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On sequential warped product η-Ricci-Bourguignon solitons
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Abstract. We investigate η-Ricci-Bourguignon solitons structure on sequential warped product manifolds
and prove that an η-Ricci-Bourguignon soliton sequential warped manifold whose potential vector field
is Killing or conformal must be a quasi-Einstein manifold. Finally, we deduce two applications of η-
Ricci-Bourguignon solitons sequential warped product namely standard static space-times and generalized
Robertson-Walker space-times.

1. Introduction

Ricci-Bourguignons flow introduced by J. P. Bourguignon [6] are defined as an extension of Ricci flow
[21]. R. S. Hamilton [22] defined the Ricci solitons as a self-similar solutions of Ricci flow. From there, for
generalizing and particularizing gradient Ricci-Bourguignon solitons many examples were given. Then,
generalization results of Ricci solitons were given in [16]. In this study, inspiring the work of Ricci almost
solitons, he initiated the concept of almost Ricci-Bourguignon solitons. He gave some important results
which were qualified as the generalizing results for Ricci almost solitons. Therefore the notion of η-Ricci
soliton was introduced in [14] which was developed in [8] on Hopf hypersurfaces in complex space forms.

Besides, several authors studied the almost η-Ricci solitons, (see [3] [28]). The almost Ricci-Bourguignon
solitons provided some special potential vector fields and almost η-Ricci-Bourguignon solitons on a doubly
warped product were studied in [2]. The almost η-Ricci-Bourguignon solitons on compact and non compact
case were investigated by Traore et al. [31].

The notion of warped product Riemannian manifolds introduced in [1] is a generalization of the direct
product of Riemannian manifolds and plays a very important role in physics, as well as in differential
geometry, especially in the theory of relativity. On the other hand, doubly and multiply warped manifolds
generalize the warped product manifolds which were studied in ([17], [25], [26]). Indeed the sequential
warped product manifolds, was introduced in [15]. From there, several authors studied the Ricci solitons
on warped product manifolds, (see [5], [19], [20], [29]), [23], [24], [13], [10], [11], [27].
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* Corresponding author: Moctar Traore
Email addresses: moctar.traore@ogr.iu.edu.tr (Moctar Traore), hakmete@istanbul.edu.tr (Hakan Mete Taştan)
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Motivated by the above studies, we give basic background of η-Ricci-Bourguignon solitons, we establish
the structure of sequential warped product manifolds and gradient concurrent vector field in section 2. Then,
we construct a gradient η-Ricci-Bourguignon soliton on a sequential warped product manifold. We give the
necessary conditions for an η-Ricci-Bourguignon soliton sequential warped product to be quasi-Einstein
manifold under some conditions on gradient concurrent and its potential vector fields in section 3. In
section 4, we investigate warped product manifold sequential standard static space-times and generalized
Robertson-Walker space-times.

2. Preliminaries

Let (Mn, 1̃) be an n-dimensional Riemannian manifold, then we defined on Mn the Ricci-Bourguignon
solitons as a self-similar solutions to Ricci-Bourguignon flow [7] defined:

∂
∂t
1̃(t) = −2(Ric−ρ̃τ1̃), (1)

where τ is the scalar curvature of the Riemannian metric 1̃, Ric is the Ricci curvature tensor of the metric,
and ρ̃ is a real constant. When ρ̃ = 0 in (1), then we get a Ricci flow.

Definition 2.1. Let (Mn, 1̃) be a Riemannian manifold of dimension n ≥ 3. Then it is called Ricci-Bourguignon
soliton [16] if

Ric+
1
2

£ξ1̃ = (λ̃ + ρ̃τ)1̃, (2)

where £ξ denotes the Lie derivative operator along the vector field ξ which is called soliton or potential, ρ̃ and λ̃ are
real constants.

Considering η the 1̃-dual 1-form of ξ, (Mn, 1̃) is called η-Ricci-Bourguignon soliton [28] if the following
equation holds

Ric+
1
2

£ξ1̃ = (λ̃ + ρ̃τ)1̃ + µη ⊗ η, (3)

for a vector field ξ, where λ̃, µ are real constants. Particularly, taking ρ̃ = 0 in equation (3), we get the η-Ricci
soliton [4].

In (3), if ξ is the gradient of a function l on M, then we get a gradient η-Ricci-Bourguignon soliton. Then,
equation (3) can be written as

Ric+∇2l = (λ̃ + ρ̃τ)1̃ + µη ⊗ η, (4)

where ∇2l is the Hessian of l and it is denoted by (M, 1̃,∇l, λ̃, µ).

Definition 2.2. Let K1, K2 and K3 be three Riemannian manifolds of dimensions k1, k2 and k3 endowed with the
Riemannian metric tensors 1̃1, 1̃2 and 1̃3, respectively and let t and l be two smooth positive functions defined on K1
and K1 ×K2. Then the sequential warped product [15] (K1 × tK2)× lK3 of (K1, 1̃1), (K2, 1̃2) and (K3, 1̃3) is the product
manifold K = (K1 × K2) × K3 endowed with the metric 1̃ given by

1̃ = (1̃1 ⊕ t21̃2) ⊕ l21̃3.

The functions t and l are called warping functions. The sequential warped product will be denoted by (K, 1̃)
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If ζ is a vector field on K then it shall be written as

ζ = ζ1 + ζ2 + ζ3, where ζi ∈ X(Ki), i = 1, 2, 3. (5)

Denoted by ∇ and Ric the Levi–Civita connection and the Ricci tensor of a sequential warped product
manifold and let ∇i and Rici the Levi–Civita connection and the Ricci tensor of (Ki, 1̃i), for i = 1, 2, 3.

The covariant derivative formulas of sequential warped product manifold are given by the following.

Lemma 2.3. [15] Let (K1 × tK2) × lK3 be a sequential warped product manifold. Then for ζi,Ui ∈ X(Ki), i = 1, 2, 3,
we have

1. ∇ζ1 U1 = ∇
1
ζ1

U1,
2. ∇ζ1ζ2 = ∇ζ2ζ1 = ζ1(ln t)ζ2,
3. ∇ζ2 U2 = ∇

2
ζ2

U2 − t1̃2(ζ2,U2)∇1t,
4. ∇ζ3ζ1 = ∇ζ1ζ3 = ζ1(ln l)ζ3,
5. ∇ζ2ζ3 = ∇ζ3ζ2 = ζ2(ln l)ζ3,
6. ∇ζ3 U3 = ∇

3
ζ3

U3 − l1̃3(ζ3,U3)∇l,

where ∇1t and ∇l are the gradient of t on K1 and l on K1 ×l K2, respectively.

Lemma 2.4. [15] Let (K1 × tK2) × lK3 be a sequential warped product manifold. Then for ζi,Ui ∈ X(Ki), i = 1, 2, 3,
we have

1. Ric(ζ1,U1) =1 Ric(ζ1,U1) − k2
t ∇

2
1t(ζ1,U1) − k3

l ∇
2l(ζ1,U1),

2. Ric(ζ2,U2) =2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3
l ∇

2l(ζ2,U2),
3. Ric(ζ3,U3) =3 Ric(ζ3,U3) − l♯1̃3(ζ3,U3),
4. Ric(ζi,U j) = 0, for i , j, where t♯ = t∆1t + (k2 − 1)∥∇1t∥2 and l♯ = l∆l + (k3 − 1)∥∇l∥2,

where ∇2
1t, ∆1t and ∇2l, ∆l are the Hessian and the Laplacian of t on K1 and l on K1 ×l K2, respectively.

A vector field ξ on (M̃, 1̃) is called concircular [18]

∇ζξ = ψζ, (6)

where ψ is a smooth function on M̃. It is called conccurent if ψ = 1 [12]. Moreover, if the equation

£ξ1̃ = 2ψ1̃, (7)

holds, then ξ is called conformal vector field, where ψ is a smooth function on M̃. If ψ = 0, then ξ is called a
Killing vector field.

Lemma 2.5. [15] Let (K, 1̃) be a sequential warped product manifold. Then the vector field ξ ∈ X(K) satisfies

(£ξ1̃)(ζ,U) = (£1
ξ1
1̃1)(ζ1,U1) + t2(£2

ξ2
1̃2)(ζ2,U2) + l2(£3

ξ3
1̃3)(ζ3,U3)

+2tξ1(t)1̃2(ζ2,U2) + 2l(ξ1 + ξ2)(l)1̃3(ζ3,U3)
(8)

for any ζ,U ∈ X(K).

Recall that a non-flat Riemannian manifold (M̃, 1̃) (n ≥ 3) is said to be a quasi-Einstein manifold [9], if
Ricci tensor is not identically zero and satisfies

Ric = α11̃ + α2A ⊗ A, (9)

for α1 and α2 non-zero smooth functions and A a non-zero 1-form. The functions α1 and α2 are called
associated functions also (see [30]). Now we investigate the properties of η-Ricci-Bourguignon solitons on
sequential warped product manifolds.
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3. Main results

We start with the following results on a gradient η-Ricci-Bourguignon soliton sequential warped product
manifold.

Theorem 3.1. Let (K, 1̃) be a sequential warped product manifold. Then (K, 1̃,∇φ, λ̃, µ) is a gradient η-Ricci-
Bourguignon soliton with φ defined on K1 and η the 1̃-dual 1-form of the gradient ξ = ∇φ if and only if

1 Ric = (λ̃ + ρ̃τ)1̃1 − ∇
2
1φ +

k2

t
∇

2
1t +

k3

l
∇

2l + µdφ ⊗ dφ, (10)

2 Ric =
(
t2(λ̃ + ρ̃τ) − t∇φ(t) + t∆1t + (k2 − 1)∥∇1t∥2

)
1̃2 +

k3

l
∇

2l (11)

and

3 Ric =
(
l2(λ̃ + ρ̃τ) − l∇φ(l) + l∆l + (k3 − 1)∥∇l∥2

)
1̃3. (12)

Proof. If (K, 1̃,∇φ, λ̃, µ) is a gradient η-Ricci-Bourguignon soliton, then we have

Ric+∇2φ = (λ̃ + ρ̃τ)1̃ + µdφ ⊗ dφ. (13)

For any ζ1,U1 ∈ L(K1), using Lemma 2.4, we obtain

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ)1̃1(ζ1,U1) − ∇2φ(ζ1,U1) +
k2

t
∇

2
1t(ζ1,U1) +

k3

l
∇

2l(ζ1,U1) + µdφ(ζ1)dφ(U1). (14)

Therefore from Lemma 2.3, we have ∇2φ(ζ1,U1) = ∇2
1φ(ζ1,U1). Hence the equation (10) is proved.

Now for any ζ2,U2 ∈ L(K2), we have

2 Ric(ζ2,U2) = t2(λ̃ + ρ̃τ)1̃2(ζ2,U2) − ∇2φ(ζ2,U2) +
(
t∆1t + (k2 − 1)∥∇1t∥2

)
1̃2(ζ2,U2) +

k3

l
∇

2l(ζ2,U2). (15)

Then using the fact that

∇
2φ(ζ2,U2) = 1̃(∇ζ2∇φ,U2)

= t∇φ(t)1̃2(ζ2,U2)
(16)

and putting equation (16) in (15), we obtain

2 Ric(ζ2,U2) =
(
t2(λ̃ + ρ̃τ) − t∇φ(t) + t∆1t + (k2 − 1)∥∇1t∥2

)
1̃2(ζ2,U2) +

k3

l
∇

2l(ζ2,U2). (17)

Hence we get the equation (11).

Moreover for any ζ3,U3 ∈ L(K3), using the same calculus like the previous result, we get (12)

3 Ric(ζ3,U3) = l2(λ̃ + ρ̃τ)1̃3(ζ3,U3) − l∇φ(l) + l∆l + (k3 − 1)∥∇l∥21̃(ζ3,U3). (18)

The converse is just a verification.

The following lemma is a necessary and sufficient condition for a gradient vector field on a Riemannian
manifold to be concurrent.
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Lemma 3.2. Let k be a smooth function defined on (M̃, 1̃). Then ∇k of k is a concurrent vector field if and only if ∇2k
of k satisfies

∇
2k(ζ,U) = 1̃(ζ,U), (19)

where ∇k and ∇2k are the gradient and Hessian of k respectively and ζ,U are vector fields on M.

Proof. Let k be a smooth function on M and suppose that ∇2k of k satisfies (19). Then for any ζ,U ∈ X(M) on
M̃, we have

1̃(ζ,U) = ζU(k) − ∇ζU(k)

= ζ1̃(∇k,U) − 1̃(∇ζU,∇k) = 1̃(∇ζ(∇k),U).
(20)

Thus, we obtain ∇ζ(∇k) = ζ. Hence ξ = ∇k is a concurrent vector field. The converse is a simple
verification.

From Lemma 2.4, we can state the following corollary:

Corollary 3.3. Let (K, 1̃) be a sequential warped product manifold. Then (K, 1̃, ξ, λ̃, µ) is an η-Ricci-Bourguignon
soliton with ξ defined on K1 and η the 1̃-dual 1-form of ξ if and only if

Ric1 +
1
2

£1
ξ1̃ = (λ̃ + ρ̃τ)1̃1 +

k2

t
∇

2
1t +

k3

l
∇

2l + µη ⊗ η, (21)

Ric2 =
(
t2(λ̃ + ρ̃τ) − tξ(t) + t∆1t + (k2 − 1)∥∇1t∥2

)
1̃2 +

k3

l
∇

2l (22)

and

Ric3 =
(
l2(λ̃ + ρ̃τ) − lξ(l) + l∆l + (k3 − 1)∥∇l∥2

)
1̃3. (23)

Proof. The proof is similar to the proof of Theorem 3.1. It is sufficient to use Lemma 2.4 and the fact that

£ξ1̃(ζ2,U2) = 1̃(∇ζ2ξ,U2) + 1̃(ζ2,∇U2ξ)

= 2 ξ(t)
t 1̃(ζ2,U2)

= 2tξ(t)1̃2(ζ2,U2),

(24)

which allows us to complete the proof.

We give the following theorem:

Theorem 3.4. Let ξ ∈ X(K) be a potential vector on K. Assume that the gradient of t and l are concurrent vector fields
on K1 and K, respectively. If (K, 1̃, ξ, λ̃, µ) is an η-Ricci-Bourguignon soliton then we have the following conditions:

(a) (K1, 1̃1, ξ1, λ̃1, , µ) is an η-Ricci-Bourguignon soliton with λ̃1 + ρ̃1τ1 + µ = λ̃ + ρ̃τ +
k2
t +

k3
l .

(b) If ξ2 is a Killing vector field, then K2 is a quasi-Einstein manifold with factors t2λ̃ + ρ̃τt2 + t♯ + k3
l t2
− tξ1(t)

and µt4.
(c) (K3, 1̃3, l2ξ3, λ̃3, µl4) is an η-Ricci-Bourguignon soliton with λ̃3 + ρ̃3, τ3 + µl4 = λ̃l2 + ρ̃τl2 + l♯ − l(ξ1 + ξ2)(l).
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Proof. The η-Ricci-Bourguignon soliton (K, 1̃, ξ, λ̃, µ) is given by

Ric+
1
2

£ξ1̃ = (λ̃ + ρ̃τ)1̃ + µη ⊗ η. (25)

Therefore for any ζ,U ∈ X(K), from Lemma 2.4 and Lemma 2.5, we have

1 Ric(ζ1,U1) − k2
t ∇

2
1t(ζ1,U1) − k3

l ∇
2l(ζ1,U1) +2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3

l ∇
2l(ζ2,U2)

+3 Ric(ζ3,U3) − l♯1̃3(ζ3,U3) + 1
2 (£1

ξ1
1̃1)(ζ1,U1) + 1

2 t2(£2
ξ2
1̃2)(ζ2,U2) + 1

2 l2(£3
ξ3
1̃3)(ζ3,U3)

+tξ1(t)1̃2(ζ2,U2) + l(ξ1 + ξ2)(l)1̃3(ζ3,U3)

= (λ̃ + ρ̃τ)1̃1(ζ1,U1) + t2(λ̃ + ρ̃τ)1̃2(ζ2,U2) + l2(λ̃ + ρ̃τ)1̃3(ζ3,U3)

+µ1̃1(ζ1, ξ1)1̃1(U1, ξ1) + µt41̃2(ζ2, ξ2)1̃2(ζ2, ξ2) + µl41̃3(ζ3, ξ3)1̃3(ζ3, ξ3).

(26)

Now let ζ = ζ1 U = U1 and taking η1(ζ1)η1(U1) = 1̃1(ζ1, ξ1)1̃1(U1, ξ1). Using the fact that ∇2
1t = 1̃1 and

∇
2l = 1̃1 from 3.2, then (26) becomes

1 Ric(ζ1,U1) + 1
2 (£1

ξ1
1̃1)(ζ1,U1) = λ̃11̃1(ζ1,U1) + µη1(ζ1)η1(U1)

+(−λ̃1 + λ̃ + ρ̃τ +
k2
t +

k3
l )1̃1(ζ1,U1)

= λ̃11̃1(ζ1,U1) + ρ̃1τ11̃1(ζ1,U1) + µη1(ζ1)η1(U1).

(27)

Thus (K1, 1̃1, ξ1, λ1, µ) is an η-Ricci-Bourguignon soliton.
Taking now ζ = ζ2, U = U2 and η2(ζ2)η2(U2) = 1̃2(ζ2, ξ2)1̃2(U2, ξ2), we get

2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3
l ∇

2l(ζ2,U2) + 1
2 t2(£2

ξ2
1̃2)(ζ2,U2) + tξ1(t)1̃2(ζ2,U2)

= t2(λ̃ + ρ̃τ)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2).
(28)

If ξ2 is a Killing vector field and ∇2l = 1̃2 from 3.2, we get

2 Ric(ζ2,U2) = (λ̃t2 + ρ̃τt2 + t♯ + k3
l t2
− tξ1(t)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2), (29)

which implies that K2 is quasi-Einstein manifold.

Finally, let ζ = ζ3, U = U3 and η3(ζ3)η(U3) = 1̃3(ζ3, ξ3)1̃3(U3, ξ3), Then

3 Ric(ζ3,U3) + 1
2 l2£3

ξ3
1̃3(ζ3,U3) = λ̃31̃3(ζ3,U3) + µl4η3(ζ3)η3(U3)

+(−λ̃3 + λ̃l2 + ρ̃τl2 + l♯ − l(ξ1 + ξ2)(l)1̃3(ζ3,U3)

= λ̃31̃3(ζ3,U3) + ρ̃3τ31̃3(ζ3,U3) + µl4η3(ζ3)η3(U3).

(30)

Hence (K3, 1̃3, l2ξ3, λ̃3, µl4) is an η-Ricci-Bourguignon soliton. Thus the proof is completed.

Below, we state some necessary conditions for the sequential warped product manifold to be quasi-Einstein
manifold.

Theorem 3.5. Let ξ ∈ X(K) be a Killing vector field on K. Assume that the gradient of t and l are concurrent vector
fields on K1 and K. If (K, 1̃, ξ, λ̃, µ) is an η-Ricci-Bourguignon soliton then, we have the following conditions:
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(a) K1 is quasi-Einstein manifold with factors (λ̃ + ρ̃τ +
k2

t
+

k3

l
) and µ.

(b) K2 is quasi-Einstein manifold with factors λ̃t2 + ρ̃τt2 + t♯ +
k3

l
t2 and µt4.

(c) K3 is quasi-Einstein manifold with factors λ̃l2 + ρ̃τl2 + l♯ and µl4.

Proof. Let (K, 1̃, ξ, λ, ρ, µ) be an η-Ricci-Bourguignon soliton and ξ is a Killing vector field on K. Then we
have

Ric = (λ̃ + ρ̃τ)1̃ + µη ⊗ η. (31)

For any ζ,U ∈ X(K), using equation (26), we get

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ +
k2

t
+

k3

l
)1̃1(ζ1,U1) + µη1(ζ1)η1(U1), (32)

2 Ric(ζ2,U2) = (λ̃t2 + ρ̃τt2 + t♯ +
k3

l
t2)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2) (33)

and

3 Ric(ζ3,U3) = (λ̃l2 + ρ̃τl2 + l♯)1̃3(ζ3,U3) + µl4η3(ζ3)η3(U3). (34)

Then the proof is completed.

Theorem 3.6. Let ξ ∈ X(K) be a potential vector field on K. Let (K, 1̃, ξ, λ̃, µ) be an η-Ricci-Bourguignon soliton and
the gradient of t and l are concurrent vector fields on K1 and K. Then K1, K2 and K3 are quasi-Einstein manifolds if
the following conditions hold:

(a) ξ = ξ1 and ξ1 is Killing on K1.
(b) ξ = ξ2 and ξ2 is Killing on K2.
(c) ξ = ξ3 and ξ3 is Killing on K3.

Proof. If ξ = ξ1 and ξ1 is Killing on K1 and using Lemma 2.5, we get

£ξ1̃ = 2tξ1(t)1̃2. (35)

Using the previous equation in (26), we get

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ + k2
t +

k3
l )1̃1(ζ1,U1) + µη1(ζ1)η1(U1), (36)

2 Ric(ζ2,U2) = (λ̃t2 + ρ̃τt2 + t♯ + k3
l t2
− tξ1(t)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2) (37)

and

3 Ric(ζ3,U3) = (λ̃l2 + ρ̃τl2 + l♯)1̃3(ζ3,U3) + µl4η3(ζ3)η3(U3). (38)

Hence the manifolds K1,K2 and K3 are quasi-Einstein manifolds. Assertions (2) and (3) should be verified
by the same calculus like the assertion (1).

Theorem 3.7. Let ξ ∈ X(K) be a conformal vector field on K with factor ψ. Assume that the gradient of t and l are
concurrent vector fields on K1 and K. If (K, 1̃, ξ, λ̃, µ) is an η-Ricci-Bourguignon soliton then we have the following
conditions:
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(a) K1 is quasi-Einstein manifold with factors λ̃ + ρ̃τ − ψ +
k2

t
+

k3

l
and µ.

(b) K2 is quasi-Einstein manifold with factors λ̃t2 + ρ̃τt2
− ψt2 + t♯ +

k3

l
t2 and µt4.

(c) K3 is quasi-Einstein manifold with factors λ̃l2 + ρ̃τl2 − ψl2 + l♯ and µl4.

Proof. The η-Ricci-Bourguignon soliton (K, 1̃, ξ, λ̃.µ) with conformal factor ψ is given by

Ric = (λ̃ + ρ̃τ − ψ)1̃ + µη ⊗ η. (39)

Hence using (26), we get

1 Ric(ζ1,U1) − k2
t ∇

2
1t(ζ1,U1) − k3

l ∇
2l(ζ1,U1) +2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3

l ∇
2l(ζ2,U2)

+3 Ric(ζ3,U3) − l♯1̃3(ζ3,U3)

= (λ̃ + ρ̃τ − ψ)1̃1(ζ1,U1) + µη1(ζ1)η1(U1) + t2(λ̃ + ρ̃τ − ψ)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2)

+l2(λ̃ + ρ̃τ − ψ)1̃3(ζ3,U3) + µl4η3(ζ3)η3(U3).

(40)

Using the fact that ∇2t1 = 1̃1 and ∇2l = 1̃1, we obtain

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ − ψ + k2
t +

k3
l )1̃1(ζ1,U1) + µη1(ζ1)η1(U1), (41)

2 Ric(ζ2,U2) = (λ̃t2 + ρ̃τt2
− ψt2 + t♯ + k3

l t2)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2) (42)

and

3 Ric(ζ3,U3) = (λ̃l2 + ρ̃τl2 − ψl2 + l♯)1̃3(ζ3,U3) + µl4η3(ζ3)η3(U3). (43)

Then, K1 K2 and K3 are quasi-Einstein manifolds.

The next corollary is deduced from Lemma 2.5:

Corollary 3.8. Let (K, 1̃, ξ, λ̃, µ) be a sequential warped product manifold η-Ricci-Bourguignon soliton. Then it is a
quasi-Einstein manifold if the following statements hold:

(a) ξ = ξ3 and ξ3 is Killing vector field on K3.
(b) ξ1 is a Killing vector field on K1, ξ2 and ξ3 are conformal vector fields on K2 and K3 with factors −2ξ1(ln t) and
−2(ξ1 + ξ2)(ln l), respectively.

(c) ξ = ξ2 + ξ3, ξ2 and ξ3 are Killing vector fields on K2 and K3, respectively and ξ2(l) = 0.

4. Application

Now, we would like to characterize η-Ricci-Bourguignon solitons on a standard static space-times and
on generalized Robertson-Walker space-times within the framework of sequential warped products.
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4.1. η-Ricci-Bourguignon Solitons on Sequential Warped Product Space-Times
Let (K1, 1̃1) and (K2, 1̃2) be two Riemannian manifolds of dimensions k1 and k2 and I an open, connected

subinterval of R and dt2 the Euclidean metric tensor on I. Then the product manifold K = (K1 × K2) × I
of dimension (k1 + k2 + 1) equipped with the metric 1̃ = (1̃1 ⊕ t21̃2) ⊕ l2(−dt2) is a sequential standard static
space-time [15] and denoted by K = (K1 × tK2) × lI.

Lemma 4.1. [15] Let K be a sequential standard space-time. Then for ζi,Ui ∈ X(Ki), i = 1, 2, we have

1. ∇ζ1 U1 = ∇
1
ζ1

U1,
2. ∇ζ1ζ2 = ∇ζ2ζ1 = ζ1(ln t)ζ2,
3. ∇ζ2 U2 = ∇

2
ζ2

U2 − t1̃2(ζ2,U2)∇1t,
4. ∇ζi∂t = ∇∂tζi = ζi(ln l)∂t,
5. ∇∂t∂t = l∇l.

Lemma 4.2. [15] Let K be a sequential standard space-time. Then for ζi,Ui ∈ X(Ki), i = 1, 2, we have

1. Ric(ζ1,Y1) =1 Ric(ζ1,U1) − k2
t ∇

2t(ζ1,U1) − 1
l∇

2l(ζ1,U1),
2. Ric(ζ2,U2) =2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − 1

l∇
2l(ζ2,U2),

3. Ric(∂t, ∂t) = l∆l,
3. Ric(ζi,U j) = 0, for i , j, where t♯ = t∆1t + (k2 − 1)∥∇1t∥2.

The following corollary is deduced from Lemma 2.5.

Corollary 4.3. If ξ is a vector field on a sequential warped product standard space-time. Then we have

(£ξ1̃)(ζ,U) = (£1
ξ1
1̃1)(ζ1,U1) + t2(£2

ξ2
1̃2)(ζ2,U2) − 2l2

∂v
∂t
+ 2tξ1(t)1̃2(ζ2,U2) − 2l(ξ1 + ξ2)(l), (44)

where ξ = ξ1 + ξ2 + v∂t, ζ = ζ1 + ζ2 + ∂t and U = U1 +U2 + ∂t ∈ X(K).

For any ζ,U ∈ X(K) a sequential standard space-times is η-Ricci-Bourguignon soliton if

Ric(ζ,U) + £ξ1̃(ζ,U) = (λ̃ + ρ̃τ)1̃(ζ,U) + µη(ζ)η(U). (45)

We know that if ξ is Killing vector field then K is quasi-Einstein manifold of the form

Ric(ζ,U) = (λ̃ + ρ̃τ)1̃(ζ,U) + µη(ζ)η(U), (46)

Then we have the following situations. Firstly

Ric(∂t, ∂t) = −l2(λ̃ + ρ̃τ) + µv2l4, (47)

which give us

λ̃ + ρ̃τ = µv2l2 −
∆l
l
. (48)

Now taking the trace of (46), we get

τ = (k1 + k2 + 1)[µv2l2 −
∆l
l

] + µ|ξ|2.

Secondly,

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ)1̃1(ζ1,U1) − k2
t ∇

2t(ζ1,U1) − 1
l∇

2l(ζ1,U1) + µη1(ζ1)η1(U1)

and finally

2 Ric(ζ2,U2) =
(
t2λ̃ + t2ρ̃τ + t♯

)
1̃2(ζ2,U2) + 1

l∇
2l(ζ2,U2) + µt4η2(ζ2)η2(U2).
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Theorem 4.4. Let ξ ∈ X(K) be a Killing vector field on a sequential standard space-time. Then the scalar curvature
r of K is given by

τ = (k1 + k2 + 1)
(
µv2l2 −

∆l
l

)
+ µ|ξ|2. (49)

Corollary 4.5. Let ξ ∈ X(K) be a Killing vector field on a sequential standard space-time. Then

(a) K1 is quasi-Einstein with factors λ̃ + ρ̃τ and µ if k2l∇2t(ζ1,U1) = −t∇2l(ζ1,U1).
(b) K2 is quasi-Einstein with factors λ̃t2 + ρ̃τt2 + t♯ and µt4 if ∇2l(ζ2,U2) = 0.

We give the following theorem which comes from to Theorem 3.4:

Theorem 4.6. Let ξ ∈ X(K) be a potential vector field on a sequential standard static space-time. Assume that the
gradient of t and l are concurrent vector fields on K1 and K, respectively. If (K, 1, ξ, λ, ρ, µ) is an η-Ricci-Bourguignon
then we have the following conditions:

(a) (K1, 1̃1, ξ1, λ̃1, µ) is an η-Ricci-Bourguignon soliton and λ̃1 + ρ̃1τ1 + µ = λ̃ + ρ̃τ +
k2

t
+

1
l
.

(b) K2 is quasi-Einstein manifold if ξ2 is a Killing vector field.

(c) −
∆l
l
+
∂v
∂t
+

1
l

(ξ1 + ξ2)(l) = λ + ρr + µl4v2.

Proof. The η-Ricci-Bourguignon soliton (K, 1̃, ξ, λ̃, µ) is given by

Ric+
1
2

£ξ1̃ = (λ̃ + ρ̃τ)1̃ + µη ⊗ η. (50)

Using Lemma 4.2 and Corollary 4.3 for any vector fields ζ,U such that ζ = ζ1 + ζ2 + ∂t and U = U1 +U2 + ∂t,
we have

1 Ric(ζ1,U1) − k2
t ∇

2t1(ζ1,U1) − k3
l ∇

2l(ζ1,U1) +2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − 1
l∇

2l(ζ2,U2) + l∆l

+ 1
2 (£1

ξ1
1̃1)(ζ1,U1) + t2

2 (£2
ξ2
1̃2)(ζ2,U2) − l2 ∂v

∂t + tξ1(t)1̃2(ζ2,U2) − l(ξ1 + ξ2)(l)

= (λ̃ + ρ̃τ)1̃1(ζ1,U1) + µη1(ζ1)η1(U1) + t4(λ̃ + ρ̃τ)1̃2(ζ2,U2) + µt2η2(ζ2)η2(U2) − (λ̃ + ρ̃τ)l2 + µl4v2.

(51)

Then separately, we obtain

1 Ric(ζ1,U1) − k2
t 1̃1(ζ1,U1) − 1

l 1̃1(ζ1,U1) + 1
2 (£1

ξ1
1̃1)(ζ1,U1) = (λ̃ + ρ̃τ)1̃1(ζ1,U1) + µη(ζ1)η(U1). (52)

Therefore following the same methods as in the Theorem 3.4, we conclude that (K1, 1̃1, ξ1, λ̃1, µ) is an
η-Ricci-Bourguignon soliton. We have

2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − 1
l∇

2l(ζ2,U2) + 1
2 t2(£2

ξ2
1̃2)(ζ2,U2) + tξ1(t)1̃2(ζ2,U2)

= t2(λ̃ + ρ̃τ)1̃2(ζ2,U2) + µt2η2(ζ2)η2(U2).
(53)

If ξ2 is a Killing vector field, then K2 is quasi-Einstein manifold. Therefore from (51), we obtain

l∆l − l2
∂v
∂t
− l(ξ1 + ξ2)(l) = −(λ̃ + ρ̃τ)l2 + µl4v2, (54)

which allows us to conclude the proof.

The next theorem is deduced from Theorem 3.7, Corollary 3.8.
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Theorem 4.7. Let ξ ∈ X(K) be a conformal vector field on a sequential standard space-time with factor ψ and
(K, 1̃, ξ, λ̃, µ) is an η-Ricci-Bourguignon soliton. Assume that the gradient of t and l are concurrent vector fields

on K1 and K. Then K1 and K2 are quasi-Einstein manifolds with factors α1 = −
∆l
l
+ µl2v2 +

k2

t
+

1
l

, α2 = µ and

β1 = −
∆l
l

t2 + µl2v2t4 + t♯ +
1
l

t2, β2 = µt4, respectively.

Proof. Assume that (K, 1̃, ξ, λ, ρ, µ) be an η-Ricci-Bourguignon soliton and ξ is a conformal vector field with
factor ψ. Then we have

Ric = (λ̃ + ρ̃τ − ψ)1̃ + µη ⊗ η. (55)

Then for any X,Y ∈ X(K), we get

Ric1(ζ1,U1) − k2
t 1̃1(ζ1,U1) − 1

l 1̃1(ζ1,U1) +2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − 1
l t212(X2,Y2) + l∆l

= (λ̃ + ρ̃τ − ψ)1̃1(ζ1,U1) + µη(ζ1)η(U1) + t2(λ̃ + ρ̃τ − ψ)1̃2(ζ2,U2)

+µt4η2(ζ2)η(U2) − (λ̃ + ρ̃τ − ψ)l2 + µl4v2.

(56)

Hence we find

1 Ric(ζ1,U1) = (λ̃ + ρ̃τ − ψ + k2
t +

1
l )1̃1(ζ1,U1) + µη(ζ1)η(U1). (57)

2 Ric(ζ2,U2) = (λ̃t2 + ρ̃τt2
− ψt2 + t♯ + 1

l t2)1̃2(ζ2,U2) + µt4η2(ζ2)η(U2) (58)

and = λ̃ + ρ̃τ − ψ = −∆l
l + µl2v2. Hence the proof is completed.

4.2. η-Ricci-Bourguignon Solitons on Sequential Warped Product generalized Robertson-Walker space-times.

Let (K2, 1̃2) and (K3, 1̃3) be two Riemannian manifolds of dimension k2 and k3, respectively and t and l
are positive smooth functions on K2 and I×K2. The sequential generalized Robertson-Walker space-time is
a product manifold K = (I × tK2) × lK3, endowed with the metric tensor 1̃ = (−dt2

⊕ t21̃2) ⊕ l21̃3. [15].

Lemma 4.8. [15] Let K be a sequential generalized Robertson-Walker space-time. Then for ζi,Ui ∈ X(Ki), i = 2, 3,
we have

1. ∇∂t∂t = 0,
2. ∇∂tζi = ∇ζi∂t =

ṫ
tζi,

3. ∇ζ2 U2 = ∇
2
ζ2

U2 − tṫ1̃2(ζ2,U2)∂t,
4. ∇ζ2ζ3 = ∇ζ3ζ2 = ζ2(ln l)ζ3,
5. ∇ζ3 U3 = ∇

2
ζ3

U3 − l1̃3(ζ3,U3)∇l.

Lemma 4.9. [15] Let K be a sequential generalized Robertson-Walker space-time. Then for ζi,Ui ∈ X(Ki), i = 2, 3,
we have

1. Ric(∂t, ∂t) =
k2
t ẗ + k3

l
∂2l
∂t2 ,

2. Ric(ζ2,U2) =2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3
l ∇

2l(ζ2,U2),
3. Ric(ζ3,U3) =3 Ric(ζ3,U3) − l♯1̃3(ζ3,U3),
4. Ric(ζi,U j) = 0, for i , j, where t♯ = −tẗ − (k2 − 1)ṫ2 and l♯ = l∆l + (k3 − 1)∥∇l∥2.

From Lemma 2.5, we deduced the following corollary:
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Corollary 4.10. If (K, 1̃) is a sequential generalized Robertson-Walker space-time. Then we have

(£ξ1̃)(ζ,U) = −2
∂v
∂t
+ t2(£2

ξ2
1̃2)(ζ2,U2) + l2(£3

ξ3
1̃3)(ζ3,U3) + 2vt

∂t
∂t
1̃2(ζ2,U2) + 2vl(

∂l
∂t
+ ξ2(l))1̃3(ζ3,U3), (59)

where ξ = v∂t + ξ2 + ξ3, ζ = ∂t + ζ2 + ζ3 and U = ∂t +U2 +U3 ∈ X(K).

K is η-Ricci-Bourguignon soliton if

Ric(ζ,U) + £ξ1̃(ζ,U) = (λ̃ + ρ̃τ)1̃(ζ,U) + µη(ζ)η(U). (60)

We know that if ξ is Killing vector field then K is quasi-Einstein manifold of the form

Ric(ζ,U) = (λ̃ + ρ̃τ)1̃(ζ,U) + µη(ζ)η(U). (61)

Then we get the following situations. Firstly

Ric(∂t, ∂t) = −(λ̃ + ρ̃τ) + µv2, (62)

which imply from Lemma 4.9

k2

t
ẗ +

k3

l
∂2l
∂t2 = −(λ̃ + ρ̃τ) + µv2.

Secondly

t2(λ + ρr)1̃2(ζ2,U2) + µt4η2(ζ2)η2(U2) =2 Ric(ζ2,U2) − t♯1̃2(ζ2,U2) − k3
l ∇

2l(ζ2,U2).

Then
2 Ric(ζ2,U2) =

(
t2λ̃ + t2ρ̃τ + t♯

)
1̃2(ζ2,U2) + k3

l ∇
2l(ζ2,U2) + µt4η2(ζ2)η2(U2)

and finally

3 Ric(ζ3,U3) =
(
l2λ̃ + l2ρ̃τ + l♯

)
1̃3(ζ3,U3) + µl4η3(ζ3)η3(U3).

Theorem 4.11. Let ξ be a Killing vector field on a sequential generalized Robertson-Walker space-time. Then we
have the following situations:

(a)
k2

t
ẗ +

k3

l
∂2l
∂t2 = −(λ̃ + ρ̃τ) + µv2,

(b) (K2, 1̃2) is quasi-Einstein manifold with factors t2λ̃+ t2ρ̃τ+ t♯ and µt4 if∇2l(ζ2,U2) = 0 for any ζ2,U2 ∈ X(K2)
and

(c) (K3, 1̃3) is quasi-Einstein manifold with factors l2λ̃ + l2ρ̃τ + l♯ and µl4.

The following theorem is an application of Theorem 3.4

Theorem 4.12. Let ξ be a potential vector field on a sequential generalized Robertson-Walker space-time and
(K, 1̃, ξ, λ, µ) is an η-Ricci-Bourguignon soliton. Assume that the gradient of l is concurrent vector field on K.
Then we have the following situations:

(a) (K2, 1̃2, t2ξ2, λ̃2, µ) is an η-Ricci-Bourguignon soliton with λ̃2 + ρ2τ2 + µt4 = λ̃t2 + ρ̃τt2 + t♯ − vtṫ + k3
l .

(b) (K3, 1̃3, l2ξ3, λ̃3, µ) is an η-Ricci-Bourguignon soliton with λ̃3 + ρ̃3τ3 + µl4 = λ̃l2 + ρ̃τl2 + l♯ − vl ∂l
∂t − vlξ2(l).

Proof. For proving, It enough to use lemma 4.2 and Corollary 4.10.

The following theorem is a consequence of Theorem 4.7

Theorem 4.13. Letξ be a conformal vector field on a sequential generalized Roberstson space-time and (K, 1, ξ, λ, µ, ρ)
is an η-Ricci-Bourguignon soliton. Assume that the gradient of l is concurrent vector field on K. Then K2 and K3 are

quasi-Einstein manifolds with factors α1 = (−
k2

t
ẗ−

k3

l
∂2l
∂2t

)t2 +µv2 + t♯ +
k2

l
, α2 = µt4 and β1 = (−

k2

t
ẗ−

k3

l
∂2l
∂2t

)l2 +

µv2 + l♯, β2 = µl4, respectively.

Proof. The proof is similar to the proof of Theorem 4.7.
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[15] U.C. De, S. Shenawy, B. Ünal, Sequential Warped Products: Curvature and Conformal Vector Fields, Filomat. 33(13) (2019), 4071–4083.
[16] S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Can. Math. Bull. 64(3) (2021), 591–604.
[17] P. E. Ehrlich, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, Ph.D. Dissertation. SUNNY, Stony

Brook, NY 1974.
[18] A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc. 45(3) (1939), 443-43.
[19] F. E. S. Feitosa, A. A. Freitas Filho, J. N. V. Gomes, On the construction of gradient Ricci soliton warped product, Nonlinear Anal. 161

(2017), 30–43.
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[29] B. Şahin, Sequential warped product submanifolds having holomorphic, totally real and pointwise slant factors. Period. Math. Hung. 85(1)

(2021), 128–139.
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