Filomat 38:19 (2024), 6639–6650 https://doi.org/10.2298/FIL2419639B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On minimum generalized ABC index of graphs

Lkhagva Buyantogtokh^a, Batmend Horoldagva^{a,*}, Ivan Gutman^b

^aDepartment of Mathematics, Mongolian National University of Education, Baga toiruu-14, Ulaanbaatar, Mongolia ^bFaculty of Science, University of Kragujevac, P.O.Box 60, 34000 Kragujevac, Serbia

Abstract. The generalized *ABC* index of a graph *G*, denoted by *ABC*_{α}, is defined as the sum of the terms $[(d(v) + d(u) - 2)/d(v)d(u)]^{\alpha}$ over all pairs of adjacent vertices, where d(u) is the degree of the vertex *u* and α is a real number. In this paper, we prove that for $\alpha \leq -1$, the balanced double broom is the unique tree that minimizes *ABC*_{α} among trees of order *n* with diameter *d*, and trees of order *n* with *k* pendent vertices.

1. Introduction

Let *G* be a simple connected graph with vertex set *V*(*G*) and edge set *E*(*G*), where |V(G)| = n and |E(G)| = m. Denote by d(v), the degree of the vertex v in *G*. The maximum degree of *G* is denoted by Δ . A pendent vertex is a vertex of degree one. For $v \in V(G)$, N(v) denotes the set of neighbors of v. A tree of order n with maximum degree two is called a path and is denoted by P_n . A tree of order n with maximum degree n - 1 is called a star and is denoted by S_n . Denote by C_g a cycle of length g. For a subset E of E(G), we denote by G - E the subgraph of G obtained from G by deleting the edges in E. Similarly, we denote by G + E the supergraph of G obtained from G by adding the edges in E. If $E = \{e\}$, we write G - e and G + e.

The atom-bond connectivity index (*ABC*) of a graph *G* is defined as

$$ABC(G) = \sum_{vu \in E(G)} \sqrt{\frac{d(u) + d(v) - 2}{d(u) d(v)}}.$$

This degree-based graph invariant was introduced at the end of the 1990s by Estrada et al. [12]. Its chemical and mathematical properties are being intensively studied ever since. For a recent review on the mathematical propertires of the *ABC* index see [1]; details of its chemical applications are found in [11, 14].

A long time puzzling problem was the characterization of graphs with minimum *ABC*-value (which must be trees). Dozens of papers on this matter were published, containing partial results and (false)

Keywords. atom-bond connectivity index; ABC index; augmented Zagreb index; balanced double broom.

Received: 12 October 2023; Accepted: 08 March 2024

Communicated by Dragan S. Djordjević

²⁰²⁰ Mathematics Subject Classification. Primary 05C35, 05C90, 05C92; Secondary 05C05, 05C07, 05C09.

Research supported by the Mongolian Foundation for Science and Technology (Grant No. SHUTBIKHKHZG-2022/162). * Corresponding author: Batmend Horoldagya

Email addresses: buyantogtokh.l@msue.edu.mn (Lkhagva Buyantogtokh), horoldagva@msue.edu.mn (Batmend Horoldagva), gutman@kg.ac.rs (Ivan Gutman)

conjectures. Finally, the problem was completely solved in 2023 [9, 10], revealing that the structure of the minimum *ABC* trees is rather perplexed.

Of the numerous other studies of *ABC* index, we mention the following. Shao et al. [21] characterized the graphs with *n* vertices, without pendent vertices, and *m* edges for m = 2n - 4 and m = 2n - 3, having maximum *ABC* index. Zhang et al. [24] described the structural properties of graphs having minimum *ABC* index among connected graphs with a given degree sequence. Moreover, they characterized the extremal graphs having minimum *ABC* among unicyclic and bicyclic graphs with a given degree sequence. Lower and upper bounds on *ABC* in terms of Randić index, first Zagreb index, second Zagreb index, and modified second Zagreb index were reported in [6]. Chen and Das [4] proved that among *n*-vertex graphs with given chromatic number, the Turán graph is the unique graph having the maximum *ABC* index. Shao et al. [22] reported a sharp upper bound for bipartite graphs of order $n \ge 6$, size 2n - 3, and with no pendent vertex, and characterized all extreme bipartite graphs. Wu and Zhang [23] determined the minimum *ABC* index and its structural properties for chemical trees with *n* vertices and *k* pendent vertices for $n \ge 3k - 2$.

In order to obtain better correlation abilities of *ABC* index for the heat of formation of alkanes, Furtula et al. [13] proposed a generalization of this index as:

$$ABC_{\alpha}(G) = \sum_{vu \in E(G)} \left(\frac{d(u) + d(v) - 2}{d(u) d(v)} \right)^{\alpha},$$

where α is some non-zero real number. They established that $\alpha = -3$ yields the best correlation results, and named the respective index "augmented Zagreb index", *AZI*,

$$AZI(G) = \sum_{vu \in E(G)} \left(\frac{d(u) d(v)}{d(u) + d(v) - 2} \right)^3$$

Chen and Hao [5] characterized the graphs with maximal ABC_{α} -value for $\alpha < 0$ among connected graphs with given order and vertex connectivity, edge connectivity, or matching number. Das et al. [7] obtained some optimization results on ABC_{α} for connected graphs. Prakasha et al. [20] calculated the atom-bond connectivity index of some derived graphs, such as double graphs, subdivision graphs and complements of some standard graphs. A generalized version of ABC_{α} was studied in [3].

Evidently, ABC_{α} is the generalization of the augmented Zagreb index $AZI = ABC_{-3}$. Furtula et al. [13] proved that S_n is the unique extremal tree of order n with minimal AZI. Lin et al. [18] conjectured that the balanced double star is the unique tree of order n with maximum AZI for $n \ge 19$. Eventually, Lin et al. [19] proved this conjecture. Further results related to AZI can be found in the review [2], the papers, [8, 15–17], and the references cited therein.

In this paper, we prove that for $\alpha \le -1$, the balanced double broom is the unique tree minimizing ABC_{α} among trees of order *n* and diameter *d*, as well as trees of order *n* with *k* pendent vertices.

2. Preliminaries

Let x_1 , x_2 and α be positive real numbers such that x_1 , x_2 , $\alpha \ge 1$ and $x_1 + x_2 \ge 3$. Consider the function $f_{\alpha}(x_1, x_2) = [x_1 x_2/(x_1 + x_2 - 2)^{\alpha}]^{\alpha}$. For $\alpha = 3$, some properties of this function were studied in [17–19]. In this section, we prove that analogous results hold for $f_{\alpha}(x_1, x_2)$ when $\alpha \ge 1$, and state some previously known results needed in the subsequent sections.

Lemma 2.1. Let $\alpha \ge 1$. (i) The function $f_{\alpha}(x_1, 1)$ strictly decreases for $x_1 \ge 2$ and $f_{\alpha}(x_1, 2) = 2^{\alpha}$. (ii) For given $x_2 \ge 3$, the function $f_{\alpha}(x_1, x_2)$ strictly increases for $x_1 \ge 2$.

Proof. (i) From the definition of $f_{\alpha}(x_1, x_2)$, we have

$$f_{\alpha}(x_1, 1) = \left(\frac{x_1}{x_1 - 1}\right)^{\alpha} = \left(1 + \frac{1}{x_1 - 1}\right)^{\alpha}$$

and

$$f_{\alpha}(x_1,2) = \left(\frac{2x_1}{2+x_1-2}\right)^{\alpha} = 2^{\alpha}.$$

From the first equation, one can easily see that $f_{\alpha}(x_1, 1)$ strictly decreases with $x_1 \ge 2$. (ii) Also, we have

$$f_{\alpha}(x_1, x_2) = \left(\frac{x_1 x_2}{x_1 + x_2 - 2}\right)^{\alpha} = \left(x_2 - \frac{x_2^2 - 2x_2}{x_1 + x_2 - 2}\right)^{\alpha}.$$

Since $x_2 \ge 3$, we have $x_2^2 - 2x_2 > 0$ and it follows that $f_\alpha(x_1, x_2)$ strictly increases with $x_1 \ge 2$. \Box

The following result immediately follows from the above lemma.

Lemma 2.2. If $\alpha > 0$, $x_1, x_2, x_3 \ge 3$ and $x_4 \ge 2$, then

 $1 < f_{\alpha}(x_{3}, 1) \le f_{\alpha}(3, 1) = (3/2)^{\alpha} < f_{\alpha}(2, 1) = f_{\alpha}(2, x_{4}) = 2^{\alpha}$ $< (9/4)^{\alpha} = f_{\alpha}(3, 3) \le f_{\alpha}(x_{1}, x_{2}),$

with equalities if and only if $x_3 = 3$ and $x_1 = x_2 = 3$, respectively.

Lemma 2.3. [5] Let G be a connected graph with non-adjacent vertices u and v. If $\alpha < 0$, then $ABC_{\alpha}(G + uv) > ABC_{\alpha}(G)$.

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be two sequences of real numbers. If the sequences x and y satisfy the following three conditions

(i) $x_1 \ge x_2 \ge \cdots \ge x_n$ and $y_1 \ge y_2 \ge \cdots \ge y_n$,

(ii) $x_1 + x_2 + \dots + x_k \ge y_1 + y_2 + \dots + y_k$, for all $1 \le k \le n - 1$,

(iii) $x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n$,

then one says that the sequence *x* majorizes the sequence *y*, which is denoted by x > y or y < x.

Lemma 2.4. (Karamata's inequality) Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be sequences of real numbers on the interval (t_1, t_2) . If x > y, and $f : (t_1, t_2) \rightarrow \mathbb{R}$ is a strictly convex function, then

 $f(x_1) + f(x_2) + \dots + f(x_n) \ge f(y_1) + f(y_2) + \dots + f(y_n)$

with equality if and only if $x_i = y_i$ for all i, $1 \le i \le n$.

Lemma 2.5. (Power mean inequality) Let $\beta \ge 1$ be a real number and $x_1, x_2, ..., x_r$ be non-negative real numbers. *Then*

$$\frac{x_1^{\beta}+x_2^{\beta}+\cdots+x_r^{\beta}}{r} \ge \left(\frac{x_1+x_2+\cdots+x_r}{r}\right)^{\beta},$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$ or $\beta = 1$.

Lemma 2.6. Let *c* and $t_1 \ge t_2 > 1$ be positive integers such that $t_1 + t_2 = c$. If $\beta > 1$, then

$$\frac{t_1^{\beta}}{(t_1 - 1)^{\beta - 1}} + \frac{t_2^{\beta}}{(t_2 - 1)^{\beta - 1}} \ge \frac{\lceil c/2 \rceil^{\beta}}{(\lceil c/2 \rceil - 1)^{\beta - 1}} + \frac{\lfloor c/2 \rfloor^{\beta}}{(\lfloor c/2 \rfloor - 1)^{\beta - 1}}$$

with equality if and only if $t_1 = \lceil c/2 \rceil$ and $t_2 = \lfloor c/2 \rfloor$.

Proof. Consider a function $f(t) = t^{\beta}/(t-1)^{\beta-1}$ for $t \ge 2$. Then we have

$$f'(t) = \frac{t^{\beta-1}(t-\beta)}{(t-1)^{\beta}}$$
 and $f''(t) = \frac{\beta(\beta-1)t^{\beta-2}}{(t-1)^{\beta+1}} > 0$,

since $\beta > 1$ and t > 1. It follows that f(t) is strictly convex on $(1, \infty)$. Also, one can easily see that (t_1, t_2) majorizes $(\lceil c/2 \rceil, \lfloor c/2 \rfloor)$, i. e.,

$$(t_1, t_2) > (\lceil c/2 \rceil, \lfloor c/2 \rfloor),$$

since $t_1 \ge t_2$ are integers such that $t_1 + t_2 = c$. Hence by Karamata's inequality we get the required result. \Box

3. Graphs of order *n* with diameter *d*

A double broom $DB_{a,b,d}$ is a tree obtained from P_{d-1} by attaching a-1 and b-1 pendent edges, respectively, to its end vertices. If $|a - b| \le 1$ then the double broom is said to be balanced. If d = 3, then a double broom $DB_{a,b,3}$ is called a double star and is denoted by $DS_{a,b}$. Denote by $\mathcal{T}_{n,d}$ the set of trees of order n with diameter d. Then it is easy to check that $DB_{a,b,d} \in \mathcal{T}_{n,d}$ when a + b = n - d + 3, and any tree in $\mathcal{T}_{n,3}$ is a double star.

Theorem 3.1. Let *T* be a tree in $\mathcal{T}_{n,3}$ and $\alpha \leq -1$. Then

$$ABC_{\alpha}(T) \ge \frac{2}{2^{\alpha}} + (n-3)\left(\frac{n-3}{n-2}\right)^{\alpha}$$

with equality if and only if T is isomorphic to the double star $DS_{n-2,2}$.

Proof. Since $T \in \mathcal{T}_{n,3}$, there exist positive integers $a \ge b \ge 2$, such that a + b = n and $T \cong DS_{a,b}$. For convenience, we denote $\beta = -\alpha$. Then $\beta \ge 1$ and from the definition of ABC_{α} , we have

$$ABC_{\alpha}(DS_{a,b}) = \frac{a^{\beta}}{(a-1)^{\beta-1}} + \frac{b^{\beta}}{(b-1)^{\beta-1}} + \left(\frac{ab}{n-2}\right)^{\beta},$$

because a + b = n. Therefore, it suffices to prove that

$$\frac{a^{\beta}}{(a-1)^{\beta-1}} + \frac{b^{\beta}}{(b-1)^{\beta-1}} + \left(\frac{ab}{n-2}\right)^{\beta} \ge 2^{\beta+1} + (n-3)\left(\frac{n-2}{n-3}\right)^{\beta}.$$
(1)

If $\beta = 1$, then $ab \ge 2(n-2)$ since $b \ge 2$ and a + b = n. Hence, we easily get the required result from (1).

Let now $\beta > 1$. If b = 2. then one can easily see that the equality in (1) holds. Thus, we assume that $b \ge 3$ and prove that the strict inequality in (1) holds. From a + b = n and $a \ge b \ge 3$, we have $n - 2 > a \ge b \ge 3$ and it follows that

$$(a-1)\left(\frac{a}{a-1}\right)^{\beta} + (b-2)\left(\frac{b}{b-1}\right)^{\beta} > (n-3)\left(\frac{n-2}{n-3}\right)^{\beta}$$
(2)

by Lemma 2.1 and a + b = n. Since $b \ge 3$, we have $n \ge 6$.

Let $n \ge 8$. If b = 3, then ab = 3(n - 3) and we have

$$\frac{b}{b-1} + \frac{ab}{n-2} = \frac{3}{2} + \frac{3(n-3)}{n-2} = \frac{9}{2} - \frac{3}{n-2} \ge \frac{9}{2} - \frac{3}{6} = 4.$$

If $b \ge 4$, then $ab \ge 4(n-4)$ and we get

$$\frac{b}{b-1} + \frac{ab}{n-2} \ge \frac{n/2}{n/2 - 1} + \frac{4(n-4)}{n-2} = 5 - \frac{6}{n-2} \ge 5 - \frac{6}{6} = 4.$$

since $b \le n/2$ and $ab \ge 4(n-4)$. Hence, by Lemma 2.5,

$$\left(\frac{b}{b-1}\right)^{\beta} + \left(\frac{ab}{n-2}\right)^{\beta} \ge 2\left[\frac{1}{2}\left(\frac{b}{b-1} + \frac{ab}{n-2}\right)\right]^{\beta} \ge 2^{\beta+1},\tag{3}$$

since $\beta > 1$. Bearing in mind the inequalities (2) and (3), we arrive at the strict inequality in (1).

Consider now the cases n = 6 or n = 7. Then a = b = 3 or b = 3, a = 4. Therefore, we need to prove that

$$4\left(\frac{3}{2}\right)^{\beta} + \left(\frac{9}{4}\right)^{\beta} \ge 2^{\beta+1} + 3\left(\frac{4}{3}\right)^{\beta}$$

and

$$2\left(\frac{3}{2}\right)^{\beta}+3\left(\frac{4}{3}\right)^{\beta}+\left(\frac{12}{5}\right)^{\beta}\geq 2^{\beta+1}+4\left(\frac{5}{4}\right)^{\beta}.$$

By direct numerical calculations, we check that the above inequalities hold for all $\beta \ge 1$. This completes the proof. \Box

If $d \ge 4$, then by using Lemma 2.1, we can directly calculate that

$$ABC_{\alpha}(DB_{a,b,d}) = \frac{d-2}{2^{\alpha}} + \frac{(a-1)^{\alpha+1}}{a^{\alpha}} + \frac{(b-1)^{\alpha+1}}{b^{\alpha}}.$$
(4)

The above equation and a + b = n - d + 3 imply the following lemma.

Lemma 3.2. Let *n* and *d* be positive integers such that $n > d \ge 4$. If *T* is a double broom in $\mathcal{T}_{n,d}$, then

$$ABC_{-1}(T) = n + d - 1.$$

Theorem 3.3. Let *n* and *d* be positive integers such that $n > d \ge 4$ and *T* be a tree in $\mathcal{T}_{n,d}$. If $\alpha \le -1$, then

$$ABC_{\alpha}(T) \ge \frac{d-2}{2^{\alpha}} + \frac{\lceil (n-d+1)/2 \rceil^{\alpha+1}}{\lceil (n-d+3)/2 \rceil^{\alpha}} + \frac{\lfloor (n-d+1)/2 \rfloor^{\alpha+1}}{\lfloor (n-d+3)/2 \rfloor^{\alpha}}$$
(5)

with equality if and only if T is isomorphic to a double broom in $\mathcal{T}_{n,d}$ when $\alpha = -1$, and T is isomorphic to the balanced double broom in $\mathcal{T}_{n,d}$ when $\alpha < -1$.

Proof. For convenience, denote $\beta = -\alpha$. Let $v_1v_2 \cdots v_{d+1}$ be a diameter of T and u be a maximum degree vertex in T. Also let $N(u) = \{w_1, w_2, \dots, w_{\Delta}\}, d(w_1) \ge 2$ and Δ_1 be the maximum degree in $V(T) \setminus \{u\}$. Clearly $\Delta_1 \ge 2$. For all i such that $2 \le i \le d$, we have $d(v_i) \ge 2$ and by Lemma 2.2 it follows that

$$f_{\beta}(d(v_i), d(v_{i+1})) \ge 2^{\beta}$$
 for all $2 \le i \le d-1$.

In addition, by Lemma 2.1,

$$f_{\beta}(d(u), d(w_i)) \ge \left(\frac{\Delta}{\Delta - 1}\right)^{\beta}$$
 for all $2 \le i \le \Delta$.

For any edge xy in E(T), different from $v_2v_3, v_3v_4, \ldots, v_{d-1}v_d$ and $uw_2, uw_3, \ldots, uw_{\Delta}$, we have

$$f_{\beta}(d(x), d(y)) \ge \left(\frac{\Delta_1}{\Delta_1 - 1}\right)^{\beta},$$

by the definition of Δ_1 and Lemma 2.1. On the other hand, one can easily see that $\Delta_1 \leq n - d - \Delta + 3$. Denote $M = \{v_2v_3, v_3v_4, \dots, v_{d-1}v_d\}$ and $N = \{uw_2, uw_3, \dots, uw_{\Delta}\}$. Then, from the above mentioned inequalities we

get

$$ABC_{\alpha}(T) \geq 2^{\beta} |M| + (|N| - |M \cap N|) \left(\frac{\Delta}{\Delta - 1}\right)^{\beta} + (n - 1 - |M \cup N|) \left(\frac{\Delta_{1}}{\Delta_{1} - 1}\right)^{\beta}$$

$$\geq 2^{\beta} (d - 2) + (\Delta - 1) \left(\frac{\Delta}{\Delta - 1}\right)^{\beta} - |M \cap N| \left(\frac{\Delta_{1}}{\Delta_{1} - 1}\right)^{\beta} + (n - 1 - |M \cup N|) \left(\frac{\Delta_{1}}{\Delta_{1} - 1}\right)^{\beta}$$

$$= 2^{\beta} (d - 2) + (\Delta - 1) \left(\frac{\Delta}{\Delta - 1}\right)^{\beta} + (n - d - \Delta + 2) \left(\frac{\Delta_{1}}{\Delta_{1} - 1}\right)^{\beta}$$

$$\geq 2^{\beta} (d - 2) + (\Delta - 1) \left(\frac{\Delta}{\Delta - 1}\right)^{\beta} + (n - d - \Delta + 2) \left(\frac{\Delta_{1}}{\Delta_{1} - 1}\right)^{\beta}$$

$$+ (n - d - \Delta + 2) \left(\frac{n - d - \Delta + 3}{n - d - \Delta + 2}\right)^{\beta}$$
(7)

by |E(T)| = n - 1, |M| = d - 2, $|N| = \Delta - 1$, $\Delta_1 \le \Delta$, $\Delta_1 \le n - d - \Delta + 3$.

Now we distinguish the following two cases.

Case 1. Let $\beta = 1$. Then from (7), we get

$$ABC_{-1}(T) \ge 2(d-2) + \Delta + (n-d-\Delta+3) = n+d-1,$$

which is our required result. If the equality in (5) holds, then the equality in (7) holds, and it follows that $\Delta_1 = n - d - \Delta + 3$. Also the equality in (6) holds. Hence, all edges in $E(T) \setminus M$ are pendent and are adjacent to *u* or *v*, where *v* is the vertex such that $d(v) = \Delta_1$. Hence, one can easily see that *T* is isomorphic to a double broom in $\mathcal{T}_{n,d}$. Conversely, if *T* is isomorphic to a double broom in $\mathcal{T}_{n,d}$ then

$$ABC_{-1}(T) = n + d - 1$$

by Lemma 3.2.

Case 2. Let $\beta > 1$. Then from (7) and Lemma 2.6, we get

$$ABC_{\alpha}(T) \ge (d-2)2^{\beta} + \frac{\Delta^{\beta}}{(\Delta-1)^{\beta-1}} + \frac{(n-d-\Delta+3)^{\beta}}{(n-d-\Delta+2)^{\beta-1}}$$

$$\ge (d-2)2^{\beta} + \frac{\lceil (n-d+3)/2 \rceil^{\beta}}{\lceil (n-d+1)/2 \rceil^{\beta-1}} + \frac{\lfloor (n-d+3)/2 \rfloor^{\beta}}{\lfloor (n-d+1)/2 \rfloor^{\beta-1}}$$

$$= \frac{d-2}{2^{\alpha}} + \frac{\lceil (n-d+1)/2 \rceil^{\alpha+1}}{\lceil (n-d+3)/2 \rceil^{\alpha}} + \frac{\lfloor (n-d+1)/2 \rfloor^{\alpha+1}}{\lfloor (n-d+3)/2 \rfloor^{\alpha}}.$$
(8)

If the equality in (5) holds, then also the equalities in (6) and (7) must hold. Hence, T is isomorphic to a double broom by Case 1. Also, the equality in (8) holds, and it follows that

$$\Delta = \lceil (n-d+3)/2 \rceil \text{ and } \Delta_1 = \lfloor (n-d+3)/2 \rfloor.$$

Therefore, *T* is isomorphic to the balanced double broom in $\mathcal{T}_{n,d}$.

Corollary 3.4. [15] *Let T* be a tree of order *n* with diameter $d \ge 4$. Then

$$AZI(T) \ge 8(d-2) + \frac{\lceil (n-d+3)/2 \rceil^3}{\lceil (n-d+1)/2 \rceil^2} + \frac{\lfloor (n-d+3)/2 \rfloor^3}{\lfloor (n-d+1)/2 \rfloor^2}$$

with equality if and only if T is isomorphic to the balanced double broom in $\mathcal{T}_{n,d}$.

Theorem 3.5. *Let T be a tree of order n. If* $\alpha \leq -1$ *then*

$$ABC_{\alpha}(T) \ge (n-1)\left(\frac{n-2}{n-1}\right)^{\alpha}$$

with equality if and only if T is isomorphic to the star S_n .

Proof. Let $\beta = -\alpha$ and *d* be the diameter of *T*. From Lemma 2.1, we have

$$\left(\frac{n-1}{n-2}\right)^{\beta} < \left(\frac{n-2}{n-3}\right)^{\beta} < \left(\frac{\lceil (n-d+3)/2\rceil}{\lceil (n-d+1)/2\rceil}\right)^{\beta} \le \left(\frac{\lfloor (n-d+3)/2\rfloor}{\lfloor (n-d+1)/2\rfloor}\right)^{\beta}$$

since $n - 1 > n - 2 > \lceil (n - d + 3)/2 \rceil \ge \lfloor (n - d + 3)/2 \rfloor$. Hence, we get

$$(d-2)2^{\beta} + \frac{\lceil (n-d+3)/2 \rceil^{\beta}}{\lceil (n-d+1)/2 \rceil^{\beta-1}} + \frac{\lfloor (n-d+3)/2 \rfloor^{\beta}}{\lfloor (n-d+1)/2 \rfloor^{\beta-1}}$$
$$> 2 \cdot 2^{\beta} + (n-3) \left(\frac{n-2}{n-3}\right)^{\beta} > (n-1) \left(\frac{n-1}{n-2}\right)^{\beta}$$

since $2 > \frac{n-2}{n-3} > \frac{n-1}{n-2}$. On the other hand,

$$ABC_{\alpha}(S_n) = (n-1)\left(\frac{n-1}{n-2}\right)^{\beta}.$$

By this, the proof is complete. \Box

From the proof of the Theorem 3.5, we arrive at the following theorem.

Theorem 3.6. Let $T (\neq S_n)$ be a tree of order n. If $\alpha \leq -1$, then

$$ABC_{\alpha}(T) \ge \frac{2}{2^{\alpha}} + (n-3)\left(\frac{n-3}{n-2}\right)^{\alpha}$$

with equality if and only if T is isomorphic to the double star $DS_{n,n-2}$.

Theorem 3.7. Let *G* be a graph of order *n* with diameter $d \ge 4$. If $\alpha \le -1$ then

$$ABC_{\alpha}(G) \ge \frac{d-2}{2^{\alpha}} + \frac{\lceil (n-d+1)/2 \rceil^{\alpha+1}}{\lceil (n-d+3)/2 \rceil^{\alpha}} + \frac{\lfloor (n-d+1)/2 \rfloor^{\alpha+1}}{\lfloor (n-d+3)/2 \rfloor^{\alpha}}$$

with equality if and only if G is isomorphic to a double broom in $\mathcal{T}_{n,d}$ when $\alpha = -1$ and G is isomorphic to the balanced double broom in $\mathcal{T}_{n,d}$ when $\alpha < -1$.

Proof. Let *T* be any spanning tree of *G* and d_1 be the diameter of *T*. Clearly, $d_1 \ge d$. Set $\beta = -\alpha$, $a = \lceil (n-d+1)/2 \rceil$, $b = \lfloor (n-d+1)/2 \rfloor$,

 $a_1 = \lceil (n - d_1 + 1)/2 \rceil$, and $b_1 = \lfloor (n - d_1 + 1)/2 \rfloor$. Then $a \ge a_1, b \ge b_1$ and $(a - a_1) + (b - b_1) = d_1 - d$. By Lemma 2.3 and Theorem 3.3, we have

$$\begin{split} ABC_{\alpha}(G) &\geq ABC_{\alpha}(T) \\ &\geq \frac{d_{1}-2}{2^{\alpha}} + \frac{\lceil (n-d_{1}+1)/2\rceil^{\alpha+1}}{\lceil (n-d_{1}+3)/2\rceil^{\alpha}} + \frac{\lfloor (n-d_{1}+1)/2\rfloor^{\alpha+1}}{\lfloor (n-d_{1}+3)/2\rfloor^{\alpha}} \\ &= (d_{1}-2) \, 2^{\beta} + \frac{(a_{1}+1)^{\beta}}{a_{1}^{\beta-1}} + \frac{(b_{1}+1)^{\beta}}{b_{1}^{\beta-1}} \\ &= (d-2) \, 2^{\beta} + (a-a_{1}) \, 2^{\beta} + a_{1} \left(\frac{a_{1}+1}{a_{1}}\right)^{\beta} + (b-b_{1}) \, 2^{\beta} + b_{1} \left(\frac{b_{1}+1}{b_{1}}\right)^{\beta} \\ &\geq (d-2) \, 2^{\beta} + (a-a_{1}) \left(\frac{a+1}{a}\right)^{\beta} + a_{1} \left(\frac{a+1}{a}\right)^{\beta} \\ &+ (b-b_{1}) \left(\frac{b+1}{b}\right)^{\beta} + b_{1} \left(\frac{b+1}{b}\right)^{\beta} \\ &= (d-2) \, 2^{\beta} + a \left(\frac{a+1}{a}\right)^{\beta} + b \left(\frac{b+1}{b}\right)^{\beta} \\ &= \frac{d-2}{2^{\alpha}} + \frac{\lceil (n-d+1)/2\rceil^{\alpha+1}}{\lceil (n-d+3)/2\rceil^{\alpha}} + \frac{\lfloor (n-d+1)/2\rfloor^{\alpha+1}}{\lfloor (n-d+3)/2\rceil^{\alpha}} \,, \end{split}$$

where, in addition, we used Lemma 2.1 and $2 \ge (x + 1)/x$ for $x \ge 1$. If the equality holds, then *G* must be a tree and by Theorem 3.3, *G* is isomorphic to a double broom in $\mathcal{T}_{n,d}$ when $\alpha = -1$, and *G* is isomorphic to the balanced double broom in $\mathcal{T}_{n,d}$ when $\alpha < -1$. \Box

4. Graphs of order *n* with *k* pendent vertices

Denote by \mathcal{T}_n^k the set of trees of order n with k pendent vertices. Then one can easily check that $DB_{a,b,d} \in \mathcal{T}_n^k$ if a + b = k + 2 and a + b + d = n + 3. If k = n - 1, then there is only one tree in \mathcal{T}_n^{n-1} , that is the star S_n . Therefore, we assume that $k \le n - 2$. Clearly, each tree in \mathcal{T}_n^{n-2} is a double star. Hence by Theorem 3.1, we arrive at the following lemma.

Lemma 4.1. Let T be a tree in \mathcal{T}_n^{n-2} and $\alpha \leq -1$. Then

$$ABC_{\alpha}(T) \geq \frac{2}{2^{\alpha}} + (n-3)\left(\frac{n-3}{n-2}\right)^{\alpha}$$
,

with equality if and only if T is isomorphic to the double star $DS_{n-2,2}$.

Theorem 4.2. Let T be a tree in \mathcal{T}_n^k and $k \le n-3$. If $\alpha \le -1$, then

$$ABC_{\alpha}(T) \ge \frac{n-k-1}{2^{\alpha}} + \frac{\lceil k/2 \rceil^{\alpha+1}}{\lceil (k+2)/2 \rceil^{\alpha}} + \frac{\lfloor k/2 \rfloor^{\alpha+1}}{\lfloor (k+2)/2 \rfloor^{\alpha}},$$
(9)

with equality if and only if T is isomorphic to a double broom in \mathcal{T}_n^k when $\alpha = -1$, and T is isomorphic to the balanced double broom in \mathcal{T}_n^k when $\alpha < -1$.

Proof. For convenience, denote $\beta = -\alpha$. Let *u* be a maximum degree vertex in *T* and *v* be the maximum degree vertex in $V(T) \setminus \{u\}$. Also let u_1, u_2, \ldots, u_p and v_1, v_2, \ldots, v_q be pendent neighbors of *u* and *v*, respectively. As before, $d(u) = \Delta$ and $d(v) = \Delta_1$. Then $p \le \Delta - 1$ and $q \le \Delta_1 - 1$. Since *T* has exactly *k* pendent vertices, we have $\Delta + \Delta_1 \le k + 2$ and $\Delta \ge \Delta_1 \ge 2$. For any non-pendent edge *xy* in *T*, we have

$$f_{\beta}(d(x), d(y)) \ge 2^{\beta}$$

by $d(x) \ge 2$, $d(y) \ge 2$ and Lemma 2.2. It is easy to see that if x_1y_1 is a pendent edge in *T* different from uu_i , $1 \le i \le p$ and vv_j , $1 \le j \le q$, then

$$f_{\beta}(d(x_1), d(y_1)) \ge \left(\frac{\Delta_1}{\Delta_1 - 1}\right)^{\beta},$$

by Lemma 2.2. From the above inequalities and definition of ABC_{α} , we have

$$ABC_{\alpha}(T) \ge p\left(\frac{\Delta}{\Delta-1}\right)^{\beta} + q\left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta}$$

$$+ (k-p-q)\left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta} + (n-1-k)2^{\beta}$$

$$= p\left[\left(\frac{\Delta}{\Delta-1}\right)^{\beta} - \left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta}\right] + k\left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta} + (n-1-k)2^{\beta}$$

$$\ge (\Delta-1)\left[\left(\frac{\Delta}{\Delta-1}\right)^{\beta} - \left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta}\right] + k\left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta} + (n-1-k)2^{\beta}$$

$$= (\Delta-1)\left(\frac{\Delta}{\Delta-1}\right)^{\beta} + (k-\Delta+1)\left(\frac{\Delta_{1}}{\Delta_{1}-1}\right)^{\beta} + (n-1-k)2^{\beta}$$

$$\ge (\Delta-1)\left(\frac{\Delta}{\Delta-1}\right)^{\beta} + (k-\Delta+1)\left(\frac{k-\Delta+2}{k-\Delta+1}\right)^{\beta} + (n-1-k)2^{\beta}$$

since $p \le \Delta - 1$, $(\Delta/(\Delta - 1))^{\beta} - (\Delta_1/(\Delta_1 - 1))^{\beta} \le 0$ and $\Delta_1 \le k - \Delta + 2$.

If $\beta = 1$, then we get

$$ABC_{\alpha}(T) \ge k + 2 + 2(n - 1 - k) = 2n - k.$$
⁽¹⁰⁾

If the equality in (10) holds, then clearly $\Delta + \Delta_1 = k + 2$ and it follows that any pendent vertex in *T* is adjacent to either *u* or *v*. Let *P* be the path from *u* to *v*. Then a degree of any vertex on *P*, different from *u* and *v*, is 2. Namely, if it were greater than 2, then there would exists a pendent vertex that is not adjacent to *u* and *v*. Hence, *T* is isomorphic to a double broom in \mathcal{T}_n^k . Conversely, if *T* is isomorphic to a double broom in \mathcal{T}_n^k , then the diameter of *T* is n - k + 1. Then by Lemma 3.2, we have

$$ABC_{-1}(T) = n + (n - k + 1) - 1 = 2n - k$$
.

If $\beta > 1$ then by Lemma 2.6, we have

$$ABC_{\alpha}(T) \geq 2^{\beta}(n-k-1) + \frac{\Delta^{\beta}}{(\Delta-1)^{\beta-1}} + \frac{(k-\Delta+2)^{\beta}}{(k-\Delta+1)^{\beta-1}}$$

$$\geq 2^{\beta}(n-k-1) + \frac{\lceil (k+2)/2 \rceil^{\beta}}{\lceil k/2 \rceil^{\beta-1}} + \frac{\lfloor (k+2)/2 \rfloor^{\beta}}{\lfloor k/2 \rfloor^{\beta-1}}$$

$$= \frac{n-k-1}{2^{\alpha}} + \frac{\lceil k/2 \rceil^{\alpha+1}}{\lceil (k+2)/2 \rceil^{\alpha}} + \frac{\lfloor k/2 \rfloor^{\alpha+1}}{\lfloor (k+2)/2 \rfloor^{\alpha}}.$$
 (11)

Suppose now that equality in (9) holds. Then $\Delta + \Delta_1 = k + 2$ and it follows that *T* is isomorphic to a double broom in \mathcal{T}_n^k . Also the equality in (11) holds. Hence, we have $\Delta = \lceil (k+2)/2 \rceil$ and $\Delta_1 = \lfloor (k+2)/2 \rfloor$. Therefore, *T* is isomorphic to the balanced double broom in \mathcal{T}_n^k . Conversely, if *T* is isomorphic to the balanced double broom in \mathcal{T}_n^k , then one can easily see that the equality in (9) holds. \Box

Corollary 4.3. [16] Let T be a tree in \mathcal{T}_n^k and $k \le n - 3$. Then

$$AZI(T) \ge 8(n-k-1) + \frac{\lceil (k+2)/2 \rceil^3}{\lceil k/2 \rceil^2} + \frac{\lfloor (k+2)/2 \rfloor^3}{\lfloor k/2 \rfloor^2},$$

with equality if and only if T is isomorphic to the balanced double broom in \mathcal{T}_n^k .

Theorem 4.4. Let *G* be a graph of order *n* with *k* cut edges. If $k \le n - 3$ and $\alpha \le -1$, then

$$ABC_{\alpha}(G) \geq \frac{n-k}{2^{\alpha}} + k\left(\frac{k+1}{k+2}\right)^{\alpha},$$

with equality if and only if G is isomorphic to the graph obtained from C_{n-k} by attaching k pendent vertices to one vertex of C_{n-k} .

Proof. Let *m* be the number of edges of *G*. Since $k \le n - 3$, *G* is not isomorphic to a tree and it follows that $m \ge n$. If m > n, then there exist at least n - k + 1 non-pendent edges in *G*. Therefore,

$$ABC_{\alpha}(G) \geq \frac{n-k+1}{2^{\alpha}} + k \cdot \left(\frac{\Delta-1}{\Delta}\right)^{\alpha}$$

$$\geq \frac{n-k}{2^{\alpha}} + 2^{-\alpha} + k \cdot \left(\frac{n-1}{n-2}\right)^{-\alpha}$$

$$\geq \frac{n-k}{2^{\alpha}} + (k+1) \left(\frac{2+k(n-1)/(n-2)}{k+1}\right)^{-\alpha}$$

$$\geq \frac{n-k}{2^{\alpha}} + k \left(\frac{k+2}{k+1}\right)^{-\alpha} = \frac{n-k}{2^{\alpha}} + k \left(\frac{k+1}{k+2}\right)^{\alpha}$$
(12)

since Lemma 2.5, (n-1)/(n-2) > 1 and $\alpha \le -1$. Thus, *G* is unicyclic. Then, it is easy to see that $\Delta \le k + 2$. Since there exist exactly n - k non-pendent edges in *G*, we have

$$ABC_{\alpha}(G) \ge \frac{n-k}{2^{\alpha}} + k \cdot \left(\frac{\Delta-1}{\Delta}\right)^{\alpha} \ge \frac{n-k}{2^{\alpha}} + k \left(\frac{k+1}{k+2}\right)^{\alpha}$$
(13)

and the equality holds if and only if *G* is isomorphic to the graph obtained from C_{n-k} by attaching *k* pendent vertices to one vertex of C_{n-k} . \Box

Theorem 4.5. Let G be a unicyclic graph of order n with girth q. If $\alpha < 0$ then

$$ABC_{\alpha}(G) \geq \frac{g}{2^{\alpha}} + (n-g)\left(\frac{n-g+1}{n-g+2}\right)^{\alpha}$$
,

with equality if and only if G is isomorphic to the graph obtained from C_g by attaching n - g pendent vertices to one vertex of C_q .

Proof. Since the number of cut edges in *G* is n - g and the extremal graph in Theorem 4.4 is unicyclic, we get the required result by Theorem 4.4. \Box

The same argument as in the proof of Theorem 4.4 yields the following result.

Theorem 4.6. Let G be a cyclic graph of order n with k pendent vertices and $0 \le k \le n-3$. If $\alpha \le -1$, then

$$ABC_{\alpha}(G) \geq \frac{n-k}{2^{\alpha}} + k\left(\frac{k+1}{k+2}\right)^{\alpha}.$$

with equality if and only if G is isomorphic to the graph obtained from C_{n-k} by attaching k pendent vertices to one vertex of C_{n-k} .

Acknowledgment. The authors thank the anonymous reviewers for their helpful suggestions. B. Horoldagva is thankful for the support of the Mongolian National University of Education.

References

- A. Ali, K.C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: A review over extremal results and bounds, Discrete Math. Lett. 5 (2021), 68–93.
- [2] A. Ali, B. Furtula, I. Gutman, D. Vukičević, Augmented Zagreb index: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 85 (2021), 221–244.
- [3] C. Chen, M. Liu, X. Chen, W. Lin, On general ABC-type index of connected graphs, Discrete Appl. Math. 315 (2022), 27–35.
- [4] X. Chen, K.C. Das, Solution to a conjecture on the maximum ABC index of graphs with given chromatic number, Discrete Appl. Math. **251** (2018), 126–134.
- [5] X. Chen, G. Hao, *Extremal graphs with respect to generalized ABC index*, Discrete Appl. Math. 243 (2018), 115–124.
- [6] K.C. Das, S. Elumalai, I. Gutman, On ABC index of graphs, MATCH Commun. Math. Comput. Chem. 78 (2017), 459–468.
 [7] K.C. Das, J.M. Rodríguez, J.M. Sigarreta, On the maximal general ABC index of graphs with given maximum degree, Appl. Math. Comput. 386 (2020), #125531.
- [8] K.C. Das, J.M. Rodríguez, J.M. Sigarreta, On the generalized ABC index of graphs, MATCH Commun. Math. Comput. Chem. 87 (2022), 147–169.
- [9] D. Dimitrov, Z. Du, Complete characterization of the minimal-ABC trees, Discrete Appl. Math. 336 (2023), 148-194.
- [10] D. Dimitrov, Z. Du, The ABC index conundrum's complete solution, MATCH Commun. Math. Comput. Chem. 91 (2024), 000–000.
- [11] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008), 422–425.
- [12] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998), 849–855.
- [13] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010), 370–380.
- [14] I. Gutman, I., J. Tošović, S. Radenković, S.Marković, On atom-bond connectivity index and its chemical applicability, Indian J. Chem. 51A (2012), 690–694.
- [15] Y. Huang, Trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index, Commun. Math. Res. 33 (2017), 8–18.
- [16] Y. Huang, B. Liu, Ordering graphs by the augmented Zagreb indices, J. Math. Res. Appl. 35 (2015), 119–129.
- [17] Y. Huang, B. Liu, L. Gan, Augmented Zagreb index of connected graphs, MATCH Commun. Math. Comput. Chem. 67 (2012), 483–494.
- [18] W. Lin, A. Ali, H. Huang, Z. Wu, J. Chen, On the trees with maximal augmented Zagreb index, IEEE Access 6 (2018), 69335–69341.
 [19] W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Commun.
- Math. Comput. Chem. 83 (2020), 167–178.
 K. D. Brakesha, B. K. Baddy, J.N. Cargul. Along hand source traits index of source in another. TMMC I. Appl. Eng. Meth. 12 (2022).
- [20] K.N. Prakasha, P.S.K. Reddy, I.N. Cangul, Atom-bond-connectivity index of certain graphs, TWMS J. Appl. Eng. Math. 13 (2023), 400–408.
- [21] Z. Shao, P. Wu, Y. Gao, I. Gutman, X. Zhang, On the maximum ABC index of graphs without pendent vertices, Appl. Math. Comput. 315 (2017), 298–321.

- [22] Z. Shao, P. Wu, H. Jiang, S.M. Sheikholeslami, S. Wang, On the maximum ABC index of bipartite graphs without pendent vertices, Open Chem. 18 (2020), 39–49.
- [23] X. Wu, L. Zhang, On structural properties of ABC-minimal chemical trees, Appl. Math. Comput. 362 (2019), #124570.
 [24] X. Zhang, Y. Sun, H. Wang, X. Zhang, On the ABC index of connected graphs with given degree sequences, J. Math. Chem. 56 (2018), 568–582.