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Abstract. In [11] K. Schmidt studied the lengths of periods occurring in the β-expansion of a rational
number r noted by Perβ(r) for the Pisot numbers of a very special form satisfying β2 = nβ+ 1 for some n ≥ 1.
He showed the curious property ”Perβ(

p
q ) = Perβ( 1

q )” for all positive integers p, q with p ∧ q = 1 and p < q.
The aim of this paper is to prove that in the case of a formal power series over finite fields this property is
true for special cubic Pisot unit basis.

1. Introduction

β-expansions of real numbers were introduced by A. Rényi [9]. Since then, their arithmetic, diophantine
and ergodic properties have been extensively studied by several researchers. In this paper, we consider an
analogue of this concept in algebraic function fields over finite fields. There are striking analogies between
these digit systems and the classical β-expansions of real numbers. In order to pursue this analogy, we
recall the definition of real β-expansions and survey the problems corresponding to our results.
Let β be a fixed real number greater than 1 and let x be a positive real number. A convergent series

∑
k≤n

xkβk

is called a β-representation of x if
x =
∑
k≤n

xkβ
k

and for all k the coefficient xk is a non-negative integer. If moreover for every −∞ < N < n we have∑
k≤N

xkβ
k < βN+1

the series
∑
k≤n

xkβk is called the β-expansion of x. The β-expansion is an analogue of the decimal or binary

expansion of reals and we sometimes use the natural notation dβ(x) = xnxn−1 . . . x0.x−1 . . . Every x ≥ 0 has a
unique β-expansion which is found by the greedy algorithm [9]. We can introduce lexicographic ordering
on β-representations in the following way. The β-representation xnβn + xn−1βn−1 + . . . is lexicographically
greater than xkβk + xk−1βk−1 + · · · , if k < n and for the corresponding infinite words we have xnxn−1 . . . ≻
0 . . . 00︸ ︷︷ ︸
(n−k)times

xkxk−1 . . . , where the symbol ≺ means the common lexicographic ordering on words in an ordered

alphabet.
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We say that dβ(x) is finite when xi = 0 for all sufficiently large i. A β-expansion is periodic if there exists
p ≥ 1 and m ≥ 1 such that xk = xk+p holds for all k ≥ m; if xk = xk+p holds for all k ≥ 1, then it is purely
periodic. We note by Per(β) the sets of real numbers in [0,1) with periodic expansions.

Let Q(β) be the smallest field containing Q and β. An easy argument shows that Per(β) ⊆ Q(β) ∩ [0, 1)
for every real number β > 1. K. Schmidt [11] showed that if β is a Pisot number (an algebraic integer whose
conjugates have modulus <1), then Per(β)=Q(β) ∩ [0, 1). It establishes a remarkable analogy as in the case
of the expansion in a rational integer base.
In the real case and with a quadratic base β satisfied β2 = nβ + 1 for some integer n ≥ 1, K. Schmidt [11] has
given this theorem:

Theorem 1.1. Suppose that β satisfies β2 = nβ + 1 for some n ≥ 1. Then every r ∈ Q ∩ [0, 1) has strictly periodic
β-expansion. If r = p

q be written in reduced form with 0 < p < q, then Perβ(
p
q ) = Perβ( 1

q ).

In [2] and [3], D.W. Boyd investigates the length of the period for some Salem numbers of degree 4 and 6.

The aim of this paper is to studies analogue results in the field of power series over finite fields.
This paper is organized as follows: In section 2, we will define the field of formal power series over finite
fields as well as the analogues to Pisot and Salem numbers. We will also define the β-expansion algo-
rithm for formal power series. In section 3, we prove that the length of the period of the expansion can
be computed algorithmically in a finite group by mimicking an Euclidean algorithm, avoiding difficult
computations of power series.

2. β-expansions in Fq((x−1))

Let Fq be a finite field of q elements, Fq[x] the ring of polynomials with coefficient in Fq, Fq(x) the field
of rational functions, Fq(x, β) the field of rational functions in base β and Fq[x, β] the ring of polynomials in
base β. Let Fq((x−1)) be the field of formal power series of the form :

f =
l∑

k=−∞

fkxk, fk ∈ Fq

whereby

l = deg f :=
{

max{k : fk , 0} for f , 0;
−∞ for f = 0.

Define the absolute value

| f | =
{

qdeg f for f , 0;
0 for f = 0.

Note that the set of possible values of |.| is a discrete set. Then Fq((x−1)) is the completion of Fq(x) with
respect to |.|. Since |.| is not archimedean, it fulfills the inequality of the strict triangle

| f + 1| ≤ max (| f |, |1|) and
| f + 1| = max (| f |, |1|) i f | f | , |1|.

Let f ∈ Fq((x−1)) define the integer (polynomial) part [ f ] =
l∑

k=0
fkxk where the empty sum, as usual, is defined

to be zero. Therefore [ f ] ∈ Fq[x] and ( f − [ f ]) ∈M0 where M0 = { f ∈ Fq((x−1)) : | f | < 1}. Now let

F
β
q[x] = {P ∈ Fq[x] : |P| < |β|}.
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Proposition 2.1. [8] Let K be complete field with respect to ( a non archimedean absolute value |.| ) and L/K (K ⊂ L)
be an algebraic extension of degree m. Then |.| has a unique extension to L defined by : |a| = m

√
|NL/K(a)| and L is

complete with respect to this extension.

We apply Proposition 2.1 to algebraic extensions of Fq((x−1)). Since Fq[x] ⊂ Fq((x−1)), every algebraic
element over Fq[x] can be valued. However, since Fq((x−1)) is not algebraically closed, such an element
does necessarily need a power series. For a full characterization of the algebraic closure of Fq[x], we refer
to Kedlaya [5].

An element β ∈ Fq((x−1)) is called a Pisot (resp Salem) series if it is an algebraic integer over Fq[x] such
that |β| > 1 and |β j| < 1 for all conjugates β j (resp |β j| ≤ 1 and there exists at least one conjugate βk such that
|βk| = 1). P. Bateman and A. L. Duquette [1] characterized the Pisot and Salem elements in Fq((x−1)):

Theorem 2.2. Let β ∈ Fq((x−1)) be an algebraic integer over Fq[x] and

P(y) = yn
− A1yn−1

− · · · − An, Ai ∈ Fq[x],

be its minimal polynomial. Then

(i) β is a Pisot series if and only if |A1| > max
2≤i≤n

|Ai|.

(ii) β is a Salem series if and only if |A1| = max
2≤i≤n

|Ai|.

Let β, f ∈ Fq((x−1)) with |β| > 1. A representation in base β (or β-representation) of f is an infinite sequence
(ai)i≥1, ai ∈ Fq[x] with

f =
∑
i≥1

ai

βi .

A particular β-representation of f is called the β-expansion of f in base β, denoted dβ( f ). This is obtained
by using the β-transformation Tβ in the unit disk which is given by Tβ( f ) = β f − [β f ]. Then dβ( f ) = (ai)i≥1

where ai = [βTi−1
β ( f )].

An equivalent definition of the β-expansion can be obtained by a greedy algorithm. This algorithm
works as follows: r0 = f , ai = [βri−1] and ri = βri−1 − ai for all i ≥ 1. The β-expansion of f will be noted as
dβ( f ) = (ai)i≥1.

Notice that dβ( f ) is finite if and only if there is a k ≥ 0 with Tk
β( f ) = 0, dβ( f ) is ultimately periodic

if and only if there is some smallest p ≥ 0 (the pre-period length) and s ≥ 1 (the period length) when
Tp+s
β ( f ) = Tp

β( f ), namely the period length will be noted by Perβ( f ).

Now, let f ∈ Fq((x−1)) be an element, with | f | ≥ 1. Then there is a unique k ∈ N having |β|k ≤ | f | < |β|k+1.
Hence, | f

βk+1 | < 1. We can represent f by shifting dβ(
f
βk+1 ) by k digits to the left. Therefore, if dβ( f ) = 0.d1d2d3 . . .,

then dβ(β f ) = d1.d2d3 . . ..
If we have dβ(x) = dldl−1 . . . d0 · d−1 . . . d−m, then we put ordβ(x) = −m.

Afterwards, we will use the following notation:

Per(β) = { f ∈ Fq((x−1)) : dβ( f ) is eventually periodic }

Remark 2.3. In contrast to the real case, there is no carry occurring, when we add two digits. So, if z, w ∈ Fq((x−1)),
then we have dβ(z + w) = dβ(z) + dβ(w) digitwise and if c ∈ F∗q, then dβ(cz) = cdβ(z).

Theorem 2.4. [4] A β-representation (d j) j≥1 of f in the unit disk is its β-expansion if and only if |d j| < |β| for j ≥ 1.
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In the case of the field of formal series, Hbaib - Mkaouar and Scheicher were proved the following
theorems independently;

Theorem 2.5. [10] β is a Pisot or Salem series if and only if Per(β) = Fq(x, β).

Theorem 2.6. [4] β is a Pisot or Salem series if and only if dβ(1) is periodic.

In the papers [6] and [7], metric results are established and the relation to continued fractions is studied.

3. The length of the period

Now, we will study specifically the length of the period and its extension as well as some of its specific
properties. We will prove that the β-expansion of f ∈ Fq(x) presents some surprising regularities. Let us
start with this proposition.

Proposition 3.1. Let β be a Pisot or Salem series of algebraic degree n and f a rational series in the unit disk. If there
exists a conjugate β(k) (2 ≤ k ≤ n) such that |β(k)

| = 1
|β| and | f | < 1

|β|s (s ≥ 0), then dβ( f ) = 0.a1 . . . an with n ≥ s + 1
and an = · · · = an−s = 0.

Proof:
Assume that β is a Pisot or Salem series, by Theorem 2.5 we can deduce that dβ( f ) is periodic. Suppose that
f does not have a purely periodic β-expansion, so dβ( f ) = 0.a1...apap+1...ap+m and ap , ap+m. Hence

f =
a1

β
+ · · · +

ap

βp +
ap+1

βp+1 + · · · +
ap+m

βp+m +
1
βm ( f −

a1

β
− · · · −

ap

βp ).

Since a1, ..., ap+m ∈ Fq[x] and f ∈ Fq(x), we have

f =
a1

β(k)
+ · · · +

ap

(β(k))p +
ap+1

(β(k))p+1
+ · · · +

ap+m

(β(k))p+m +
1

(β(k))m
( f −

a1

β(k)
− · · · −

ap

(β(k))p ).

So
f (1 −

1
(β(k))m

) =
a1

β(k)
+ · · · +

ap

(β(k))p +
ap+1

(β(k))p+1
+ · · · +

ap+m

(β(k))p+m +
1

(β(k))m
(−

a1

β(k)
− · · · −

ap

(β(k))p ).

Therefore
f (−β(k))m+p

− (β(k))p) = a1(β(k))m+p−1 + · · · + ap+m − a1(β(k))p−1
− · · · − ap.

Since |β(k)
| = 1

|β| , then we get

| f ||(β(k))p
| = |ap+m − ap|.

So
| f |
|β|p
≥ |ap+m − ap|.

Since ap+m − ap , 0, | f | ≥ |β|p. which is absurd because f is in the unit disk.

Now, suppose that dβ( f ) = 0.a1 . . . an, so

f =
a1

β
+ · · · +

an

βn +
f
βn ,
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this gives

(1 −
1
βn ) f =

a1

β
+ · · · +

an

βn .

Since a1, . . . , an ∈ Fq[x], we get

(1 −
1

(β(k))n
) f =

a1

β(k)
+ · · · +

an

(β(k))n
.

As we have |β(k)
| = 1

|β| . Clearly, we get |βn f | = |a1β + · · · + anβn
| = |anβn

|.
For s = 0, | f | = |an| < 1, therefore an = 0. So |βn f | = |a1β + · · · + an−1βn−1

|. For s = 1, | f | = | an−1
β | <

1
|β| , therefore

an−1 = 0. By iteration, we get an−s = 0. □

Corollary 3.2. Let β be a Pisot or Salem series of algebraic degree n. If there exists a conjugate β(k) (2 ≤ k ≤ n) such
that |β(k)

| = 1
|β| , then every rational r in the unit disk satisfies dβ(r) = 0.a1 . . . an with an = 0.

Remark 3.3. If β is a Salem or Pisot series of algebraic degree n which has a conjugate β(k) (2 ≤ k ≤ n) satisfying
|β(k)
| = 1

|β| , then such β(k) is unique and β is unit. This means that all other conjugates (if they exists) are of absolute
value one. So β is a quadratic Pisot unit or a special Salem element whose conjugates have absolute value one except
β and β(k).

Now, we giving a sufficient condition for β for which the curious property P ” every rational in the unit
disk has purely periodic β-expansion” is satisfied.

Let β be a Pisot or Salem unit series of minimal polynomial H(y) = yn +An−1yn−1 + · · ·+A0 where Ai ∈ Fq[x]
for i ∈ { 1, . . . ,n− 1} and A0 ∈ F∗q. Let β(2), . . . , β(n) be the conjugates of β. For f = r0 + r1β+ r2β2 + · · ·+ rn−1βn−1

with ri ∈ Fq(x), the s-th conjugate of f is defined by f (s) = r0 + r1β(s) + r2(β(s))2 + · · · + rn−1(β(s))n−1.

Proposition 3.4. Let β be Pisot or Salem unit series of algebraic degree n which has at least one conjugate β(s)
∈M0

(2 ≤ s ≤ n). Then every rational in the unit disk has a purely periodic β-expansion.

Proof:
Let β be Pisot or Salem unit series. Since f ∈ Fq(x), so for all 2 ≤ i ≤ n, we have f (i) = f . To complete the
proof, we need the following lemma.

Lemma 3.5. Let β be a Pisot or Salem unit series of algebraic degree n which has at least one conjugate β(s)
∈ M0

(2 ≤ s ≤ n) and let f ∈M0 ∩ Fq(x, β). If | f (s)
| < 1

|β(s) |
, then f has a purely periodic β-expansion.

Proof:
Let β be a Pisot or Salem unit series. Since |ββ(2) . . . β(n)

| = 1, we must have for all i ∈ {2, . . . ,n}, |β(i)
| ≥

1
|β| and

hence 1 ≤ 1
|β(i) |
≤ |β|. In particular, 1 < 1

|β(s) |
≤ |β|. As | f (s)

| < 1
|β(s) |

and f (s)
∈ Fq((x−1)) (because β(s)

∈ Fq((x−1))),

then the ( 1
β(s) )-expansion of f (s) is given by d( 1

β(s) )( f (s)) = d0.d1d2 . . .. Therefore

f (s) =
∑
i≥0

di
1

(β(s))i

=
∑
i≥0

di(β(s))i; ∥di| <
1
|β(s)|

≤ |β|.



R. Ghorbel / Filomat 38:19 (2024), 6871–6879 6876

Now, let P be the polynomial with the smallest degree such that P f ∈ Fq[x, β] and put

RP = {1 : |1| < 1, P1 ∈ Fq[x, β] and 1(s) =
∑
i≥0

ai(β(s))i with ai ∈ F
β
q[x]}.

Then RP is a non empty finite set since it is bounded and Fq[x, β] is discrete.
First, we assert that Tβ(RP) ⊂ RP. For f ∈ RP, we have

Tβ( f ) = β f − [β f ].
PTβ( f ) = (Pβ f − P[β f ]) ∈ Fq[x, β].

Since

(Tβ( f ))(s) = β(s) f (s)
− [β f ].

=
∑
i≥1

ai−1(β(s))i
− [β f ].

=
∑
i≥0

bi(β(s))i,

and |Tβ( f )| = |{β f }| < 1, this implies that Tβ(RP) ⊂ RP.
Second, we claim that Tβ is surjective on RP. Pick f ∈ RP and prove that there exists h ∈ RP such that Tβ(h) = f .
Let h = β−1( f−a0) = f−a0

β . Hence Tβ(h) = { f−a0} = { f } = f . We argue that h ∈ RP. As h = f−a0

β , |h| < 1. We have

h(s) = (β(s))−1( f (s)
− a0).

= (β(s))−1(a1(β(s)) + a2(β(s))2 + · · · ).

= a1 + a2(β(s)) + a3(β(s))2 + · · · .

=
∑
j≥0

d j(β(s)) j with (di)i≥0 = (ai)i≥1, (di)i≥0 ∈ (Fβq[x])N.

On the other hand, Ph = P( f−a0)
β ∈ Fq[x, β] because β is an algebraic unit series. This proves that Tβ is sur-

jective on RP. Hence Tβ/RP is one-to-one mapping and thus there exists an integer m such that f = Tm
β ( f ),

namely, the β-expansion of f is purely periodic. □

Now, let us return to the proof of Proposition 3.4:
In particular, since | f (s)

| = | f | < 1 < 1
|β(s) |

, then f has a purely periodic β-expansion. □

Corollary 3.6. Let β be quadratic Pisot unit series. Then every rational in the unit disk has a purely periodic
β-expansion.

Corollary 3.7. Let β be cubic Salem unit series. Then every rational in the unit disk has a purely periodic β-expansion.

Theorem 3.8. Let β be a Pisot cubic unit series of minimal polynomial P(y) = y3 + A2y2 + A1y + A0 where
deg(A1) = deg(β) − 1. Then every rational r in the unit disk has a purely periodic β-expansion.

Proof:
By using the Newton-Puiseux Theorem, we can easily describe all roots of this polynomial. The Newton
polygon is the upper convex function of the zigzag broken line connecting (0, 0), (1,deg(A1)), (2,deg(β))
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and (3, 0) where deg(β) − 1 = deg(A1) and deg(β) = deg(A2). The Newton polygon is subdivided into line
segments Li (i = 0, 1, 2), where Li connects (0, 0), (1,deg(β) − 1), (2,deg(β)) and (3, 0) and each L0,L1,L2 has
different slope α0 = (deg(β)− 1)/1); α1 = (deg(β)− deg(A1)/1); α2 = (−deg(β)/1); with α0 > α1 > α2. Denote
by bi the denominator of αi. Then the set of all roots of P is given in this following manner: Each Li gives
one root of the form:

β(i) =

∞∑
k=0

ckx−αi−k/bi ∈ Fq((x−1/bi )); (0 ≤ i ≤ 2).

So, we conclude that β has two conjugates in Fq((x−1)). Then, by Proposition 3.4, every rational in the unit
disk has a purely periodic β-expansion.

Figure 1: Newton polygon

□

Theorem 3.9. Let β be a Pisot cubic unit series of minimal polynomial P(y) = y3 + A2y2 + A1y + A0 where
deg(A1) = deg(β) − 1. Then every rational r in the unit disk satisfies

Perβ(xr) = Perβ(r).

Proof:
Let β be a Pisot cubic unit series of minimal polynomial P(y) = y3 + A2y2 + A1y + A0 where deg(A1) =
deg(β) − 1 = m − 1. Then from Theorem 3.8, r has a purely periodic β-expansion and dβ(r) = 0.a1 . . . as.
Therefore

r =
a1

β
+ · · · +

as

βs +
r
βs , (1)

this gives
r(βs
− 1) = a1β

s−1 + · · · + as−2β
2 + as−1β + as.



R. Ghorbel / Filomat 38:19 (2024), 6871–6879 6878

Since a1, . . . , as ∈ Fq[x], we get

|r((β(3))s
− 1)| = |a1(β(3))s−1 + · · · + as−2(β(3))2 + as−1β

(3) + as|.

As |r((β(3))s
− 1)| < 1 and deg(ai(β(3))s−i) < m − 1 for all 1 ≤ i ≤ s − 1, so deg(as) < m − 1. To complete this

proof we need the following lemma:

Lemma 3.10. Let β be a Pisot cubic unit series of minimal polynomial P(y) = y3 + A2y2 + A1y + A0 where
deg(A1) = deg(β)− 1 = m− 1. Then deg(β(2)) = −1 and deg(β(3)) = −m+ 1 where β(2); β(3) are the conjugates of β.

Proof:
We have

|A1| = qm−1 = |ββ(2) + ββ(3) + β(3)β(2)
|

= |ββ(2) + ββ(3)
|

≤ sup(|ββ(2)
|, |ββ(3)

|).

Moreover, sup(|ββ(2)
|, |ββ(3)

|) ≤ qm−1. So sup(|ββ(2)
|, |ββ(3)

|) = qm−1. In this case, we suppose that deg(ββ(2)) =
m − 1, hence deg(β(2)) = −1. On the other hand, we have

deg(A0) = deg(β) + deg(β(2)) + deg(β(3)) = 0.

Therefore deg(β(3)) = −m + 1. □

According to Lemma 3.10, we have deg(β(3)) = −m + 1 which implies deg(ai(β(3))s−i) < −m + 1 for all
1 ≤ i ≤ s−2. Suppose now deg(as−1) = m−1, then deg(as−1β(3)) = 0 which is absurd because |r((β(3))s

−1)| < 1.
We return to the equation (1) and multiplying by x, we get

xr =
xa1

β
+ · · · +

xas−2

βs−2 +
xas−1

βs−1 +
xas

βs +
xr
βs , (2)

Set H = {1 ≤ i ≤ s : deg(xak
−i) = m}. To continues the proof we must distinguish two cases:

Case 1: If H = ∅. So Perβ(xr) = Perβ(r).
Case 2: If H , ∅. Since deg(as) < m − 1 and deg(as−1) < m − 1, it is clear that h = sup H ≤ s − 2.
On the other hand, β is a Pisot cubic unit series, then degA2 = m. If c is the dominant coefficient of A2, we
have

cxmβ2 = β3
− (A2 − cxm)β2

− A1β
1
− A0.

Therefore

xm = c−1β − c−1(A2 − cxm) −
c−1A1

β
−

c−1A0

β2 .

According to Theorem 2.4, the last equality is the β-expansion of xm. For that ordβ(
xah
βh ) = −h−2 ≥ −s. Finally,

we conclude that Perβ(xr) = Perβ(r). □

Corollary 3.11. Let β be a Pisot cubic unit series of minimal polynomial P(y) = y3 + A2y2 + A1y + A0 where
deg(A1) = deg(β) − 1. Then every rational r in the unit disk satisfies

Perβ(αxnr) = Perβ(r) ∀ n ∈N and α ∈ F∗q.
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[5] k. S. Kedlaya, The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc, 12, (2001), 3461-3470.
[6] B. Li and J. Wu,Beta-expansions and cotinued fraction expansion over formal Laurent series, Finite Fields Appl, 14, (2008), 635-647.
[7] B. Li, J. Wu and J. Xu,Metric properties and exceptional sets of β-expansions over formal Laurent series, Monatsh. Math, 155, (2008),

145-160.
[8] J. Neukirch. Algebraic Number Theory, the Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer-Verlag, Berlin, 322, (1999).
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