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A new classification for almost C(α)-manifolds
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Abstract. In this paper, D-conformal curvature tensor on an almost C(α)-manifold has been considered. At
first, a few fundamental geometric properties of D-conformal curvature tensor on an almost C(α)-manifold
have been obtained with some interesting outcomes. Moreover, the necessary and sufficient conditions
have been addressed for almost C(α)-manifold to be D-conformally flat, D-conformally semi-symmetric,
B(ξ,X1)Z̃ = 0, B(ξ,X1)P = 0 and B(ξ,X1)S = 0. It is shown that a D-Conformal flat C(α) manifold reduces
to the Kenmotsu manifold and a D-Conformal Semi Symmetric C(α) manifold reduces to the co-Keahler
manifold. At the end, an example of an almost C(α) manifold has been presented.

1. Introduction

Almost C(α)-manifolds are given as sub-class of almost contact metric manifolds or almost co-Hermitian
manifolds. In addition, almost C(α)-manifolds are general case of co-Keahler, Kenmotsu and Sasakian
manifolds. That is, if α = 0, an almost C(α)-manifold corresponds to co-Keahler, for α = 1, it is Sasakian
and it corresponds to Kenmotsu manifold for α = −1 [12]. For characterization of special manifold types,
generally the covariant derivative of C∞ (1, 1)-type tensor field ϕ is utilized. However, this derivative could
have not been defined yet for almost C(α)-manifolds. Therefore, investigation of under what conditions an
almost C(α)-manifold reduces to a co-Keahler, Sasakian, or Kenmotsu manifold is currently a hot topic in
the literature.

To reduce an almost C(α) manifold to a more specific type of manifold, i.e. co-Keahler, Sasakian,
Kenmotsu, or Einstein, certain curvature conditions should be satisfied. Although there have been several
works which address the curvature properties of Keahler, Sasakian and Kenmotsu manifolds, studies on
almost C(α)-manifold, which is the more general case of these special manifold types, are quite limited.

One of the pioneering studies on almost contact structures and curvature tensors was presented by D.
Janssens and L. Vanhecke in 1981 [12]. The paper by M. Atc.eken and Ü. Yıldırım can be given as one of
the recent studies on curvature tensors on almost C(α) manifolds [1–3]. In addition, T. Mert has studied
pseudo-symmetry conditions for the classification of an almost C(α) manifold [13–16].

Let (M, 1, ϕ, ξ, η) be an almost co-Hermitian manifold with Riemann connection ∇. Then
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(i)-M is co-Keahlerian if and only if ∇ϕ = 0.

(ii)-M is Sasakian if and only if

∀X1,X2 ∈ χ(M) : (∇X1ϕ)X2 = 1(X1,X2)ξ − η(X2)X1.

(iii)-M is Kenmotsu manifold if and only if

∀X1,X2 ∈ χ(M) : (∇X1ϕ)X2 = 1(ϕX1,X2)ξ − η(X2)ϕX1.

Let M be a (2n + 1)-dimensional C∞-manifold, χ(M) be the space of the vector fields on M and
X1,X2,X3,X5 ∈ χ(M). If M admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η satis-
fying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (1)

where I denotes the identity transformation, then it is said that M has an almost contact structure. A
manifold M with an almost contact structure admits a Riemannian metric 1 such that

1(ϕX1, ϕX2) = 1(X1,X2) − η(X1)η(X2), (2)

and M is said to be an almost contact metric manifold.

An almost contact metric manifold is said to be normal if ,

[ϕ,ϕ](X1,X2) + 2dη(X1,X2)ξ = 0, (3)

where [ϕ,ϕ] is the Nijenhuis tensor of ϕ.
Almost contact metric structures (M, ϕ, ξ, η, 1) are an almost C(α)-manifold if the Riemannian curvature

tensor R satisfies the following equality

R(X1,X2,X3,X5) = R(X1,X2, ϕX3, ϕX5) + α
[
− 1(X1,X3)1(X2,X5)

+ 1(X1,X5)1(X2,X3) + 1(X1, ϕX3)1(X2, ϕX5)

− 1(X1, ϕX5)1(X2, ϕX3)
]

(4)

for all X1,X2,X3,X5 ∈ χ(M). Moreover, if such a manifold has constant ϕ-sectional curvature equal to c,
then its curvature tensor is given by

R(X1,X2)X3 =
(c + 3α

4

)[
1(X2,X3)X1 − 1(X1,X3)X2

]
+

(c − α
4

)[
1(X1, ϕX3)ϕX2 − 1(X2, ϕX3)ϕX1 + 21(X1, ϕX2)ϕX3

]
+

(c − α
4

)[
η(X1)η(X3)X2 − η(X2)η(X3)X1

+ 1(X1,X3)η(X2)ξ − 1(X2,X3)η(X1)ξ
]
. (5)

Also, a normal almost C(α)-manifold is called C(α)-manifold.

2. Preliminaries

In 1983, Chuman defined a tensor field B on a n-dimensional Riemannian manifold, (Mn, 1), (n > 4) as

B(X1,X2)X3 = R(X1,X2)X3 +
1

n − 3

[
S(X1,X3)X2 − S(X2,X3)X1 + 1(X1,X3)QX2 − 1(X2,X3)QX1

+ S(X2,X3)η(X1)ξ − S(X1,X3)η(X2)ξ + η(X2)η(X3)QX1 − η(X1)η(X3)QX2

]
−

K − 2
n − 3

[
1(X1,X3)X2 − 1(X2,X3)X1

]
+

K
n − 3

[
1(X1,X3)η(X2)ξ − 1(X2,X3)η(X1)ξ + η(X1)η(X3)X2 − η(X2)η(X3)X1

]
. (6)
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Such a tensor field B is known as D-conformal curvature tensor, where K = r+2(n−1)
n−2 , R is Riemannian curva-

ture tensor, Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M.

Let (M, 1) be (2n + 1)-dimensional Riemannian manifold. Then the concircular curvature tensor Z̃ and
the projective curvature tensor P are defined by

Z̃ = R(X1,X2)X3 −
r

2n(2n + 1)

[
1(X2,X3)X1 − 1(X1,X3)X2

]
, (7)

and

P(X1,X2)X3 = R(X1,X2)X3 −
1

n − 1

[
S(X2,X3)X1 − S(X1,X3)X2

]
, (8)

where S is the Ricci tensor and r is the scalar curvature of M.

In a (2n + 1)-dimensional almost C(α)-manifold the following relations are satisfied:

R(ξ,X2)X3 = α
[
1(X2,X3)ξ − η(X3)X2

]
, (9)

R(X1,X2)ξ = α
[
η(X2)X1 − η(X1)X2

]
, (10)

R(X1, ξ)ξ = α
[
X1 − η(X1)ξ

]
, (11)

η(R(X1,X2)X3) = α
[
1(X2,X3)η(X1) − 1(X1,X3)η(X2)

]
, (12)

Z̃(ξ,X2)X3 =
[
α −

r
2n(2n + 1)

]
{1(X2,X3)ξ − η(X3)X2

]
, (13)

P(ξ,X2)X3 = α1(X2,X3)ξ −
1

2n
S(X2,X3)ξ, (14)

B(X2,X3)ξ =
[α + 1

1 − n

][
η(X3)X2 − η(X2)X3

]
, (15)

and

B(ξ,X2)X3 =
[α + 1

1 − n

][
1(X2,X3)ξ − η(X3)X2

]
. (16)

Also, from (5), we can state

R(X1, ei)ei + R(X1, ϕei)ϕei + R(X1, ξ)ξ =

n∑
i=1

{(
3α + c

4
){nX1 − 1(X1, ei)ei + nX1

− 1(X1, ϕei)ϕei + X1 − 1(X1, ξ)ξ}

+ (
c − α

4
){31(X1, ϕei)ϕei − 2nη(X1)ξ

+ 31(X1, ϕ
2ei)ϕ2eiη(X1)ξ − X1}} (17)

for {e1, e2, ..., en, ϕe1, ϕe2, ..., ϕen, ξ} orthonormal basis of M. From (17), for X2 = ξ ∈ χ(M), we obtain

S(X1,X2) =
(
α(3n − 1) + c(n + 1)

2

)
1(X1,X2) +

(
(α − c)(n + 1)

2

)
η(X1)η(X2) (18)

which is equivalent to

QX1 =

(
α(3n − 1) + c(n + 1)

2

)
X1 +

(
(α − c)(n + 1)

2

)
η(X1)ξ. (19)
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Corollary 2.1. An almost C(α)-manifold is always an η-Einstein manifold.

Also, from (18), we can easily see

r = n[α(3n + 1) + c(n + 1)] (20)

and

S(X1, ξ) = 2nαη(X1). (21)

This yields to

Qξ = 2nαξ. (22)

3. D-Conformally Flat C(α)-manifolds

Theorem 3.1. Let M be (2n + 1)-dimensional an almost C(α)-manifold. Then M is D-conformally flat if and only if
M reduce a Kenmotsu manifold.

Proof. Let an almost C(α)-manifold M be a D-conformally flat, for X1,X2,X3 ∈ χ(M), then we have

B(X1,X2)X3 = 0. (23)

In (23), choosing Z = ξwe obtain

0 = R(X1,X2)ξ +
1

2n − 2

[
S(X1, ξ)X2 − S(X2, ξ)X1 + 1(X1, ξ)QX2 − 1(X2, ξ)QX1

+ S(X2, ξ)η(X1)ξ − S(X1, ξ)η(X2)ξ + η(X2)η(ξ)QX1 − η(X1)η(ξ)QX2

]
−

K − 2
2n − 2

[
1(X1, ξ)X2 − 1(X2, ξ)X1

]
+

K
2n − 2

[
1(X1, ξ)η(X2)ξ − 1(X2, ξ)η(X1)ξ + η(X1)η(ξ)X2 − η(X2)η(ξ)X1

]
. (24)

Using (1) and (21) in (24), we obtain

0 = α
[
η(X2)X1 − η(X1)X2

]
+

1
2n − 2

[
2nαη(X1)X2 − 2nαη(X2)X1

]
−

K − 2
2n − 2

[
η(X1)X2 − η(X2)X1

]
+

K
2n − 2

[
η(X1)X2 − η(X2)X1

]
. (25)

By direct calculations, we conclude that

α + 1
n − 1

= 0. (26)

So, for α = −1, M is an almost C(−1) (Kenmotsu) manifold.

4. D-Conformally Semi-Symmetric Almost C(α)-Manifolds

Theorem 4.1. Let M be (2n + 1)-dimensional an almost C(α)-manifold. Then M is D-conformally semi-symmetric
if and only if M either reduce a Kenmotsu manifold or it is a Keahler manifold.
Proof.
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We suppose that (2n+ 1)-dimensional almost C(α)-manifold M is D-conformally semi-symmetric. Then we
have

(R(X1,X2)B)(X4,X5)X3 = 0. (27)

From (27) we obtain

(R(X1,X2)B)(X4,X5)X3 = R(X1,X2)B(X4,X5)X3 − B(R(X1,X2)X4,X5)X3

− B(X4,R(X1,X2)X5)X3 − B(X4,X5)R(X1,X2)X3, (28)

for all X1,X2,X3,X4,X5 ∈ χ(M). In (28), choosing X1 = ξ and using the equation (9) we obtain

0 = α
[
1(X2,B(X4,X5)X3)ξ − η

(
B(X4,X5)X3

)
X2

− B
(
α
[
1(X2,X4)ξ − η(X4)X2

]
,X5

)
X3

− B
(
X4, α

[
1(X2,X5)ξ − η(X5)X2

])
X3

− B(X4,X5)
(
α
[
1(X2,X3)ξ − η(X3)X2

])]
. (29)

Now, putting X4 = ξ in (29) and using the equations (15) and (16) we obtain

0 = αB(X2,X5)X3

+ α
(α + 1

1 − n

)[
1(X5,X3)η(X2)ξ − 1(X5,X3)X2 + 1(X2,X3)X5 − η(X3)η(X2)X5

]
. (30)

In the same way, choosing X3 = ξ in (30) and using (15) we conclude

α
(α + 1

n − 1

)
= 0. (31)

So, M either reduces a Kenmotsu manifold (α = −1) or it is a Keahler manifold (α = 0). The converse is
trivial. The proof is complete.

5. Curvature Conditions B(ξ,X2)Z̃ = 0, B(ξ,X2)P = 0 and B(ξ,X2)S = 0

Theorem 5.1. Let M be (2n + 1)-dimensional an almost C(α)-manifold. Then B(ξ,X2)Z̃ = 0 if and only if M either
reduce a Kenmotsu manifold or real space form with constant sectional curvature c =

(
2α − r

n(2n+1)

)
.

Proof. Let
(
B(ξ,X2)Z̃

)
(X4,X5)X3 = 0 be on (2n+1)-dimensional almost C(α)-manifold M, for any X2,X3,X4,X5 ∈

χ(M), then we have

0 = B(ξ,X2)Z̃(X4,X5)X3 − Z̃(B(ξ,X2)X4,X5)X3

− Z̃(X4,B(ξ,X2)X5)X3 − Z̃(X4,X5)B(ξ,X2)X3. (32)

In (32), using (16) we obtain

0 =
(α + 1

1 − n

)(
1(X2, Z̃(X4,X5)X3)ξ − η(Z̃(X4,X5)X3)X2

)
−

(α + 1
1 − n

)
Z̃
(
1(X2,X4)ξ − η(X4)X2,X5

)
X3

−

(α + 1
1 − n

)
Z̃
(
X4,

(
1(X2,X5)ξ − η(X5)X2

))
−

(α + 1
1 − n

)
Z̃(X4,X5)

(
1(X2,X3)ξ − η(X3)X2

)
. (33)
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In (33) using (13), we have

0 =
(α + 1

1 − n

)[
Z̃(X2,X5)X3

+
(
α −

r
2n(2n + 1)

)[
1(X5,X3)X2 − 1(X2,X3)X5

]]
. (34)

With help to (7), we get

0 =
(α + 1

1 − n

)[
R(X2,X5)X3 −

(
α −

r
2n(2n + 1)

)[
1(X5,X3)X2 − 1(X2,X3)X5

]]
. (35)

This shows that the manifold reduces a Kenmotsu manifold (for α+1
1−n = 0). On the other hand, from (35)

we have R(X2,X5)X3 =
(
α − r

2n(2n+1)

)[
1(X5,X3)X2 − 1(X2,X3)X5

]
. So, M is a real space form with constant

sectional curvature c =
(
2α − r

n(2n+1)

)
.

Theorem 5.2. Let M be (2n + 1)-dimensional an almost C(α)-manifold. Then B(ξ,X2)P = 0 if and only if M either
reduce a Kenmotsu manifold or an Einstein manifold.

Proof. Assume that (B(ξ,X2)P)(X4,X5)X3 = 0 for all X2,X3,X4,X5 ∈ χ(M), then we have

0 = B(ξ,X2)P(X4,X5)X3 − P(B(ξ,X2)X4,X5)X3

− P(X4,B(ξ,X2)X5)X3 − P(X4,X5)B(ξ,X2)X3. (36)

In (36), using (16) we obtain

0 =
(α + 1

1 − n

)(
1(X2,P(X4,X5)X3)ξ − η(P(X4,X5)X3)X2

)
−

(α + 1
1 − n

)
P
(
1(X2,X4)ξ − η(X4)X2,X5

)
X3

−

(α + 1
1 − n

)
P
(
X4,

(
1(X2,X5)ξ − η(X5)X2

))
−

(α + 1
1 − n

)
P(X4,X5)

(
1(X2,X3)ξ − η(X3)X2

)
. (37)

Putting X4 = ξ in (37), we get

0 =
(α + 1

1 − n

)[[
1(X2,P(ξ,X5)X3)ξ − η(P(ξ,X5)X3)X2

]
− η(X2)P(ξ,X5)X3 + η(X5)P(ξ,X2)X3 + η(X3)P(ξ,X5)X2 + P(X2,X5)X3

]
. (38)

With the help of (14), we have

0 =
(α + 1

1 − n

)[
− α1(X5,X3)X2 +

1
2n

S(X5,X3)X2

+ P(X2,X5)X3 + α1(X2,X3)η(X5)ξ −
1

2n
S(X2,X3)η(X5)ξ

+ α1(X5,X2)η(X3)ξ −
1

2n
S(X5,X2)η(X3)ξ

]
. (39)

In (39), choosing X3 = ξ and using the equations (1), (21) we conclude

0 =
(α + 1

1 − n

)[
S(X2,X5)ξ − 2nα1(X2,X5)ξ

]
= 0. (40)

This tell us M either reduce a Kenmotsu manifold or it is an Einstein manifold. The converse is obvious.
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Theorem 5.3. Let M be (2n + 1)-dimensional an almost C(α)-manifold. Then B(ξ,X2)S = 0 if and only if M either
reduces a Kenmotsu manifold or an Einstein manifold.

Proof. Suppose that (B(ξ,X2)S)(X4,X5) = 0, for all X2,X4,X5 ∈ χ(M), then we have

S(B(ξ,X2)X4,X5) + S(X4,B(ξ,X2)X5) = 0. (41)

In (41), using (16) obtain

0 =
(α + 1

1 − n

)[
S(1(X2,X4)ξ − η(X4)X2,X5) + S(X4, 1(X2,X5)ξ − η(X5)X2)

]
. (42)

In (42), choosing X4 = ξ, we conclude(α + 1
1 − n

)[
S(X2,X5) − 2nα1(X2,X5)

]
= 0. (43)

So, the almost C(α)-manifold is a Kenmotsu manifold or an Einstein manifold. The converse is obvious.
This proves our assertion.

6. D-Conformal Pseudosymmetric and D-Conformal Ricci Pseudosymmetric Almost C(α)-Manifolds

Theorem 6.1. Let M be a (2n+1)-dimensional almost C(α)-manifold. M is a D-conformal pseudosymmetric manifold
if and only if M is either a Kenmotsu manifold or a D-conformal semisymmetric manifold.

Proof. Let us suppose that the M is a D-conformal pseudosymmetric manifold. Then we have;

(R(X1,X2)B)(X3,X4,X5) = λQ(1,B)(X3,X4,X5; X1,X2) (44)

for any X1,X2,X3,X4,X5 ∈ χ(M). In this case we get

R(X1,X2)B(X3,X4)X5 − B(R(X1,X2)X3,X4)X5 − B(X3,R(X1,X2)X4)X5 − B(X3,X4)R(X1,X2)X5

= −λ{B((X1Λ1X2)X3,X4)X5 + B(X3, (X1Λ1X2)X4)X5 + B(X3,X4)(X1Λ1X2)X5}.

Putting X1 = ξ in (44), we obtain

R(ξ,X2)B(X3,X4)X5 − B(R(ξ,X2)X3,X4)X5 − B(X3,R(ξ,X2)X4)X5 − B(X3,X4)R(ξ,X2)X5

= −λ{1(X2,X3)B(ξ,X4)X5 − η(X3)B(X2,X4)X5 + 1(X2,X4)B(X3, ξ)X5

−η(X4)B(X3,X2)X5 + 1(X2,X5)B(X3,X4)ξ − η(X5)B(X3,X4)X2}. (45)

When we use equations (9), (15), (16) in (45) then make a direct calculation by choosing X3 = X5 = ξ, we
obtain

λ(
α + 1
1 − n

)[1(X2,X4) − η(X2)η(X4)] = 0. (46)

From (2), we conclude that

λ(
α + 1
1 − n

)1(ϕX2, ϕX4) = 0. (47)

So, M either reduces a Kenmotsu manifold (α = −1) or it is D-conformal semisymmetric manifold (λ = 0).
The converse is obvious.

Theorem 6.2. Let M be a (2n + 1)-dimensional almost C(α)-manifold. M is a D-conformal Ricci pseudosymmetric
manifold, if and only if M is either an Kenmotsu manifold or a D-conformal semisymmetric manifold or an co-Keahler
manifold.
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Proof. We us assume that the M is a D-conformal Ricci pseudosymmetric manifold. Then we have

(R(X1,X2)B)(X3,X4,X5) = λQ(S,B)(X3,X4,X5; X1,X2) (48)

for any X1,X2,X3,X4,X5 ∈ χ(M). Then we have

R(X1,X2)B(X3,X4)X5 − B(R(X1,X2)X3,X4)X5 − B(X3,R(X1,X2)X4)X5 − B(X3,X4)R(X1,X2)X5

= −λ{B((X1ΛSX2)X3,X4)X5 + B(X3, (X1ΛSX2)X4)X5 + B(X3,X4)(X1ΛSX4)X5}. (49)

In (49), choosing X1 = ξ, we obtain

R(ξ,X2)B(X3,X4)X5 − B(R(ξ,X2)X3,X4)X5 − B(X3,R(ξ,X2)X4)X5 − B(X3,X4)R(ξ,X2)X5

= −λ{S(X2,X3)B(ξ,X4)X5 − S(ξ,X3)B(X2,X4)X5 + S(X2,X4)B(X3, ξ)X5

− S(ξ,X4)B(X3,X2)X5 + S(X2,X5)B(X3,X4)ξ − S(ξ,X5)B(X3,X4)X2}. (50)

Using (9), (15), (16), (21) in (50) and then direct calculation by choosing X3 = X5 = ξ, we obtain

2nαλ(
α + 1
1 − n

)[1(X2,X4) − η(X2)η(X4)] = 0. (51)

From (2), we conclude

2nαλ(
α + 1
1 − n

)1(ϕX2, ϕX4) = 0. (52)

So, for α = −1 M is an almost C(−1) (Kenmotsu manifold), for α = 0, M is a co-Keahler manifold, for λ = 0,
M is D-conformal semisymmetric manifold. The converse is obvious.

Example 6.3. We consider the 5-dimensional Riemannian manifold M = {(x1, x2, x3, x4, x5) ∈ R5 : x2 , 0, x3 , 0},
where (x1, x2, x3, x4, x5) are standard coordinates in R5. We chose the following vector fields

e1 = x2

( ∂
∂x1
+
∂
∂x3

)
, e2 = x2

( ∂
∂x1
−
∂
∂x3

)
, e3 = x3

( ∂
∂x2
+
∂
∂x4

)
,

e4 = x3

( ∂
∂x2
−
∂
∂x4

)
, e5 =

∂
∂x5
.

Let η be the 1-form defined by η(e5) = 1(X, e5) for any vector field X on M. We define the (1, 1)- tensor field ϕ as

ϕe1 = e2, ϕe2 = −e1, ϕe3 = e4, ϕe4 = −e3, ϕe5 = 0.

Let 1 be the Riemannian metric defined by

1(ei, e j) =
{

0, i , j
1, i=j

The linearity properties of ϕ and 1 yield to

η(e5) = 1 ϕ2X = −X + η(X)e5,

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y),

for any vector fields X,Y ∈ χ(M). Thus, for e5 = ξ, M(ϕ, ξ, η, 1) is almost contact metric manifold. Let ∇ be
Levi-Civita Connection with respect to 1. Then we have

[e1, e2] = [e1, e5] = [e2, e5] = [e3, e4] = [e3, e5] = [e4, e5] = 0,

[e1, e3] =
x2

x3
e1 −

x3

x2
e1, [e1, e4] = −

x3

x2
e1 +

x2

x3
e4, [e2, e3] = −

x3

x2
e2 −

x2

x3
e3, [e2, e4] = −

x3

x2
e1 −

x2

x3
e4.
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Takin e5 = ξ and using Kozsul formula, we obtain

∇e1 e1 =
x3

x2
(e3 + e4), ∇e1 e3 = −

x3

x1
e1, ∇e1 e4 = −

x3

x2
e1 ∇e1 e2 = ∇e1 e5 = 0,

∇e2 e2 =
x3

x2
(e3 + e4), ∇e2 e3 = −

x3

x2
e2, ∇e2 e4 = −

x3

x2
e2 ∇e2 e1 = ∇e2 e5 = 0,

∇e3 e3 =
x2

x3
(e1 − e2), ∇e3 e1 = −

x2

x3
e3, ∇e3 e2 = −

x2

x3
e3 ∇e3 e4 = ∇e3 e5 = 0,

∇e4 e4 =
x2

x3
(e1 − e2), ∇e4 e1 = −

x2

x3
e4, ∇e4 e2 =

x2

x3
e4 ∇e4 e3 = ∇e4 e5 = 0,

∇e5 e1 = ∇e5 e2 = ∇e5 e3 = ∇e5 e4 = ∇e5 e5 = 0.

By using above results, we can easily obtain the following

R(e1, e2)e1 =
x2

3

x2
2

e2 + e3 + e4, R(e1, e2)e2 = (−
x2

3

x1x2
−

x2
3

x2
2

)e1 + e3 + e4,

R(e1, e2)e3 = (−
x2x3

x2
1

−
x2

x1
)e1 − e2, R(e1, e2)e4 = −e1 − e2,

R(e1, e3)e1 = (
x2 − x1

x1
)e1 + e2 + (

x2
2

x2
3

+
x2

3

x2
2

)e3 +
2x2

3

x2
2

e4, R(e1, e3)e2 = −
x2

x1
e1 −

2x2
2

x2
3

e3,

R(e1, e3)e3 =
(
−

x2x3 − x2

x1
−

x2
2

x2
3

−
x2

3

x1x2

)
e1 + 2

x2
2

x2
3

e2 +
(x1 − x2

x1

)
e3 + e4,

R(e1, e3)e4 = −2
x2

3

x2
2

e1 − e3, R(e1, e4)e1 = e2 +
2x2

3

x2
2

e3 +
(
−

x2

x3
+

2x2
2

x2
3

+
2x2

3

x2
2

)
e4,

R(e1, e4)e2 = −e1 −
2x2

2

x2
3

e4 R(e1, e4)e3 = −
x2

3

x1x2
e1 −

x2

x1
e4,

R(e1, e4)e4 =
(x2

2 − 2x2
3

x2
3

−
x2

2

x2
3

)
e1 +

2x2
2

x2
3

e2 + e3

R(e2, e3)e1 = e2, R(e2, e3)e2 = −e1 +
(2x2

2

x2
3

+
2x2

3

x2
2

)
e3 +

2x2
3

x2
2

e4,

R(e2, e3)e3 =
2x2

2

x2
3

e1 −
2x2

3

x2
2

e2 − e4 R(e2, e3)e4 = −
2x2

3

x2
2

e2 + e3,

R(e2, e4)e1 = e2 −
2x2

2

x2
3

e4 R(e2, e4)e2 = −e1 +
2x2

3

x2
2

e3 +
2x2

2

x2
3

e4,
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R(e2, e4)e3 = −
2x2

3

x2
2

e2 + e4 R(e2, e4)e4 =
2x2

2

x2
3

e1 +
(
−

2x2
2

x2
3

−
2x2

3

x2
2

)
e2 − e3,

R(ei, e j)ξ = R(ei, ξ)e j = 0

for e5 = ξ and 1 ≤ i, j ≤ 5. The definition of Ricci tensor is given as 3-dimensional manifold :

S(X,Y) =
5∑

i=1

1(R(ei,X)Y, ei). (53)

Using the components of the curvature tensor in (53), we get the following results:

S(e1, e1) = −
3x2

3

x1x2
−

x3x2

x2
1

−
5x2

3

x2
2

−
2x2

2

x2
3

+
2x2

x1
−

x2x3

x1
− 4

S(e2, e2) = −
10x2

3

x2
2

−
2x2

2

x2
3

+ 4, S(e3, e3) = −
2x2

3

x2
2

−
2x2

2

x2
3

+
x2

x1
− 1,

S(e4, e4) = −
2x2

3

x2
2

−
x2

2

x2
3

+
x2

x1
+

x2

x3
− 1, S(e1, e4) =

4x2
3

x2
2

−
x2

x1
−

x2

x3
+ 3,

S(e2, e3) =
2x2

2

x2
3

+
4x2

3

x2
2

− 2, S(e2, e4) =
2x2

3

x2
2

− 2, S(e3, e4) = −
2x2

2

x2
3

+
x2

2

x2
3

,

and

S(ei, ξ) = 0.

So, the scalar curvature function r of almost C(α)-manifold M is calculated as

r = −
19x2

3

x2
2

−
7x2

2

x2
3

−
3x2

3

x1x2
−

x3x2

x2
1

−
x2x3 − 4x2

x1
+

x2

x3
− 2.
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