paper, we mainly focus on inequalities involving unital positive linear maps and extreme eigenvalues
of positive semidefinite (or positive definite) matrices.

2. Main Results

We begin with the following theorem which provides us an inequality involving unital positive linear
maps and extreme eigenvalues of a positive semidefinite matrix.
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Theorem 2.1. Let A ∈ Mk be a positive semidefinite matrix with O ≤ mIk ≤ A ≤ MIk. Let Φ : Mk → Mn be a
unital positive linear map. Then for any positive integer r,

(M +m)Φ (Ar) ≥ Φ
(
Ar+1

)
. (9)

Proof. For any positive integer r, the matrices Ar and (M +m) Ik −A are positive semidefinite and commute.
So, Ar ((M +m) Ik − A) ≥ O; that is,

(M +m) Ar
≥ Ar+1.

Applying Φ to both sides of the above inequality yields (9).

We now present a lemma which will be used in the proof of Theorem 2.3.

Lemma 2.2. Let A ∈ Mk be a positive semidefinite matrix with O ≤ mIk ≤ A ≤ MIk, and let φ : Mk → C be a
unital strictly positive linear functional. If φ

(
A2

)
≥ 2

(
φ (A)

)2, then

M +m ≥ 2φ (A) . (10)

Proof. Applying Theorem 2.1, for a unital positive linear functional φ and taking r = 1, we get that

M +m ≥
φ

(
A2

)
φ (A)

. (11)

Inequality (10) follows from (11) since φ
(
A2

)
≥ 2

(
φ (A)

)2.

Theorem 2.3. Let A ∈Mn be a positive semidefinite matrix with O ≤ mIn ≤ A ≤ MIn, and let φ : Mn → C be a
unital positive linear functional with φ (A) > 0. If φ

(
A2

)
≥ 2

(
φ (A)

)2, then for every positive integer r

M ≥ φ (A) + φ
(
B2r

) 1
2r , (12)

where B = A − φ (A) In.

Proof. By the spectral theorem of Hermitian matrices, for any positive integer r, we have

A =
∑n

i=1 λi (A) Pi and B2r =
∑n

i=1
(
λi (A) − φ (A)

)2r Pi, (13)

where λi(A) are the eigenvalue of A and Pi’s are the corresponding orthogonal projections with
∑n

i=1 Pi = In.
Applying φ, we deduce from (13) that

φ (A) =
∑n

i=1 λi (A)φ (Pi) and φ
(
B2r

)
=

∑n
i=1

(
λi (A) − φ (A)

)2r φ (Pi) ,

with
∑n

i=1 φ (Pi) = 1.
By using Lemma 2.2, we have

M − φ (A) ≥ φ (A) −m. (14)

Now combining (14) with m−φ (A) ≤ λi (A)−φ (A) ≤M−φ (A), we getφ (A)−M ≤ λi (A)−φ (A) ≤M−φ (A).
Thus, we observe that(

λi (A) − φ (A)
)2r
≤

(
M − φ (A)

)2r , (15)

holds for each positive integer r.
Summing (15) from 1 to n, we have

φ
(
B2r

)
=

∑n
i=1

(
λi (A) − φ (A)

)2r φ (Pi) ≤
(
M − φ (A)

)2r ∑n
i=1 φ (Pi) . (16)

Inequality (12) now follows immediately from (16) because
∑n

i=1 φ(Pi) = 1.
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Example 2.4. Let

A =

2 2 1
2 2 1
1 1 1

 .
From (5) and (6), we have M ≥ 3.12, M ≥ 4.33, respectively while our bound (12) provides a better estimate M ≥ 4.46
when r = 11 for the choice of a unital positive linear functional φ (A) = a11.

We now present a lower bound for spectral radius ρ(N) of a nonnegative symmetric matrix N ∈Mk.

Corollary 2.5. Let N ∈Mk be a nonnegative symmetric matrix. If φ
(
N4

)
≥ 2

(
φ

(
N2

))2
, then

ρ (N) ≥
√
φ (N2) +

(
φ (M2r)

) 1
2r , (17)

where r is any positive integer and M = N2
− φ

(
N2

)
Ik.

Proof. We know that for a nonnegative matrix N, ρ (N) is an eigenvalue of N, see [7]. Since λmax

(
N2

)
=

(λmax (N))2 =
(
ρ (N)

)2 and N2
≥ 0, the assertion immediately follows from Theorem 2.3.

Remark 2.6. Let N =
(
ni j

)
∈Mk be nonnegative (not necessarily symmetric). Let xi j = min

{
ni j,n ji

}
for all i, j and

X = (xi j) ∈Mk. Then for nonnegative matrices N, X, and N − X we get that ρ (N) ≥ ρ (X). Also, see [7].

We present the following lemma, which we will used in Theorem 2.8.

Lemma 2.7. Let A be any Hermitian element ofMk whose spectrum lies in the interval [m,M], and let φ :Mk → C
be a unital positive linear map. Then

m ≤ φ (A) −
√
φ (A2) −

(
φ (A)

)2 for φ
((

A − φ (A) Ik
)3
)
≤ 0. (18)

Proof. Since φ (Ar) = µ′r, where µ′r is the r-th order moment about origin; therefore, we can write (2.17) of
[15] in the following equivalent form:(

φ
(
A2

)
−

(
φ (A)

)2
)2
−

(
φ (A) −m

)2
(
φ

(
A2

)
−

(
φ (A)

)2
)

φ (A) −m
≤ φ

((
A − φ (A) Ik

)3
)
. (19)

Inequality (18) now follows from (19), because φ
((

A − φ (A) Ik
)3
)
≤ 0.

Our next result gives a lower bound for the condition number of a positive definite matrix in terms of unital
positive linear functionals.

Theorem 2.8. Let A ∈ Mk be a positive definite matrix with mIk ≤ A ≤ MIk, and let φ1, φ2 : Mk → C be unital
positive linear functionals. Then

c (A) ≥ 1 +
2
√
φ1 (A2) −

(
φ1 (A)

)2

φ2 (A) −
√
φ2 (A2) −

(
φ2 (A)

)2
for φ2

((
A − φ2 (A) Ik

)3
)
≤ 0. (20)

Proof. By Lemma 2.7, we have

m ≤ φ2 (A) −
√
φ2 (A2) −

(
φ2 (A)

)2,
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or equivalently

M −m ≤
(M

m
− 1

) (
φ2 (A) −

√
φ2 (A2) −

(
φ2 (A)

)2
)
. (21)

Using inequality (2) for the unital positive linear functional φ1, we have

2
√
φ1 (A2) −

(
φ1 (A)

)2
≤M −m. (22)

Combining (21) and (22), we get

2
√
φ1 (A2) −

(
φ1 (A)

)2
≤

(M
m
− 1

) (
φ2 (A) −

√
φ2 (A2) −

(
φ2 (A)

)2
)
. (23)

Inequality (20) now follows from (23) .

We present the following lemma which will used to show improvement (conditional) of (8) (see Remark
2.10).

Lemma 2.9. Let A ∈Mk be a positive definite matrix with mIk ≤ A ≤MIk, and let φ :Mk → C be a unital positive
linear functional. Then

φ
(
A2

)
< 2

(
φ (A)

)2 for φ
((

A − φ (A) Ik
)3
)
≤ 0. (24)

Proof. By combining (19) with φ
((

A − φ (A) Ik
)3
)
≤ 0, we find that(

φ
(
A2

)
−

(
φ (A)

)2
)2
−

(
φ (A) −m

)2
(
φ

(
A2

)
−

(
φ (A)

)2
)
≤ 0,

which gives

φ
(
A2

)
−

(
φ (A)

)2
−

(
φ (A) −m

)2
≤ 0. (25)

Since m > 0, therefore we find that

φ
(
A2

)
− 2

(
φ (A)

)2 < φ
(
A2

)
−

(
φ (A)

)2
−

(
φ (A) −m

)2 . (26)

Inequality (24) now follows immediately (25) and (26).

Remark 2.10. In this remark, we will show an improvement (conditional) of (8). For this, in (20), choosing
φ1 = φ2 = φ with φ

((
A − φ (A) Ik

)3
)
≤ 0, we find that

c (A) ≥ 1 +
2
√
φ (A2) −

(
φ (A)

)2

φ (A) −
√
φ (A2) −

(
φ (A)

)2
, (27)

or equivalently

c (A) ≥
1 +
√
κ − 1

1 −
√
κ − 1

,

where κ =
φ(A2)
(φ(A))2 . Also, we can write (8) in the following equivalent form

c (A) ≥ 2κ − 1 + 2
√

κ2 − κ. (28)

From (1) and (24), we conclude that 1 ≤ κ < 2. For this κ, (27) provides improvement (conditionally) over (28) and
hence over (8) because

1 +
√
κ − 1

1 −
√
κ − 1

≥ 2κ − 1 + 2
√

κ2 − κ.
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In the next theorem, we present a refinement of (3).

Theorem 2.11. Let A ∈ Mn be a positive definite matrix with mIn ≤ A ≤ MIn, and let φ : Mn → C be a unital
strictly positive linear functional. If φ

(
A2

)
≥ 2

(
φ (A)

)2, thenφ
(
A2

)
2φ (A)


2

≤ φ
(
A2

)
−

(
φ (A)

)2 +

 φ
(
A3

)
2φ (A2)

− φ (A)


2

≤
(M −m)2

4
. (29)

Proof. We will prove the first inequality in (29). We can writeφ
(
A2

)
2φ (A)


2

= φ
(
A2

)
−

(
φ (A)

)2 +

φ
(
A2

)
2φ (A)

− φ (A)


2

.

The left-hand side of (29) holds if and only if

φ
(
A2

)
2φ (A)

− φ (A)


2

≤

 φ
(
A3

)
2φ (A2)

− φ (A)


2

. (30)

To prove (30), we use (2.20) of [15] in the following equivalent form:

mφ
(
A2

)
+

mφ (A) −
(
φ

(
A2

))2

φ (A) −m
≤ φ

(
A3

)
,

or equivalently

φ
(
A3

)
≥

(
φ

(
A2

))2

φ (A)
+

m
(
φ

(
A2

)
−

(
φ (A)

)2
) (
φ

(
A2

)
−mφ (A)

)
φ (A)

(
φ (A) −m

) . (31)

In the right-hand side expression of (31), the second quantity is nonnegative, and hence

φ
(
A3

)
≥

(
φ

(
A2

))2

φ (A)
,

which gives

φ
(
A3

)
2φ (A2)

− φ (A) ≥
φ

(
A2

)
2φ (A)

− φ (A) ≥ 0, (32)

because φ
(
A2

)
≥ 2

(
φ (A)

)2. Thus (30) holds.
To prove the second inequality in (29). Applying (2) for a unital positive linear functional φ and write its
left-hand side inequality in the following equivalent form:

φ
(
A2

)
− φ (A)2 +

(
φ (A) − M+m

2

)2
≤

(M −m)2

4
. (33)

Applying Theorem 2.1 for a strictly unital positive linear functional φ and taking r = 2, we deduce that

M +m ≥
φ

(
A3

)
φ (A2)

,
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and hence

M +m
2

− φ (A) ≥
φ

(
A3

)
2φ (A2)

− φ (A) . (34)

By Lemma 2.2, the left-hand side quantity in (34) is non-negative. Therefore, by using (32) we state that the
right-hand side quantity in (34) is also non-negative. Hence, the right-hand side inequality of (29) follows
by combining (33) and (34).

Remark 2.12. By using (29) for different choices of unital positive linear functionals φ, one can obtain several lower
bounds for spd(A).

Our next result present an inequality involving Kantorovich ratio and unital positive linear map.

Theorem 2.13. Let A ∈Mk be a positive definite matrix with mIk ≤ A ≤ MIk, and let Φ :Mk →Mn be a strictly
unital positive linear map. If Φ

(
A2

)
commutes with (Φ (A))2, then

(
Φ

(
A2

)
− (Φ (A))2

) (
Φ

(
A2

))−1
≤ (k (A))2 In, (35)

where k (A) is the Kantorovich ratio.

Proof. The matrices MIk −A and A−mIk are positive semidefinite and commute with each other. This gives

A2
≤ (M +m) A −MmIk,

and hence

Φ
(
A2

)
≤ (M +m)Φ (A) −MmIn. (36)

From (36), we have

Φ
(
A2

)
(Φ (A))−2

≤ (M +m) (Φ (A))−1
−Mm (Φ (A))−2 , (37)

because by using the assumption Φ
(
A2

)
commutes with (Φ (A))2.

Let f (x) = M+m
x −

Mm
x2 . Then f (x) has maxima at x = 2Mm

M+m and where its value is (M+m)2

4Mm . So, from (37) we
find that

Φ
(
A2

)
(Φ (A))−2

≤
(M +m)2

4Mm
In. (38)

A little calculation in (38) leads to (35).

Corollary 2.14. Let A =
(
ai j

)
∈Mn be a positive definite matrix with real entries such that mIn ≤ A ≤ MIn. Then

for any indices i and j with i , j,

(k (A))2
≥ 1 −

d
(
a2

i j +
( aii+a j j

2

)2
)
− cai j

(
aii + a j j

)
d2 − c2 +

∣∣∣∣∣c (
a2

i j +
( aii+a j j

2

)2
)
− d

(
aii + a j j

)∣∣∣∣∣
d2 − c2 ,

(39)

where d =
∑n

k=1 a2
ik+a2

jk

2 and c =
∑n

k=1 aika jk.
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Proof. For i , j, we define a unital positive linear map Φ : Mn → M2 Φ (A) =
[ aii+a j j

2 ai j

a ji
aii+a j j

2

]
. This map

satisfies the condition of Theorem 2.13, that is, Φ
(
A2

)
commutes with (Φ (A))2.

A little calculation leads to

Φ
(
A2

)
− (Φ (A))2 =

d −
(
a2

i j +
( aii+a j j

2

)2
)

c − ai j

(
aii + a j j

)
c − ai j

(
aii + a j j

)
d −

(
a2

i j +
( aii+a j j

2

)2
)

and (
Φ

(
A2

))−1
= 1

d2−c2

[
d −c
−c d

]
.

The matrix
(
Φ

(
A2

)
− (Φ (A))2

) (
Φ

(
A2

))−1
is of the form

[
x y
y x

]
which is positive semidefinite and its norm

is x + |y|. Therefore, by using Theorem 2.13, we have∥∥∥∥(Φ (
A2

)
− (Φ (A))2

) (
Φ

(
A2

))−1∥∥∥∥ ≤ (k (A))2 , (40)

where ||A|| denotes the operator norm of A. Inequality (39) now follows immediately from (40).

Example 2.15. Let

B =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

 .
From (7), we get (k (A))2

≥ 0.3125 while our bound (39) provides a better estimate (k (A))2
≥ 0.4318.

3. Inequalities involving traces of matrices

Let A ∈Mn have nonnegative eigenvalues m = λ1 (A) ≤ λ2 (A) ... ≤ λn (A) = M. We respectively define
the arithmetic mean λ and the variance S2

λ of the eigenvalues of A by

λ =
tr (A)

n
and S2

λ =
tr

(
A2

)
n

−

(
tr (A)

n

)2

.

In [19], Sharma et al. showed that if the eigenvalues of A ∈Mn are nonnegative and 0 < λ ≤ Sλ, then

S2
λ +

S2
λ −

(
λ
)2

2λ


2

≤
(M −m)2

4
, (41)

and with n ≥ 3,

S2
λ −

2
n − 2

S2
λ −

(
λ
)2

2λ


2

≥
(M −m)2

2n
. (42)

We now present the following refinements of (41) and (42).
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Theorem 3.1. Let A ∈ Mn have nonnegative eigenvalues m = λ1 (A) ≤ λ2 (A) ... ≤ λn (A) = M. If 0 < λ ≤ Sλ,
then

S2
λ +

S2
λ −

(
λ
)2

2λ


2

≤ S2
λ +

 tr
(
A3

)
2tr (A2)

− λ


2

≤
(M −m)2

4
(43)

and with n ≥ 3,

S2
λ −

2
n − 2

S2
λ −

(
λ
)2

2λ


2

≥ S2
λ −

2
n − 2

 tr
(
A3

)
2tr (A2)

− λ


2

≥
(M −m)2

2n
. (44)

Proof. By Sharma et al. [14], we have

S2
λ ≥

(M −m)2

2n
+

2
n − 2

((M +m
2

)
− λ

)2

. (45)

Applying (2) for a unital positive linear functional φ (A) =
tr (A)

n
, we get S2

λ ≤
(M −m)2

4
and then resulting

inequality combining with 0 < λ ≤ Sλ we find that

M +m
2

− λ ≥ 0.

Also, since all the eigenvalues λi(A) of A are nonnegative and M + m − λi(A) ≥ 0, therefore we have for
i = 1, 2, ...,n

λ2
i (A) (M +m − λi (A)) ≥ 0. (46)

Summing over i from 1 to n in (46), we get that

M +m ≥
tr

(
A3

)
tr (A2)

,

and hence

M +m
2

− λ ≥
tr

(
A3

)
2tr (A2)

− λ. (47)

We know that the Cauchy-Schwarz inequality for real numbers is given by∑n
i=1 a2

i

∑n
i=1 b2

i ≥
(∑n

i=1 aibi
)2 (48)

for a = (a1, ..., an), b = (b1, ..., bn) ∈ Rn. Applying (48) for positive numbers λi (A); i = 1, 2, ...,n by taking

ai = (λi (A))
3
2 and bi = (λi (A))

1
2 , we find that tr

(
A3

)
tr (A) ≥

(
tr

(
A2

))2
, and hence

tr
(
A3

)
2tr (A2)

− λ ≥
tr

(
A2

)
2tr (A)

− λ =
S2
λ − λ

2

2λ
≥ 0, (49)

holds for 0 < λ ≤ Sλ. It follows from (47) and (49) that

M +m
2

− λ ≥
tr

(
A3

)
2tr (A2)

− λ ≥
S2
λ − λ

2

2λ
≥ 0, (50)
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holds for 0 < λ ≤ Sλ. Combining (45) with (50) we deduce the desired inequalities in (44).
To prove (43). We use Theorem 1 of [2], that is S2

λ ≤

(
M − λ

) (
λ −m

)
, and therefore we can write from this

inequality that

S2
λ +

(
λ −

M +m
2

)2

≤
(M −m)2

4
. (51)

Inequality (43) now follows by combining (50) and (51).

Remark 3.2. It is notice here that for A ∈ Mn with all nonnegative eigenvalues, the inequalities (43) and (44)
respectively provided us a lower bound and an upper bound for spd(A).
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