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Abstract.
In this article, we obtain another proof of the following classical trace inequality which says that if A is

a positive semidefinite matrix and B is a Hermitian matrix, then

tr AαBAβB ≤ tr AγBAδB

for all non-negative real numbers α, β, γ, δ for which α + β = γ + δ and

max
{
α, β
}
≤ max

{
γ, δ
}
.

This is a generalization of trace inequalities due to T. Ando, F. Hiai, and K. Okubo for the special cases
when γ = α + β, δ = 0 and when α = β = γ+δ2 , namely

tr
(
A
α+β

2 B
)2
≤ tr AαBAβB ≤ tr Aα+βB2.

1. Introduction

Let Mn (C) be the algebra of all n × n complex matrices. In [1], T. Ando, F. Hiai, and K. Okubo proved
that if A and B are positive semidefinite matrices in Mn (C), then

tr
(
A
α+β

2 B
)2
≤ tr AαBAβB ≤ tr Aα+βB2. (1)

The inequalities (1) can be generalized by proving that the inequality

tr AαBAβB ≤ tr AγBAδB (2)

holds for all non-negative real numbers α, β, γ, δ for which α + β = γ + δ and

max
{
α, β
}
≤ max

{
γ, δ
}
, (3)

where A is a positive semidefinite matrix and B is a Hermitian matrix.
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The inequality (2), based on log convexity, has been proved in [3]. Another proof of the inequality (2)
can be concluded from Lemma 2 in [2].

In Section 2, using the Pigeonhole Principle and some algorithmic calculations, we obtain another proof
of the inequality (2).

It is important to see that the inequality (2) under the condition (3) is a generalization of the inequalities
(1) for the special cases when γ = α + β, δ = 0 and when α = β = γ+δ2 .

One of the most important ingredients of our new alternative proof of the inequality (2) is the following
interesting trace inequality

tr AαBAβB ≤
1
2

tr
(
Aα+ηBAβ−ηB + Aα−ηBAβ+ηB

)
for α, β ≥ η ≥ 0, where A is a positive semidefinite matrix and B is a Hermitian matrix. This is the starting
point of our proof.

2. The inequality tr AαBAβB ≤ 1
2 tr
(
Aα+ηBAβ−ηB + Aα−ηBAβ+ηB

)
This section is devoted to proving the inequality

tr AαBAβB ≤
1
2

tr
(
Aα+ηBAβ−ηB + Aα−ηBAβ+ηB

)
,

where A is a positive semidefinite matrix, B is a Hermitian matrix and α, β ≥ η ≥ 0.
The proof of the inequality (2) is based on the following trace inequality. Related trace inequalities can

be found in [4]. In the sequel, we frequently use the cyclicity property of the trace, which says that if X and
Y are any two matrices, then tr XY = tr YX.

Lemma 2.1. Let A be a positive semidefinite matrix and B be a Hermitian matrix, and let α, β ≥ η ≥ 0. Then

tr AαBAβB ≤
1
2

tr
(
Aα+ηBAβ−ηB + Aα−ηBAβ+ηB

)
.

Proof. Let C = BA
β+η

2 − AηBA
β−η

2 and R = Aα−η. Since CC∗ is a positive semidefinite matrix, it follows that
tr RCC∗ ≥ 0, and so we have

tr Aα−η
(
BA

β+η
2 − AηBA

β−η
2

) (
A
β+η

2 B − A
β−η

2 BAη
)
≥ 0,

which is equivalent to

tr
(
Aα+ηBAβ−ηB + Aα−ηBAβ+ηB

)
≥ 2 tr AαBAβB.

This completes the proof of the lemma. □

Lemma 2.2. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Then for all non-negative real
numbers α, β, γ, δ with γ ≥ α ≥ β ≥ δ and γ + δ = α + β, we have

tr AαBAβB ≤
1
2

tr
(
AγBAδB + A2α−γBA2β−δB

)
.

Proof. Let η = β − δ = γ − α. Since α, β, γ, δ ≥ 0 with γ ≥ α ≥ β ≥ δ, it follows that α, β ≥ η ≥ 0. Note that
α− η = 2α− γ, β+ η = 2β− δ, β− η = δ and α+ η = γ. Replacing η by β− δ = γ− α in Lemma 2.1, completes
the proof of the lemma. □
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3. Two interesting sequences of nonnegative rational numbers

To prove the inequality (2), we need to define two sequences of nonnegative rational numbers and prove
some properties related to them. These two sequences play an important role in proving the inequality (2).

We introduce some notations regarding our main result. For γ ∈ Q+ ∪ {0} and k ∈ N, we define the
following set:

Aγ,k =
{
x ∈ Q+ ∪ {0} : x ≤ γ; x =

m
k

for some m ∈N ∪ {0}
}
.

The following lemma computes the cardinality ofAγ,k.

Lemma 3.1. For γ ∈ Q+ ∪ {0} and k ∈N, we have
∣∣∣Aγ,k∣∣∣ = lγ,k, where lγ,k =

[
γk
]
+ 1 and

[
γk
]

is the greatest integer
less than or equal to γk.

Proof. Note that∣∣∣Aγ,k∣∣∣ = ∣∣∣{m ∈N ∪ {0} : m ≤ γk
}∣∣∣

=
∣∣∣{0, 1, 2, . . . , [γk

]}∣∣∣
=
[
γk
]
+ 1

= lγ,k.

This completes the proof of the lemma. □
We remark here that the family Aγ,k covers Q+ ∪ {0}. In fact, if x ∈ Q+ ∪ {0}, then x = m

k for some
m, k ∈N ∪ {0}with k , 0. Thus, x ∈ Ax,k.

Let γ, δ, x0, y0 ∈ Q+ ∪ {0}with γ ≥ x0 ≥ y0 ≥ δ and γ + δ = x0 + y0. We define the two sequences x j, y j for
j ≥ 0 by

x j+1 = max
(

f
(
x j

)
, 1
(
y j

))
(4)

y j+1 = min
(

f
(
x j

)
, 1
(
y j

))
, (5)

where f (x) = 2x − γ and 1 (x) = 2x − δ.
The following lemma is needed in the proof of Lemma 3.3.

Lemma 3.2. Let γ, δ, x0, y0 ∈ Q+ ∪ {0} with γ ≥ x0 ≥ y0 ≥ δ and x0 + y0 = γ+ δ. Let x j, y j be the two sequences as
in (4) and (5), respectively. Then for all j ∈N ∪ {0}, we have

1. x j + y j = γ + δ
2. γ ≥ x j ≥ y j ≥ δ.

Proof. Part (1) can be seen as follows. First note that for j = 0, x0 + y0 = γ + δ. Now suppose that it is true
for some j, i.e., x j + y j = γ + δ. To prove that it is true for j + 1, we have

x j+1 + y j+1 = max
(

f
(
x j

)
, 1
(
y j

))
+min

(
f
(
x j

)
, 1
(
y j

))
= f

(
x j

)
+ 1
(
y j

)
= 2

(
x j + y j

)
−
(
γ + δ

)
= γ + δ

(
by the induction assumption

)
.

Part (2) can be seen as follows. First note that for j = 0, γ ≥ x0 ≥ y0 ≥ δ. Now suppose it is true for some
j, i.e. γ ≥ x j ≥ y j ≥ δ. To prove that it is true for j + 1, we have 2y j ≥ 2δ and 2x j ≥ x j + y j by the induction
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assumption. This implies that 2y j − δ ≥ δ and 2x j ≥ γ + δ by Part (1). Thus, f
(
x j

)
≥ δ and 1

(
y j

)
≥ δ, and so

y j+1 ≥ δ. Note also that

x j+1 = γ + δ − y j+1
(
by part (1)

)
≤ γ + δ − δ

= γ.

Therefore, γ ≥ x j+1 ≥ y j+1 ≥ δ. □
Our goal in the following lemma is to prove that the ranges of the sequences x j and y j are finite sets.

Lemma 3.3. Let γ, δ, x0, y0 ∈ Q+ ∪ {0} with γ ≥ x0 ≥ y0 ≥ δ and x0 + y0 = γ+ δ. Let x j, y j be the two sequences as
in (4) and (5), respectively. Then there exists k ∈ N such that x j, y j ∈ Aγ,k for every j ≥ 0 (and hence the sequences
x j, y j have finite ranges).

Proof. Let k be the smallest common denominator of the rational numbers x0, y0, γ, δ. Thus, we can write

x0 =
x′0
k
, y0 =

y′0
k
, γ =

γ′

k
, δ =

δ′

k
,

for some x′0, y
′

0, γ
′, δ′ ∈N ∪ {0}.

Our result follows by induction on the parameter j for both x j and y j. First note that for j = 0, we have

x0, y0 ∈ Q+ ∪ {0}, x0, y0 ≤ γ, and x0 =
x′0
k , y0 =

y′0
k . Thus, x0, y0 ∈ Aγ,k.

Now suppose that it is true for some j, i.e.,

x j, y j ∈ Aγ,k with x j =
m j

k
, y j =

n j

k
for some m j,n j ∈N ∪ {0} . (6)

We are in a position to prove that it is true for j + 1. Since x j+1, y j+1 ∈ Q+ ∪ {0} and γ ≥ x j+1 ≥ y j+1 ≥ δ by
Part (2) of Lemma 3.2, it follows that f

(
x j

)
, 1
(
y j

)
∈ Q+ ∪ {0} and γ ≥ f

(
x j

)
, 1
(
y j

)
≥ δ. Using (6), we have

f
(
x j

)
= 2x j − γ = 2

m j

k
−
γ′

k
=

2m j − γ′

k

and

1
(
y j

)
= 2y j − δ = 2

n j

k
−
δ′

k
=

2n j − δ′

k

for some m j,n j ∈ N ∪ {0}. Since x j+1 = max
(

f
(
x j

)
, 1
(
y j

))
and y j+1 = min

(
f
(
x j

)
, 1
(
y j

))
, it follows that

x j+1, y j+1 ∈ Aγ,k. This completes the proof of the lemma. □
The following lemma plays an important role in the proof of Theorem 4.2.

Lemma 3.4. Let x j, y j be the two sequences as in (4) and (5), respectively with γ ≥ x0 ≥ y0 ≥ δ and x0 + y0 = γ+ δ.
Then there exist n,m ∈N ∪ {0} such that xn = xm and n , m.

Proof. By Lemma 3.1, the cardinality of Aγ,k is finite and equals lγ,k. By Lemma 3.3, there exists k ∈ N
such that x j, y j ∈ Aγ,k for every j ≥ 0. Thus, it is enough to show that there exist n,m ∈

{
0, 1, . . . lγ,k

}
such

that xn = xm and n , m. The argument is based on the Pigeonhole Principle. Suppose on the contrary

that x0, x1, . . . , xlγ,k are distinct. Since
{
x0, x1, . . . , xlγ,k

}
⊆ Aγ,k, it follows that

∣∣∣∣{x0, x1, . . . , xlγ,k

}∣∣∣∣ ≤ lγ,k. This

contradicts the fact that
∣∣∣∣{x0, x1, . . . , xlγ,k

}∣∣∣∣ = lγ,k + 1. □
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4. The inequality tr AαBAβB ≤ tr AγBAδB

In this section, we present an alternative proof of the following inequality

tr AαBAβB ≤ tr AγBAδB,

where A is a positive semidefinite matrix, B is a Hermitian matrix and α, β, γ, δ are non-negative real
numbers for which α + β = γ + δ and max

{
α, β
}
≤ max

{
γ, δ
}
. We start with the following lemma.

Lemma 4.1. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Let γ, δ, x0, y0 ∈ Q+ ∪ {0} with
γ ≥ x0 ≥ y0 ≥ δ and x0 + y0 = γ + δ. Let x j, y j be the two sequences as in (4) and (5), respectively.Then for
m, j ∈N ∪ {0}, we have

tr Ax j BAy j B ≤
(
1 −

1
2m

)
tr AγBAδB +

1
2m tr Ax j+m BAy j+m B.

Proof. The result follows by induction on m. First note that for m = 0, we are done.
Now suppose that it is true for some m.
We are in a position to prove that it is true for m + 1. Since γ ≥ x j+m ≥ y j+m ≥ δ, x j+m + y j+m = γ + δ by

Lemma 3.2, it follows that

tr Ax j BAy j B ≤

(
1 −

1
2m

)
tr AγBAδB +

1
2m tr Ax j+m BAy j+m B(

by the induction assumption
)

≤

(
1 −

1
2m

)
tr AγBAδB +

1
2m

(1
2

tr
(
AγBAδB + A f(x j+m)BA1(y j+m)B

))
(
by Lemma 2.2 and taking α = x j+m, β = y j+m

)
=
(
1 −

1
2m+1

)
tr AγBAδB +

1
2m+1 tr A f(x j+m)BA1(y j+m)B

=
(
1 −

1
2m+1

)
tr AγBAδB +

1
2m+1 tr Ax j+m+1 BAy j+m+1 B(

if f
(
x j+m

)
< 1
(
y j+m

)
, then we use the cyclicity property of the trace.

)
This completes the proof of the lemma. □

Now, we are ready to state and prove the inequality (2) for the case of rational numbers.

Theorem 4.2. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Then for α, β, γ, δ ∈ Q+ ∪ {0}
with α + β = γ + δ and max

{
α, β
}
≤ max

{
γ, δ
}
, we have

tr AαBAβB ≤ tr AγBAδB.

Proof. Note that α + β = γ + δ and max
{
α, β
}
≤ max

{
γ, δ
}

is equivalent to saying that γ ≥ α ≥ β ≥ δ if γ ≥ δ
and α ≥ β. Let x0 = α and y0 = β, where α, β ∈ Q+ ∪ {0}with γ ≥ α ≥ β ≥ δ and γ+ δ = α+ β, and let x j, y j be
the two sequences as in (4) and (5), respectively. Note that using Lemma 3.4, there exist s, d ∈N ∪ {0} such
that xs = xd with s , d (say s < d). Let k = d − s. Now applying Lemma 4.1 with j = 0 and m = s, we get

tr AαBAβB ≤
(
1 −

1
2s

)
tr AγBAδB +

1
2s tr Axs BAys B. (7)

Now using Lemma 4.1 with j = s and m = k, we get

tr Axs BAys B ≤
(
1 −

1
2k

)
tr AγBAδB +

1
2k

tr Axs+k BAys+k B. (8)

Since xs = xs+k, it follows that ys = γ + δ − xs = γ + δ − xs+k = ys+k. Therefore, using (8), we have

tr Axs BAys B ≤
(
1 −

1
2k

)
tr AγBAδB +

1
2k

tr Axs BAys B,
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which is equivalent to saying that

tr Axs BAys B ≤ tr AγBAδB. (9)

From (7) and (9), we have

tr AαBAβB ≤
(
1 −

1
2s

)
tr AγBAδB +

1
2s tr AγBAδB.

This implies that

tr AαBAβB ≤ tr AγBAδB.

This completes the proof of the theorem. □
Now, the inequality (2) is an immediate consequence of Theorem 4.2 as we will see in the following

corollary.

Corollary 4.3. Let A be a positive semidefinite matrix and B be a Hermitian matrix. Then for all non-negative real
numbers α, β, γ, δ with α + β = γ + δ and

max
{
α, β
}
≤ max

{
γ, δ
}
,

we have

tr AαBAβB ≤ tr AγBAδB.

Proof. Since Theorem 4.2 is true for all non-negative rational numbers, it follows that the result is also true
for all non-negative real numbers, and so we are done. Here we use the continuity of the mapping x −→ Ax

and the fact that the set of non-negative rational numbers is dense in the set of non-negative real numbers.
□
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