Filomat 38:18 (2024), 6413–6421 https://doi.org/10.2298/FIL2418413L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear skew Lie triple centralizers (derivations) on ∗**-algebras**

Changjing Lia,[∗] **, Xiaoyi Li^a , Jingxuan Wang^a**

^aSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China

Abstract. Let A be a unital *-algebra over the complex field C. In this paper, we prove that every nonlinear skew Lie (triple) centralizer on $\mathcal A$ is a linear ∗-centralizer. Under some mild conditions on $\mathcal A$, we also prove that a map Φ on $\mathcal A$ is a nonlinear skew Lie triple derivation if and only if Φ is an additive ∗-derivation. As applications, nonlinear skew Lie triple derivations on prime ∗-algebras, von Neumann algebras with no central summands of type *I*1, factor von Neumann algebras and standard operator algebras are characterized.

1. Introduction

Let \mathcal{A} be a *-algebra over the complex field C. For $A, B \in \mathcal{A}$, denote by $[A, B]_* = AB - BA^*$ the skew Lie product of *A* and *B*. The skew Lie product is found playing a more and more important role in some research topics, and its study has recently attracted many authors' attention (for example, see[3, 7, 11–15, 19]). The product was extensively studied because it naturally arises in the problem of representing quadratic functionals with sesquilinear functionals (see, for example, [12–14]) and in the problem of characterizing ideals (see, for example, [3, 11]).

Recall that an additive map $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be an additive derivation if $\Phi(AB) = \Phi(A)B + A\Phi(B)$ for all $A, B \in \mathcal{A}$. We say that Φ is an additive *-derivation if it is an additive derivation and satisfies $\Phi(A^*) = \Phi(A)^*$ for all $A \in \mathcal{A}$. A map $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear skew Lie derivation if

$$
\Phi([A, B]_*) = [\Phi(A), B]_* + [A, \Phi(B)]_*
$$

for all $A, B \in \mathcal{A}$. More generally, we say that a map $\Phi : \mathcal{A} \to \mathcal{A}$ is a nonlinear skew Lie triple derivation if

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

for all $A, B, C \in \mathcal{A}$. Many authors have paid more attentions on the problem about nonlinear skew Lie derivations and nonlinear skew Lie triple derivations (see [4–6, 9, 10, 17–19, 22]). Yu and Zhang in [19] proved that every nonlinear skew Lie derivation between factor von Neumann algebras is an additive ∗-derivation. In [9], Li et al. showed that if A ⊆ *B*(*H*) is a von Neumann algebra without central abelian projections, then Φ : A → *B*(*H*) is a nonlinear skew Lie derivation if and only if Φ is an additive ∗-derivation.

Keywords. skew Lie triple derivations;skew Lie triple centralizers; von Neumann algebras

Received: 22 September 2023; Revised: 24 January 2024; Accepted: 27 January 2024

Communicated by Dijana Mosic´

²⁰²⁰ *Mathematics Subject Classification*. Primary 16W25; Secondary 16N60

The authors are supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023MA017). * Corresponding author: Changjing Li

Email addresses: lcjbxh@163.com (Changjing Li), 1372480897@qq.com (Xiaoyi Li), 190375476@qq.com (Jingxuan Wang)

Li et al. [10] proved that every nonlinear skew Lie triple derivation between factor von Neumann algebras is an additive ∗-derivation. Fu and An [6] proved every nonlinear skew Lie triple derivation between von Neumann algebras without central abelian projections is an additive ∗-derivation. In this paper, we characterize nonlinear skew Lie triple derivations on general ∗-algebras. Our main conclusion generalizes all known results above.

A linear map $\Phi : \mathcal{A} \to \mathcal{A}$ is called a centralizer if $\Phi(AB) = \Phi(A)B = A\Phi(B)$ holds for all $A, B \in \mathcal{A}$. We say that Φ is a *-centralizer if it is a centralizer and satisfies $\Phi(A^*) = \Phi(A)^*$ for all $A \in \mathcal{A}$. Centralizers are very important both in theory and applications and have been investigated intensively by many mathematicians (see [2, 8, 20, 21] and references therein). In this paper, we introduced the definition of nonlinear skew Lie (triple) centralizers. Let A be a ∗-algebra. A map $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear skew Lie centralizer if

$$
\Phi([A, B]_*) = [\Phi(A), B]_*
$$

for all $A, B \in \mathcal{A}$. More generally, we say that a map $\Phi : \mathcal{A} \to \mathcal{A}$ is a nonlinear skew Lie triple centralizer if

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_*
$$

for all *A*, *B*, *C* ∈ A . Obviously, every *-centralizer is a nonlinear Lie (triple) centralizer. In this paper, we prove that every nonlinear skew Lie (triple) centralizer on general unital ∗-algebras is a ∗-centralizer.

2. Nonlinear skew Lie (triple) centralizers

In this section, we will give the characterization of nonlinear skew Lie (triple) centralizers on unital ∗-algebras. The following is our main result in this section.

Theorem 2.1. Let A be a unital *-algebra with the unit I having the center $Z(A)$. If a map $\Phi : A \to A$ satisfies

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_*
$$

for all A, B, C \in *A, then* Φ *is a* *-centralizer. Moreover, there exists an element $T = T^* \in \mathcal{Z}(\mathcal{A})$ such that $\Phi(A) = AT = TA$ for all $A \in \mathcal{A}$.

Proof. Since $-\frac{1}{2}iI = [[-\frac{1}{2}iI, -\frac{1}{2}I]_*, -\frac{1}{2}I]_*$, where *i* is the imaginary unit, we have

$$
\Phi(-\frac{1}{2}iI) = \Phi([[-\frac{1}{2}iI, -\frac{1}{2}I]_*, -\frac{1}{2}I]_*)
$$

\n
$$
= [[\Phi(-\frac{1}{2}iI), -\frac{1}{2}I]_*, -\frac{1}{2}I]_*
$$

\n
$$
= [-\frac{1}{2}\Phi(-\frac{1}{2}iI) + \frac{1}{2}\Phi(-\frac{1}{2}iI)^*, -\frac{1}{2}I]_*
$$

\n
$$
= \frac{1}{2}\Phi(-\frac{1}{2}iI) - \frac{1}{2}\Phi(-\frac{1}{2}iI)^*,
$$

which implies

$$
\Phi(-\frac{1}{2}iI)^* = -\Phi(-\frac{1}{2}iI). \tag{1}
$$

Noticing that $-\frac{1}{2}I = [[-\frac{1}{2}iI, -\frac{1}{2}I]_*, \frac{1}{2}iI]_*,$ we have

$$
\Phi(-\frac{1}{2}I) = \Phi([[-\frac{1}{2}iI, -\frac{1}{2}I]_*, \frac{1}{2}iI]_*)
$$

\n
$$
= [[\Phi(-\frac{1}{2}iI), -\frac{1}{2}I]_*, \frac{1}{2}iI]_*
$$

\n
$$
= [-\frac{1}{2}\Phi(-\frac{1}{2}iI) + \frac{1}{2}\Phi(-\frac{1}{2}iI)^*, \frac{1}{2}iI]_*
$$

\n
$$
= \frac{1}{2}i\Phi(-\frac{1}{2}iI)^* - \frac{1}{2}i\Phi(-\frac{1}{2}iI).
$$

By (1) , we get

$$
\Phi(-\frac{1}{2}I) = -i\Phi(-\frac{1}{2}iI). \tag{2}
$$

Let $\lambda \in \mathbb{R}$ be arbitrary, where \mathbb{R} is the real field. Note that

$$
\Phi(0) = \Phi([[0,0]_*,0]_*) = [[\Phi(0),0]_*,0]_* = 0.
$$

Hence

$$
0 = \Phi([[M, A], I],= [[\Phi(M), A], I],= \Phi(\lambda I)(A + A^*) - (A + A^*)\Phi(\lambda I)^*
$$

holds true for all $A \in \mathcal{A}$. That is,

 $\Phi(\lambda I)(A + A^*) = (A + A^*)\Phi(\lambda I)^*$

holds true for all $A \in \mathcal{A}$. So

$$
\Phi(\lambda I)A = A\Phi(\lambda I)^*
$$

holds true for all $A = A^* \in \mathcal{A}$. Since for every $B \in \mathcal{A}$, $B = B_1 + iB_2$ with $B_1 = \frac{B+B^2}{2}$ $\frac{1+B^*}{2}$ and $B_2 = \frac{B-B^*}{2i}$ $\frac{-B}{2i}$, it follows that ∗

$$
\Phi(\lambda I)B = B\Phi(\lambda I)
$$

holds true for all $B \in \mathcal{A}$. Letting $B = I$, we see that

$$
\Phi(\lambda I)^* = \Phi(\lambda I). \tag{3}
$$

Now we get

$$
\Phi(\lambda I)B = B\Phi(\lambda I)
$$

holds true for all $B \in \mathcal{A}$. Hence

$$
\Phi(\lambda I) \in \mathcal{Z}(\mathcal{A}) \tag{4}
$$

for all $\lambda \in \mathbb{R}$. By equation (2), we have

$$
\Phi(-\frac{1}{2}iI) \in \mathcal{Z}(\mathcal{A}).\tag{5}
$$

For every $A \in \mathcal{A}$, since $iA = [[-\frac{1}{2}iI, -\frac{1}{2}I]_*, A]_*,$ by equations (5) and (1), we see that

$$
\Phi(iA) = \Phi([[-\frac{1}{2}iI, -\frac{1}{2}I]_*, A]_*)
$$

= [[\Phi(-\frac{1}{2}iI), -\frac{1}{2}I]_*, A]_*
= -\Phi(-\frac{1}{2}iI)A + \Phi(-\frac{1}{2}iI)^*A
= -2\Phi(-\frac{1}{2}iI)A.

Now by equations (2) and (4), we get

$$
\Phi(iA) = -2\Phi(-\frac{1}{2}iI)A = -2i\Phi(-\frac{1}{2}I)A = -2iA\Phi(-\frac{1}{2}I). \tag{6}
$$

On the other hand, by equation (6), we also have

$$
\Phi(I) = \Phi(i(-il)) = -2i(-il)\Phi(-\frac{1}{2}I) = -2\Phi(-\frac{1}{2}I). \tag{7}
$$

So by equations (6) and (7), we see that

$$
\Phi(iA) = i\Phi(I)A = iA\Phi(I). \tag{8}
$$

Replacing *A* by −*iA* in the above equation, we have

$$
\Phi(A) = \Phi(i(-iA)) = \Phi(I)A = A\Phi(I). \tag{9}
$$

Furthermore, by by equation (3), we get that

$$
\Phi(A)^* = (\Phi(I)A)^* = A^*\Phi(I)^* = A^*\Phi(I) = \Phi(A^*)
$$
\n(10)

for all $A \in \mathcal{A}$. Let $T = \Phi(I)$. Then $T = T^* \in \mathcal{Z}(\mathcal{A})$ and $\Phi(A) = AT = TA$ for all $A \in \mathcal{A}$. Hence, Φ is a linear ∗-centralizer.

Clearly, every nonlinear skew Lie centralizer is a nonlinear skew Lie triple centralizer. Then we have the following corollary.

Corollary 2.2. *Let* $\mathcal A$ *be a unital* *-algebra with the unit I. If a map $\Phi : \mathcal A \to \mathcal A$ satisfies

$$
\Phi([A, B]_*)=[\Phi(A), B]_*
$$

for all A, B \in *A, then* Φ *is a* ∗-centralizer. Moreover, there exists an element T = T* \in Z(A) such that Φ (A) = AT = *TA for all* $A \in \mathcal{A}$ *.*

3. Nonlinear skew Lie triple derivations

The aim of this section is to characterize nonlinear skew Lie triple derivations on unital ∗-algebras. The following theorem is the main result of this section.

Theorem 3.1. *Let* A *be a unital* ∗*-algebra with the unit I and P be a nontrivial projection in* A*. Assume that* A *satisfies*

$$
(•) X\mathcal{A}P = 0 implies X = 0
$$

and

$$
(\clubsuit) \quad X\mathcal{A}(I-P) = 0 \quad implies \quad X = 0.
$$

Then a map $\Phi : \mathcal{A} \rightarrow \mathcal{A}$ *satisfies*

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

for all A, B, C \in *A if and only if* Φ *is an additive* **-derivation.*

In the following, let $P_1 = P$ and $P_2 = I - P$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$, $i, j = 1, 2$. Then $\mathcal{A} = \sum_{i,j=1}^2 \mathcal{A}_{ij}$. For every $A \in \mathcal{A}$, we may write $A = \sum_{i,j=1}^{2} A_{ij}$. In all that follows, when we write A_{ij} , it indicates that $A_{ij} \in \mathcal{A}_{ij}$. Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 3.2. $\Phi(0) = 0$.

Proof. Indeed,

$$
\Phi(0) = \Phi([[0,0]_*,0]_*) = [[\Phi(0),0]_*,0]_* + [[0,\delta(0)]_*,0]_* + [[0,0]_*,\delta(0)]_* = 0.
$$

 \Box

Lemma 3.3. $\Phi(I)^* = \Phi(I) \in \mathcal{Z}(\mathcal{A})$.

Proof. It follows from Lemma 3.2 that

 $0 = \Phi([[I, A]_*, I]_*)$ $=[[\Phi(I), A]_{\ast}, I]_{\ast} + [[I, \delta(A)]_{\ast}, I]_{\ast} + [[I, A]_{\ast}, \delta(I)]_{\ast}$ $= [[\Phi(I), A]_{\ast}, I]_{\ast}$ $= \Phi(I)(A + A^*) - (A + A^*)\Phi(I)^*$

holds true for all $A \in \mathcal{A}$. That is,

$$
\Phi(I)(A + A^*) = (A + A^*)\Phi(I)^*
$$

holds true for all $A \in \mathcal{A}$. So

 $\Phi(I)B = B\Phi(I)^*$

holds true for all $B = B^* \in \mathcal{A}$. Since for every $C \in \mathcal{A}$, $C = C_1 + iC_2$ with $C_1 = \frac{C+C_1}{2}$ $\frac{+C^*}{2}$ and $C_2 = \frac{C-C^*}{2i}$ $\frac{-C}{2i}$, it follows that

 $\Phi(I)C = C\Phi(I)^*$

holds true for all $C \in \mathcal{A}$. Letting $C = I$, we have

 $\Phi(I)^* = \Phi(I).$

Now we get

 $Φ(I)C = CΦ(I)$

holds true for all *C* \in *A*. Hence $\Phi(I) \in \mathcal{Z}(\mathcal{A})$. \square

Lemma 3.4. *For all* $A = A^* \in \mathcal{A}$ *, we have* $\Phi(A) = \Phi(A)^*$ *.*

Proof. Using Lemma 3.3, we have that

 $0 = \Phi([[A, I]_*, I]_*)$ $=[[\Phi(A), I]_*, I]_* + [[A, \Phi(I)]_*, I]_* + [[A, I]_*, \Phi(I)]_*$ = [[Φ(*A*), *I*][∗] , *I*][∗] $= 2\Phi(A) - 2\Phi(A)^*$.

Hence $\Phi(A) = \Phi(A)^*$.

Lemma 3.5. *For any* $A_{ij} \in \mathcal{A}_{ij}$, $1 \leq i \neq j \leq 2$, *we have*

 $P_i \Phi(A_{ii}) P_i = 0.$

Proof. Let $A_{ij} \in \mathcal{A}_{ij}$, $1 \le i \ne j \le 2$. For any $X_{ij} \in \mathcal{A}_{ij}$, since $0 = [[A_{ij}, X_{ij}]_*, P_j]_*,$ we have

 $0 = \Phi([[A_{ij}, X_{ij}]_*, P_j]_*)$ $=[[\Phi(A_{ij}), X_{ij}]_*, P_j]_* + [[A_{ij}, \Phi(X_{ij})]_*, P_j]_* + [[A_{ij}, X_{ij}]_*, \Phi(P_j)]_*.$ $= \Phi(A_{ij})X_{ij} - X_{ij}\Phi(A_{ij})^*P_j - X_{ij}^*\Phi(A_{ij})^* + P_j\Phi(A_{ij})X_i^*$ *ij* + $A_{ij}\Phi(X_{ij})P_j - P_j\Phi(X_{ij})^*A_{ij}^* - X_{ij}A_{ij}^*\Phi(P_j) + \Phi(P_j)A_{ij}X_{ij}^*$

Multiplying the above equation by P_j from both sides, we get that

$$
0 = P_j \Phi(A_{ij}) X_{ij} - X_{ij}^* \Phi(A_{ij})^* P_j.
$$
\n(11)

Replacing X_{ij} with iX_{ij} in the above equation yields that

$$
0 = P_j \Phi(A_{ij}) X_{ij} + X_{ij}^* \Phi(A_{ij})^* P_j.
$$
\n(12)

Combing (11) and (12), we see that

$$
P_j \Phi(A_{ij}) X_{ij} = 0
$$

for any $X_{ij} \in \mathcal{A}_{ij}$. It follows from (\bullet) and (\bullet) that $P_j \Phi(A_{ij}) P_i = 0$. \Box

Similar to the proof method of Claims 4-8 in [10], we can prove the following lemma.

Lemma 3.6. Φ *is additive.*

Lemma 3.7. $\Phi(I) = 0$.

Proof. For $1 \le k \ne j \le 2$, by Lemma 3.4, we have

$$
0 = \Phi([[iP_k, P_j]_*, P_k]_*)
$$

= [[$\Phi(iP_k), P_j]_*, P_k]_*$ + [$iP_k, \Phi(P_j)$]_{*}, $P_k]_*$ + [$iP_k, P_j]_*, \Phi(P_k)$]_{*}
= $-P_j\Phi(iP_k)^*P_k + P_k\Phi(iP_k)P_j + 2iP_k\Phi(P_j)P_k + i\Phi(P_j)P_k + iP_k\Phi(P_j).$

Multiplying both sides of the above equation by *P^k* , we obtain that

$$
0 = P_k \Phi(P_j) P_k, 1 \le k \ne j \le 2. \tag{13}
$$

For any $A_{jk} \in \mathcal{A}_{jk}$, $1 \leq k \neq j \leq 2$, it follows from Lemma 3.6 that

$$
\Phi(A_{jk}) - \Phi(A_{jk}^*) = \Phi([[A_{jk}, P_k]_*, P_k]_*)
$$
\n
$$
= [[\Phi(A_{jk}), P_k]_*, P_k]_* + [[A_{jk}, \Phi(P_k)]_*, P_k]_* + [[A_{jk}, P_k]_*, \Phi(P_k)]_*
$$
\n
$$
= \Phi(A_{jk})P_k - P_k\Phi(A_{jk})^* P_k - P_k\Phi(A_{jk})^* + P_k\Phi(A_{jk})P_k
$$
\n
$$
+ A_{jk}\Phi(P_k)P_k - P_k\Phi(P_k)A_{jk}^* + A_{jk}\Phi(P_k)
$$
\n
$$
- A_{jk}^*\Phi(P_k) - \Phi(P_k)A_{jk}^* + \Phi(P_k)A_{jk}.
$$

Multiplying both sides of the above equation by P_i and P_k from the left and right respectively, we obtain that

$$
-P_j \Phi(A_{jk}^*) P_k = 2A_{jk} \Phi(P_k) P_k + P_j \Phi(P_k) A_{jk}.
$$
\n(14)

It follows from (13) that

$$
-P_j \Phi(A_{jk}^*) P_k = 2A_{jk} \Phi(P_k) P_k. \tag{15}
$$

By Lemma 3.5, we arrive at

$$
0 = A_{jk}\Phi(P_k)P_k \tag{16}
$$

for any $A_{jk} \in \mathcal{A}_{jk}.$ It follows from (\clubsuit) and (\spadesuit) that

$$
0 = P_k \Phi(P_k) P_k, k = 1, 2. \tag{17}
$$

Adding (13) and (17), we get

$$
0 = P_k \Phi(I) P_k, k = 1, 2. \tag{18}
$$

By Lemma 3.3, we have $0 = P_k \Phi(I)$, $k = 1, 2$. Hence $\Phi(I) = 0$. \Box

Lemma 3.8. *For all* $A \in \mathcal{A}$ *, we have* $\Phi(A^*) = \Phi(A)^*$ *.*

Proof. Using Lemma 3.6 and Lemma 3.7 , we have that

$$
2\Phi(A) - 2\Phi(A^*) = \Phi(2A - 2A^*)
$$

= $\Phi([[A, I]_*, I]_*)$
= $[[\Phi(A), I]_*, I]_*$
= $2\Phi(A) - 2\Phi(A)^*.$

Hence $\Phi(A^*) = \Phi(A)^*$.

Lemma 3.9.
$$
\Phi(iI) = 0
$$
.

Proof. By Lemma 3.7 and Lemma 3.8 , we see that

 $0 = -4\Phi(I) = \Phi(-4I) = \Phi([[iI, I]_*, iI]_*)$ $=[[\Phi(iI), I]_*, iI]_* + [[iI, I]_*, \Phi(iI)]_*$ $= 8i\Phi(iI).$

So $\Phi(iI) = 0$. \Box

Lemma 3.10. *For all* $A \in \mathcal{A}$ *, we have* $\Phi(iA) = i\Phi(A)$ *.*

Proof. By Lemma 3.7 and Lemma 3.9 , we obtain

$$
4\Phi(iA) = \Phi(4iA) = \Phi([[iI, I]_*, A]_*)
$$

= [[iI, I]_*, \Phi(A)]_*
= 4i\Phi(A).

So $\Phi(iA) = i\Phi(A)$. \Box

Lemma 3.11. Φ *is a derivation.*

Proof. For all $A, B \in \mathcal{A}$, on one hand, by Lemma 3.9 and Lemma 3.10, we have

$$
2i\Phi(AB) + 2i\Phi(BA^*) = \Phi(2i(AB + BA^*))
$$

= $\Phi([[iI, A]_*, B]_*)$
= $[[iI, \Phi(A)]_*, B]_* + [[iI, A]_*, \Phi(B)]_*$
= $2i(\Phi(A)B + A\Phi(B) + \Phi(B)A^* + B\Phi(A)^*).$

From this, we get

$$
\Phi(AB) + \Phi(BA^*) = \Phi(A)B + A\Phi(B) + \Phi(B)A^* + B\Phi(A)^*.
$$
\n(19)

On the other hand, by Lemma 3.10 and equation (19), we also have

$$
\Phi(AB) - \Phi(BA^*) = \Phi((iA)(-iB)) + \Phi((-iB)(iA)^*)
$$

=
$$
\Phi(iA)(-iB) + (iA)\Phi(-iB) + \Phi(-iB)(iA)^* + (-iB)\Phi(iA)^*
$$

=
$$
\Phi(A)B + A\Phi(B) - \Phi(B)A^* - B\Phi(A)^*.
$$

From this, we get

$$
\Phi(AB) - \Phi(BA^*) = \Phi(A)B + A\Phi(B) - \Phi(B)A^* - B\Phi(A)^*.
$$
\n(20)

Summing (19) with (20), we get $\Phi(AB) = \Phi(A)B + A\Phi(B)$. \Box

Recall that an algebra $\mathcal A$ is prime if $A\mathcal{A}B = \{0\}$ for $A, B \in \mathcal A$ implies either $A = 0$ or $B = 0$. It is easy to see that prime ∗-algebras satisfy (♠) and (♣). Applying Theorem 3.1 to prime ∗-algebras, we have the following corollary.

Corollary 3.12. Let \mathcal{A} be a prime *-algebra with unit I and P be a nontrivial projection in \mathcal{A} . Then a map $\Phi : \mathcal{A} \to \mathcal{A}$ *satisfies*

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

for all A, B, C \in *A if and only if* Φ *is an additive* **-derivation.*

Let *B*(H) be the algebra of all bounded linear operators on a complex Hilbert space H and $\mathcal{F}(H) \subseteq B(H)$ be the subalgebra of all bounded finite rank operators. A subalgebra A ⊆ *B*(H) is called a standard operator algebra if it contains $\mathcal{F}(\mathcal{H})$. Now we have the following corollary.

Corollary 3.13. *Let* A *be a standard operator algebra on an infinite dimensional complex Hilbert space* H *containing the identity operator I. Suppose that* \mathcal{A} *is closed under the adjoint operation. Then* $\Phi : \mathcal{A} \to \mathcal{A}$ *satisfies*

 $\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*$

for all A, *B*,*C* ∈ A *if and only if* Φ *is a linear* ∗*-derivation. Moreover, there exists an operator T* ∈ *B*(H) *satisfying* $T + T^* = 0$ *such that* $\Phi(A) = AT - TA$ *for all* $A \in A$ *, i.e.,* Φ *is inner.*

Proof. Since A is prime, we have that Φ is an additive *-derivation. It follows from [16] that Φ is a linear inner derivation, i.e., there exists an operator $S \in B(H)$ such that $\Phi(A) = AS - SA$. Since $\Phi(A^*) = \Phi(A)^*$, we have

$$
A^*S - SA^* = \Phi(A^*) = \Phi(A)^* = -A^*S^* + S^*A^*
$$

for all $A \in A$. Hence $A^*(S + S^*) = (S + S^*)A^*$, and then $S + S^* = \lambda I$ for some $\lambda \in \mathbb{R}$. Let $T = S - \frac{1}{2}\lambda I$. It is easy to see that $T + T^* = 0$ such that $\Phi(A) = AT - TA$.

A von Neumann algebra M is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator *I*. M is a factor von Neumann algebra if its center only contains the scalar operators. It is well known that a factor von Neumann algebra is prime. Now we have the following corollary.

Corollary 3.14. *[10] Let* M *be a factor von Neumann algebra with dim*(M) \geq 2*. Then a map* $\Phi : M \to M$ *satisfies*

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

if and only if Φ *is an additive* ∗*-derivation.*

It is shown in [9] that if a von Neumann algebra has no central summands of type I_1 , then M satifies (\bullet) and (♣). Now we have the following corollary.

Corollary 3.15. [6] Let M be a von Neumann algebra with no central summands of type I_1 . Then a map $\Phi : M \to M$ *satisfies*

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

if and only if Φ *is an additive* ∗*-derivation.*

Acknowledgements

The authors are grateful to the anonymous referees and editors for their work.

References

- [1] H. Aiat, H. Ahmed, Non-additive Lie centralizer of strictly upper triangular matrices, Extracta Math. 34 (2019) 77-83.
- [2] C. Akemann, G. Pedersen, J. Tomiyama, Multipliers of C[∗] -algebras, J. Funct. Anal. 13 (1973) 277-301.
- [3] M. Brešar, A. Fošner, On ring with involution equipped with some new product, Publ. Math. Debrecen 57 (2000) 121-134.
- [4] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear ∗-Jordan triple derivation on prime ∗-algebras, Rocky Mountain J. Math. 50 (2020) 543-549.
- [5] V. Darvish, M. Nouri, M. Razeghi, Nonlinear bi-skew Jordan derivations on ∗-algebras, Filomat 36 (2022) 3231-3239
- [6] F. Fu, R. An, Equivalent characterization of ∗-derivations on von Neumann algebras, Linear Multilinear Algebra. 67 (2019) 527-541.
- [7] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bulletin of Mathematics 26 (2002) 27-31.
- [8] B. Johson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964) 299-320.
- [9] C. Li , F. Lu, X. Fang, Nonlinear ξ-Jordan ∗-derivations on von Neumann algebras, Linear Multilinear Algebra. 62 (2014) 466-473.
- [10] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (Engl. Ser.), 32 (2016) 821-830.
- [11] L. Molnár, A condition for a subspace of $\mathcal{B}(H)$ to be an ideal, Linear Algebra Appl. 235 (1996) 229-234.
- [12] P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991) 157-165.
- [13] P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993) 1105-1113.
- [14] P. Šemrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990) 241-251.
- [15] P. Šemrl, Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994) 515-519.
- [16] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991) 234-240.
- [17] A. Taghavi, M. Nouri, V. Darvish, A note on nonlinear skew Lie triple derivation between prime ∗-algebras, Korean J. Math. 26 (2018) 459-465.
- [18] A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, Non-linear λ-Jordan triple ∗-derivation on prime ∗-algebras, Rocky Mountain J. Math. 48 (2018) 2705-2716.
- [19] W. Yu, J. Zhang, Nonlinear ∗-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979-1991.
- [20] J. Vukman, Centralizers of semiprime rings, Comment Math Univ Carol. 42 (2001) 237-245.
- [21] B. Zalar, On centralizers of semiprime rings, Comment Math Univ Carol. 32 (1991) 609-614.
- [22] F. Zhang, Nonlinear ξ-Jordan triple ∗-derivation on prime ∗-algebras, Rocky Mountain J. Math. 52 (2022), 323-333.