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A bivariate geometric minification integer-valued autoregressive model
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Abstract. This manuscript introduces a new bivariate minification integer-valued autoregressive model
of order one. The model is based on a modification of the negative binomial thinning operator. The
basic features of the model are given and some of them are used for estimating the parameters. Two
methods are used to estimate the unknown parameters: the conditional maximum likelihood method and
the conditional least squares method. The characteristics of the estimates obtained using these two methods
are checked through some Monte-Carlo simulations.

1. Introduction

Special attention has been paid to minification models in the last forty years. The first minification
processes were introduced in 1980 by Tavares (see [8] and [9]). He observed the exponential minification
model. The minification process with Weibull marginal distribution is introduced in [7]. The discrete
minification model first appeared in [3]. Moreover, Littlejohn introduced the discrete minification model
in [4] a year later, and considered cases with different discrete marginal distributions. Later, Aleksić and
Ristić introduced a new minification integer-valued autoregressive model in [1] , using a modified negative
binomial tinning operator constructed in [13]. They constructed this model to solve the problem arising
from the use of the binomial tinning operator and the negative binomial tinning operator. Using these
operators to construct the minification models can cause the model to become constant zero over time.
Thus, the problem is solved by using the modified negative binomial tinning operator.

At the end of the 20th century, a more active study of bivariate and multivariate minification models
began. The bivariate minification process with bivariate semi-Pareto distribution was introduced in [2].
Then, Thomas and Jose introduced multivariate minification processes in [11]. Also, Thomas and Jose
constructed the Marshall-Olkin bivariate semi-Pareto AR (1) model with Marshall-Olkin bivariate semi-
Pareto marginal distribution in [10]. Ristić considered a class of stationary bivariate minification processes
in [5], while Ristić et al. presented a stationary bivariate minification process with Marshall and Olkin
exponential distribution in [6].

This manuscript aims to contribute to the development of bivariate minification processes. Motivated
by the model introduced in [1], we construct a new bivariate minification model with geometric marginal
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distribution. We need this kind of model when we observe mutually correlated data that represent the
realizations of two correlated random variables. The model is based on the modified negative binomial
operator, which solves the problem of the model becoming consistently zero over time.

The paper is organized as follows. In Section 2, a new bivariate minification model is constructed and
its features are listed. The model is defined and some of its properties, such as transition probabilities,
conditional expectation, and conditional variances are presented. The estimates of the unknown parameters
are given in Section 3. Two methods are considered, the conditional maximum likelihood method and the
conditional least squares method. The effects of the estimates obtained by the mentioned methods are
checked by simulations. The manuscript ends with concluding remarks stating what could be done in the
future based on the results obtained.

2. Construction of the model and properties

In this section, we construct a new bivariate minification model and list its features. Aleksić and Ristić
introduced the geometric minification INAR model with non-negative integer values of the following form
Xt = min(α ⋄ Xt−1, εt), t ∈ Z, α > 0, in [1]. This model is based on the modified negative binomial tinning
operator defined as α⋄X =

∑X+1
i=1 Gi, where all the random variables of counting series {Gi} are i.i.d. random

variables with geometric marginal distribution Geom
(
α

1+α

)
with pmf of the form P(Gi = x) = αx

(1+α)x+1 , x ∈N0

and the random variables {Gi} and X are mutually independent for all i ≥ 1. Similarly, we can also consider
the operator β⋄, which is defined as β ⋄Y =

∑Y+1
i=1 Wi, where {Wi} are i.i.d. random variables with geometric

marginal distributions Geom
(
β

1+β

)
. So, using these two operators, we introduce a new bivariate minification

model defined as

Xt =

min(α ⋄ Xt−1, εt) w.p. p
min(α ⋄ Yt−1, εt), w.p. 1 − p

(1)

Yt =

min(β ⋄ Xt−1, ηt) w.p. q
min(β ⋄ Yt−1, ηt), w.p. 1 − q

, (2)

where:
i) α, β > 0, p, q ∈ [0, 1],
ii) {εt, t ∈ Z} and {ηt, t ∈ Z} are mutually independent sequences of i.i.d. random variables and εt and

ηt are independent of Xs and Ys for all s < t,
iii) the counting series incorporated in α ⋄ Xt−1, α ⋄ Yt−1, β ⋄ Xt−1, β ⋄ Yt−1 are mutually independent for

all t ∈ Z,
iv) the counting series contained in α ⋄ Xt−1, α ⋄ Yt−1, β ⋄ Xt−1, β ⋄ Yt−1 are independent of the random

variables Xt−1 and εt, Yt−1 and εt, Xt−1 and ηt, Yt−1 and ηt, respectively, for all t ∈ Z,
v) for all t , k, the counting series contained in α ⋄Xt−1 and α ⋄Xk−1 are mutually independent, as well

as the counting series involved in α ⋄ Yt−1 and α ⋄ Yk−1, β ⋄ Xt−1 and β ⋄ Xs−1, β ⋄ Yt−1 and β ⋄ Ys−1,
vi) the random variables Xt−l and εt, as well as Yt−l and ηt are independent, for all l ∈N and for all t ∈ Z.

Same as in [1], we consider a model based on the assumption that the random variables Xt and Yt have
geometric distributions Geom

(
µ

1+µ

)
, µ > 0.

As we know, the model is completely determined if the distributions of the innovation sequences
{εt, t ∈ Z} and {ηt, t ∈ Z} are given. Therefore, in the first proposition we determine the form of the
distributions of the innovation sequences.

Proposition 2.1. Let µ > 0 and {(Xt,Yt) ∈ Z2
} be the marginally stationary bivariate minification model defined in

(1) and (2) with geometric marginal distribution Geom
(
µ

1+µ

)
, µ > 0. Then, the random variables εt and ηt have the

geometric distributions Geom
(
µ[1+α(1+µ)]
α(1+µ)2

)
and Geom

(
µ[1+β(1+µ)]
β(1+µ)2

)
, respectively, if and only if α > µ

1+µ and β > µ
1+µ .



M. Stojanović / Filomat 38:19 (2024), 6897–6910 6899

Proof. Let {(Xt,Yt) ∈ Z2
} be marginally stationary with geometric marginal distribution Geom

(
µ

1+µ

)
, µ > 0.

Let x be an arbitrary nonnegative integer. Then, from the definition of the model given in (1) and (2), we
have that

P(Xt ≥ x) = p · P(min(α ⋄ Xt−1, εt) ≥ x) + (1 − p) · P(min(α ⋄ Yt−1, εt) ≥ x) (3)

and

P(Yt ≥ x) = q · P(min(β ⋄ Xt−1, ηt) ≥ x) + (1 − q) · P(min(β ⋄ Yt−1, ηt) ≥ x). (4)

As can be seen from the definition of the model, α ⋄Xt−1 and α ⋄ Yt−1 are independent of εt, just as β ⋄Xt−1
and β ⋄ Yt−1 are independent of ηt. This implies the following

P(Xt ≥ x) = p · P(α ⋄ Xt−1 ≥ x) · P(εt ≥ x) + (1 − p) · P(α ⋄ Yt−1) ≥ x) · P(εt ≥ x) (5)

and

P(Yt ≥ x) = q · P(β ⋄ Xt−1 ≥ x) · P(ηt ≥ x) + (1 − q) · P(β ⋄ Yt−1) ≥ x) · P(ηt ≥ x). (6)

It was shown in [1] that the random variable α ⋄ Xt−1 has the geometric distribution Geom
(
α(1+µ)

1+α(1+µ)

)
.

Similarly, α ⋄ Yt−1 has the geometric distribution Geom
(
α(1+µ)

1+α(1+µ)

)
, while β ⋄ Xt−1 and β ⋄ Yt−1 have the

geometric distribution Geom
(
β(1+µ)

1+β(1+µ)

)
. Based on the previous facts, we have that

P(Xt ≥ x) =
(
α(1 + µ)

1 + α(1 + µ)

)x

· P(εt ≥ x) (7)

and

P(Yt ≥ x) =
(
β(1 + µ)

1 + β(1 + µ)

)x

· P(ηt ≥ x). (8)

Finally, we obtain

P(εt ≥ x) =
P(Xt ≥ x)(
α(1+µ)

1+α(1+µ)

)x =

(
µ[1 + α(1 + µ)]
α(1 + µ)2

)x

(9)

and

P(ηt ≥ x) =
P(Yt ≥ x)(
β(1+µ)

1+β(1+µ)

)x =

(
µ[1 + β(1 + µ)]
β(1 + µ)2

)x

. (10)

In order to define distributions Geom
(
µ[1+α(1+µ)]
α(1+µ)2

)
and Geom

(
µ[1+β(1+µ)]
β(1+µ)2

)
in proper way, the conditions

0 < µ[1+α(1+µ)]
α(1+µ)2 < 1 and 0 < µ[1+β(1+µ)]

β(1+µ)2 < 1 have to be satisfied.

Therefore, we can conclude that εt and ηt have the geometric marginal distribution Geom
(
µ[1+α(1+µ)]
α(1+µ)2

)
and Geom

(
µ[1+β(1+µ)]
β(1+µ)2

)
, respectively, if and only if α > µ

1+µ and β > µ
1+µ .

Now, we will show some features of the model that will be used later in unknown parameters estimation.
First, let us consider the transition probabilities P(Xt = x,Yt = y | Xt−1 = u,Yt−1 = v), x, y,u, v ∈ N, that we
will use later in the conditional maximum likelihood method in Section 3.
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Proposition 2.2. Let {(Xt,Yt) ∈ Z2
} be the bivariate minification process defined in (1) and (2) with geometric

marginal distribution Geom
(
µ

1+µ

)
, µ > 0. Then, {(Xt,Yt) ∈ Z2

} has the transition probabilities given by

P(Xt = x,Yt = y | Xt−1 = u,Yt−1 = v)
= [p · ( f (θ1, x,u, α) + 1(θ1, x,u, α)) + (1 − p) · ( f (θ1, x, v, α) + 1(θ1, x, v, α))]
× [q · ( f (θ2, y,u, β) + 1(θ2, y,u, β)) + (1 − q) · ( f (θ2, y, v, β) + 1(θ2, y, v, β)],

(11)

x, y,u, v ∈ N, where θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , f (θ, z, t, a) = θz(z+t

z
)( a

1+a

)z( 1
1+a

)t+1
, 1(θ, z, t, a) = (1 −

θ)θz
[
1 −

∑z
i=0

(i+t
i
)( a

1+a

)i( 1
1+a

)t+1]
.

Proof. Let x, y, u and v be arbitrary non-negative integers. Since Xt and Yt are conditionally independent
for known values of Xt−1 and Yt−1, the transition probabilities of the model defined by (1) and (2) have the
following form:

P(Xt = x,Yt = y | Xt−1 = u,Yt−1 = v)
= P(Xt = x, | Xt−1 = u,Yt−1 = v) · P(Yt = y | Xt−1 = u,Yt−1 = v)
= [p · P(min(α ⋄ Xt−1, εt) = x | Xt−1 = u,Yt−1 = v) + (1 − p) · P(min(α ⋄ Yt−1, εt) = x | Xt−1 = u,Yt−1 = v)]
× [q · P(min(β ⋄ Xt−1, ηt) = y | Xt−1 = u,Yt−1 = v) + (1 − q) · P(min(β ⋄ Yt−1, ηt) = y | Xt−1 = u,Yt−1 = v)].

(12)

It is proven in [1] that for given Xt−1 = u and Yt−1 = v, α ⋄ Xt−1, α ⋄ Yt−1, β ⋄ Xt−1 and β ⋄ Yt−1 have the
negative binomial distribution NB(u+ 1, α1+α ), NB(v+ 1, α1+α ), NB(u+ 1, β1+β ) and NB(v+ 1, β1+β ), respectively,

which, for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , implies that

P(Xt = x,Yt = y | Xt−1 = u,Yt−1 = v)

=
{
p
[
θx

1

(
x + u

x

)(
α

1 + α

)x( 1
1 + α

)u+1

+ (1 − θ1)θx
1

(
1 −

x∑
i=0

(
i + u

i

)(
α

1 + α

)i( 1
1 + α

)u+1)]
+ (1 − p)

[
θx

1

(
x + v

x

)(
α

1 + α

)x( 1
1 + α

)v+1

+ (1 − θ1)θx
1

(
1 −

x∑
i=0

(
i + v

i

)(
α

1 + α

)i( 1
1 + α

)v+1)]}
×

{
q
[
θy

2

(
y + u

y

)( β
1 + β

)y( 1
1 + β

)u+1

+ (1 − θ2)θy
2

(
1 −

y∑
i=0

(
i + u

i

)( β
1 + β

)i( 1
1 + β

)u+1)]
+ (1 − q)

[
θy

2

(
y + v

y

)( β
1 + β

)y( 1
1 + β

)v+1

+ (1 − θ2)θy
2

(
1 −

y∑
i=0

(
i + v

i

)( β
1 + β

)i( 1
1 + β

)v+1)]}
,

(13)

which gives (11).

For random variables Xt and Yt defined in (1) and (2) with geometric marginal distribution Geom
(
µ

1+µ

)
,

we have that the expectations and the variances are E(Xt) = E(Yt) = µ and Var(Xt) = Var(Yt) = µ(1 + µ). In
addition, random variables εt and ηt with geometric distributions Geom

(
µ[1+α(1+µ)]
α(1+µ)2

)
and Geom

(
µ[1+β(1+µ)]
β(1+µ)2

)
respectively, have the expectations and the variances of the form E(εt) =

µ[1+α(1+µ)]
α+αµ−µ , E(ηt) =

µ[1+β(1+µ)]
β+βµ−µ ,

Var(εt) =
αµ(1+µ)2[1+α(1+µ)]

(α+αµ−µ)2 and Var(ηt) =
βµ(1+µ)2[1+β(1+µ)]

(β+βµ−µ)2 .
In the following propositions, we will derive conditional expectation and conditional variance of the

random variables Xt and Yt. First, we will determine the conditional expectation, which we will use later to
determine the conditional variance. Also, we will use the conditional expectation to estimate the unknown
parameters by the conditional least squares method.
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Proposition 2.3. Let {(Xt,Yt) ∈ Z2
} be the bivariate minification model defined in (1) and (2) with the geometric

marginal distribution Geom
(
µ

1+µ

)
, µ > 0. Then, the conditional expectation of the random variables Xt and Yt , for

given Xt−1 and Yt−1, are of the form

E(Xt | Xt−1,Yt−1) =
θ1

1 − θ1
[1 − pA1+Xt−1 − (1 − p)A1+Yt−1 ] (14)

and

E(Yt | Xt−1,Yt−1) =
θ2

1 − θ2
[1 − qB1+Xt−1 − (1 − q)B1+Yt−1 ], (15)

for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , A = 1

1+α−αθ1
and B = 1

1+β−βθ2
.

Proof. Let Xt be a random variable defined in (1). The conditional expectation of the random variable Xt
for given Xt−1 and Yt−1 can be observed as

E(Xt | Xt−1,Yt−1) = E(min(α ⋄ Xt−1, εt) | Xt−1,Yt−1) · p + E(min(α ⋄ Yt−1, εt) | Xt−1,Yt−1) · (1 − p). (16)

Using the results presented in [1], we have

E(min(α ⋄ Xt−1, εt) | Xt−1,Yt−1) =
θ1

1 − θ1

[
1 −

( 1
1 + α − αθ1

)1+Xt−1
]

and
E(min(α ⋄ Yt−1, εt) | Xt−1,Yt−1) =

θ1

1 − θ1

[
1 −

( 1
1 + α − αθ1

)1+Yt−1
]
.

From the above, we conclude that

E(Xt | Xt−1,Yt−1) =
θ1

1 − θ1

[
1 − p

( 1
1 + α − αθ1

)1+Xt−1

− (1 − p)
( 1

1 + α − αθ1

)1+Yt−1
]
. (17)

Using the fact that A = 1
1+α−αθ1

we obtain equality (14). Analogously, we can conclude that equality (15) is
also valid.

Based on the previous theorem, we conclude that conditional expectations for Xt and Yt are not linear
functions of Xt−1 and Yt−1.

The following lemma gives the result needed to derive the conditional variance.

Lemma 2.4. Let {(Xt,Yt) ∈ Z2
} be the bivariate minification model defined in (1) and (2) with geometric marginal

distribution Geom
(
µ

1+µ

)
, µ > 0. Then ,

E(Xt
2
| Xt−1,Yt−1) =

θ1(1 + θ1)
(1 − θ1)2

(
1 − pA1+Xt−1 − (1 − p)A1+Yt−1

)
−

2αθ1
2

1 − θ1

[
p(1 + Xt−1)A2+Xt−1 + (1 − p)(1 + Yt−1)A2+Yt−1

] (18)

and

E(Yt
2
| Xt−1,Yt−1) =

θ2(1 + θ2)
(1 − θ2)2

(
1 − qB1+Xt−1 − (1 − q)B1+Yt−1

)
−

2βθ2
2

1 − θ2

[
q(1 + Xt−1)B2+Xt−1 + (1 − q)(1 + Yt−1)B2+Yt−1

]
,

(19)

for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , A = 1

1+α−αθ1
and B = 1

1+β−βθ2
.
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Proof. First, we have that

E(Xt
2
| Xt−1,Yt−1) = pE((min(α ⋄ Xt−1, εt))2) | Xt−1,Yt−1)

+ (1 − p)E((min(α ⋄ Yt−1, εt))2) | Xt−1,Yt−1).
(20)

From [1] we can conclude that

E((min(α ⋄ Xt−1, εt))2) | Xt−1) =
θ1(1 + θ1)
(1 − θ1)2

(
1 −

( 1
1 + α − αθ1

)1+Xt−1)
−

2αθ1
2

1 − θ1
(1 + Xt−1)

( 1
1 + α − αθ1

)2+Xt−1
(21)

and

E((min(α ⋄ Yt−1, εt))2) | Yt−1) =
θ1(1 + θ1)
(1 − θ1)2

(
1 −

( 1
1 + α − αθ1

)1+Yt−1)
−

2αθ1
2

1 − θ1
(1 + Yt−1)

( 1
1 + α − αθ1

)2+Yt−1

,

(22)

for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 . By replacing (21) and (22) in (20) we have that

E(Xt
2
| Xt−1,Yt−1) =

θ1(1 + θ1)
(1 − θ1)2

(
1 − pA1+Xt−1 − (1 − p)A1+Yt−1

)
−

2αθ1
2

1 − θ1

[
p(1 + Xt−1)A2+Xt−1 + (1 − p)(1 + Yt−1)A2+Yt−1

]
,

(23)

for A = 1
1+α−αθ1

, by which equality (18) is shown. Similarly, we demonstrate the validity of equality (19).

The following proposition gives conditional variances of the random variables Xt and Yt for given Xt−1
and Yt−1.

Proposition 2.5. Let {(Xt,Yt) ∈ Z2
} be the bivariate minification model defined in (1) and (2) with geometric

marginal distribution Geom
(
µ

1+µ

)
, µ > 0. Then, the conditional variances of the random variables Xt and Yt, for

given Xt−1 and Yt−1, are of the form

Var(Xt | Xt−1,Yt−1) =
θ1

(1 − θ1)2 −
θ1

1 − θ1

(
pA1+Xt−1 + (1 − p)A1+Yt−1

)
−

2αθ1
2

1 − θ1

(
pA2+Xt−1 (1 + Xt−1) + (1 − p)A2+Yt−1 (1 + Yt−1)

)
−

θ1
2

(1 − θ1)2

(
p2A2+2Xt−1 + 2p(1 − p)A2+Xt−1+Yt−1 + (1 − p)2A2+2Yt−1

) (24)

and

Var(Yt | Xt−1,Yt−1) =
θ2

(1 − θ2)2 −
θ2

1 − θ2

(
qB1+Xt−1 + (1 − q)B1+Yt−1

)
−

2βθ2
2

1 − θ2

(
qB2+Xt−1 (1 + Xt−1) + (1 − q)B2+Yt−1 (1 + Yt−1)

)
−

θ2
2

(1 − θ2)2

(
q2B2+2Xt−1 + 2q(1 − q)B2+Xt−1+Yt−1 + (1 − q)2B2+2Yt−1

)
,

(25)

for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , A = 1

1+α−αθ1
and B = 1

1+β−βθ2
.
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Proof. Let Xt be a random variable defined in (1). The conditional variance of the random variable Xt , for
given Xt−1 and Yt−1, is of the form

Var(Xt | Xt−1,Yt−1) = E(Xt
2
| Xt−1,Yt−1) − (E(Xt | Xt−1,Yt−1))2. (26)

Replacing the (18) and (14) in (26) results in the following equality

Var(Xt | Xt−1,Yt−1) =
θ1(1 + θ1)
(1 − θ1)2

(
1 − pA1+Xt−1 − (1 − p)A1+Yt−1

)
−

2αθ1
2

1 − θ1

[
p(1 + Xt−1)

2αθ1
2

1 − θ1
+ (1 − p)(1 + Yt−1)A2+Yt−1

]
−
θ1

2

1 − θ1

[
1 − 2pA1+Xt−1 − 2(1 − p)A1+Yt−1

+ 2p(1 − p)A2+Xt−1Yt−1 + p2A2+2Xt−1 + (1 − p)2A2+2Yt−1

]
.

(27)

By arranging the previous equality, we get the expression (24). The proof of equality (25) is similar.

From the previous theorem, we obtain the same feature for the conditional variance as for the conditional
expectation. Namely, the conditional variances of the random variables Xt and Yt , for given Xt−1 and Yt−1
, are also non-linear functions of Xt−1 and Yt−1.

3. Estimation of the parameters

In this section, we will derive the estimators of the unknown parameters µ, α, β, p and q of the bivariate
minification model with geometric marginal distribution defined in (1) and (2). We consider two methods
for estimating unknown parameters: the conditional maximum likelihood method and the conditional
least squares method. Let (X1,Y1), (X2,Y2), ..., (Xn,Yn) be a bivariate sample of the bivariate minification
model.

Let us first consider the conditional maximum likelihood method. Since the introduced model is a
first-order Markov model, we can use the conditional probability given in (11). Thus, for observed values
(x1, y1), ..., (xn, yn), the conditional log-likelihood function lo1L(µ, α, β, p, q) is given as

lo1L(µ, α, β, p, q) =
n∑

i=2

lo1P(Xi = xi,Yi = yi | Xi−1 = xi−1,Yi−1 = yi−1)

=

n∑
i=2

lo1
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(28)

The estimators of unknown parameters cannot be derived analytically. We use the statistical software
R to calculate the estimates numerically.
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Next, we consider the estimators of the parameters µ, α, β, p and q obtained by the conditional least
squares method. Let Zt = (Xt,Yt). The estimator of the unknown parameters are determined by minimizing
the following sum of squares

S(µ, α, β, p, q) =
n∑

t=2

(Zt − E(Zt | Zt−1))′(Zt − E(Zt | Zt−1)), (29)

which is further equal to

S(µ, α, β, p, q) =
n∑

t=2

( [
Xt
Yt

]
−

[
E(Xt | Xt−1,Yt−1)
E(Yt | Xt−1,Yt−1)

] )′( [
Xt
Yt

]
−

[
E(Xt | Xt−1,Yt−1)
E(Yt | Xt−1,Yt−1)

] )

=

n∑
t=2

[
Xt − E(Xt | Xt−1,Yt−1) Yt − E(Yt | Xt−1,Yt−1)

] [Xt − E(Xt | Xt−1,Yt−1)
Yt − E(Yt | Xt−1,Yt−1)

]

=

n∑
t=2

(Xt − E(Xt | Xt−1,Yt−1))2 +

n∑
t=2

(Yt − E(Yt | Xt−1,Yt−1))2.

(30)

Replacing (14) and (15) in 30, the function S takes the following form :

S(µ, α, β, p, q) =
n∑

t=2

(
Xt −

θ1

1 − θ1
[1 − pA1+Xt−1 − (1 − p)A1+Yt−1 ]

)2

+

n∑
t=2

(
Yt −

θ2

1 − θ2
[1 − qB1+Xt−1 − (1 − q)B1+Yt−1 ]

)2

,

(31)

for θ1 =
µ[1+α(1+µ)]
α(1+µ)2 , θ2 =

µ[1+β(1+µ)]
β(1+µ)2 , A = 1

1+α−αθ1
and B = 1

1+β−βθ2
.

The estimates obtained by the conditional least squares method, like those obtained by the previous
method, cannot be calculated using analytical solutions; they can only be calculated numerically. We also
use statistical software R to find these estimates.

4. Simulations

In this section, we demonstrate the effectiveness of the observed methods for estimating the unknown
parameters of the new bivariate minification model defined in (1) and (2). We simulate 100 samples of
length 1000 based on equations (1) and (2) and observe subsamples of length 100, 200, 500 and 1000. We
generate samples based on the following parameters:
Table 1: a) µ = 4.5, α = 0.88, β = 0.9, p = 0.5, q = 0.45 ; b) µ = 4.5, α = 0.88, β = 0.9, p = 0.8, q = 0.8 ; c)
µ = 4.5, α = 0.88, β = 0.9, p = 0.2, q = 0.2 ; d) µ = 4.5, α = 0.88, β = 0.9, p = 0.2, q = 0.8;
Table 2: a) µ = 4.5, α = 2.1, β = 1.8, p = 0.5, q = 0.45; b) µ = 4.5, α = 2.1, β = 1.8, p = 0.8, q = 0.8; c) µ = 4.5,
α = 2.1, β = 1.8, p = 0.2, q = 0.2 ; d) µ = 4.5, α = 2.1, β = 1.8, p = 0.2, q = 0.8;
Table 3: a) µ = 2 , α = 0.7 , β = 0.68 , p = 0.5, q = 0.45; b) µ = 2, α = 0.7, β = 0.68, p = 0.8, q = 0.8; c) µ = 2,
α = 0.7, β = 0.68, p = 0.2, q = 0.2 ; d) µ = 2, α = 0.7, β = 0.68, p = 0.2, q = 0.8;
Table 4: c) µ = 2, α = 1.55, β = 1.45, p = 0.5, q = 0.45; d) µ = 2, α = 1.55, β = 1.45, p = 0.8, q = 0.8; c) µ = 2,
α = 1.55, β = 1.45, p = 0.2, q = 0.2; d) µ = 2, α = 1.55, β = 1.45, p = 0.2, q = 0.8.

We do not choose parameters randomly, because the goal is to display as many different cases as possible
with the appropriate selection of parameters. We choose parameters in order to check the behavior of the
methods when series are with relatively large and relatively small values. Based on the previous discussion,
for the value of the parameter µ we take µ = 4.5 and µ = 2. Table 1 and Table 2 show the results when
µ = 4.5, while Table 3 and Table 4 show the results for µ = 2.
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a) µ = 4.5, α = 0.88, β = 0.9, p = 0.5 and q = 0.45
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 3.7809 0.8814 0.9039 0.4821 0.4430 4.1550 1.0333 1.0938 0.4710 0.4349
(0.9975) (0.1321) (0.1549) (0.1087) (0.1314) (1.0247) (0.3466) (0.4325) (0.1589) (0.1590)

200 4.0412 0.8666 0.8919 0.4885 0.4471 4.2186 0.9463 0.9583 0.4896 0.4434
(0.9441) (0.0791) (0.0956) (0.0743) (0.0838) (0.8467) (0.1870) (0.2097) (0.1080) (0.1128)

500 4.3115 0.8761 0.8993 0.4952 0.4445 4.2480 0.9169 0.9272 0.4856 0.4436
(0.5929) (0.0482) (0.0514) (0.0390) (0.0480) (0.6444) (0.1397) (0.1318) (0.0638) (0.0726)

1000 4.3135 0.8733 0.8951 0.4981 0.4472 4.2072 0.9003 0.9015 0.4875 0.4492
(0.4647) (0.0401) (0.0423) (0.0335) (0.0387) (0.6171) (0.1160) (0.1050) (0.0531) (0.0569)

b) µ = 4.5, α = 0.88, β = 0.9, p = 0.8 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 3.9356 0.8760 0.8938 0.8184 0.8065 4.2052 1.0452 0.9236 0.8237 0.8426
(1.0537) (0.1143) (0.1161) (0.1457) (0.1221) (1.1576) (0.3042) (0.2728) (0.1555) (0.1412)

200 4.2686 0.8827 0.8944 0.8090 0.8007 4.2413 0.9877 0.8952 0.8221 0.8234
(0.8247) (0.0759) (0.0838) (0.0741) (0.0812) (0.7977) (0.1917) (0.1902) (0.1086) (0.1053)

500 4.4634 0.8863 0.8981 0.8071 0.8069 4.2671 0.9245 0.8770 0.8140 0.8209
(0.4787) (0.0421) (0.0442) (0.0522) (0.0530) (0.5601) (0.1207) (0.1305) (0.0706) (0.0709)

1000 4.4548 0.8811 0.8992 0.8025 0.8053 4.3143 0.8979 0.8967 0.8082 0.8180
(0.3404) (0.0296) (0.0357) (0.0324) (0.0362) (0.5046) (0.0830) (0.0966) (0.0507) (0.0546)

c) µ = 4.5, α = 0.88, β = 0.9, p = 0.2 and q = 0.2
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 4.0634 0.8862 0.9255 0.1962 0.1575 4.2082 0.9243 1.0512 0.1729 0.1548
(1.0517) (0.1045) (0.2140) (0.1091) (0.1488) (1.0502) (0.2716) (0.3129) (0.1316) (0.1511)

200 4.2460 0.8832 0.9041 0.1963 0.1844 4.1779 0.9110 0.9962 0.1757 0.1660
(0.7874) (0.0807) (0.0794) (0.0811) (0.0819) (0.7628) (0.1929) (0.2063) (0.1047) (0.1032)

500 4.4344 0.8823 0.9020 0.2024 0.1913 4.3325 0.8951 0.9362 0.1843 0.1765
(0.5642) (0.0434) (0.0458) (0.0440) (0.0447) (0.6352) (0.1249) (0.1254) (0.0668) (0.0599)

1000 4.4994 0.8817 0.9069 0.2019 0.1979 4.3798 0.8848 0.9277 0.1908 0.1917
(0.3489) (0.0291) (0.0311) (0.0321) (0.0283) (0.5585) (0.0927) (0.1006) (0.0502) (0.0475)

d) µ = 4.5, α = 0.88, β = 0.9, p = 0.2 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 3.9249 0.8815 0.9352 0.1851 0.8086 4.2388 0.9869 1.0349 0.1753 0.8372
( 0.9969) ( 0.1083) ( 0.1596) (0.1141) (0.1211) (0.9653) (0.2738) (0.3151) (0.1240) (0.1228)

200 4.0320 0.8638 0.8998 0.2033 0.7934 4.4661 0.9641 0.9831 0.1813 0.8209
( 0.9223 ) ( 0.0899 ) ( 0.1193 ) ( 0.0710 ) ( 0.0842 (0.8358) (0.1913) (0.2439) (0.1029) (0.0952)

500 4.2366 0.8715 0.8936 0.2001 0.7978 4.3338 0.9219 0.9401 0.1871 0.8168
( 0.6533 ) ( 0.0565 ) ( 0.0607 ) ( 0.0443 ) ( 0.0436 (0.5744) (0.1259) (0.1286) (0.0673) (0.0527)

1000 4.3357 0.8738 0.9035 0.2014 0.7987 4.2598 0.8871 0.9042 0.1912 0.8091
( 0.5063 ) ( 0.0430 ) ( 0.0461 ) ( 0.0353 ) ( 0.0363 (0.4964) (0.0988) (0.0998) (0.0542) (0.0453)

Table 1: Estimates for different cases of true values of the parameters obtained using the conditional maximum likelihood method
and the conditional least squares method
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a) µ = 4.5, α = 2.1, β = 1.8, p = 0.5 and q = 0.45
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 4.4996 2.4761 1.7742 0.4667 0.4402 4.4442 2.4941 1.9936 0.4791 0.4310
(0.5684) (2.4616) (0.4203) (0.2960) (0.1658) (0.5647) (1.5727) (0.8908) (0.2267) (0.1863)

200 4.4571 2.1553 1.8040 0.4815 0.4539 4.4169 2.2747 1.8755 0.4829 0.4580
(0.3941) (0.4239) (0.2784) (0.1116) (0.1113) (0.4201) (0.8261) (0.5075) (0.1400) (0.1405)

500 4.4652 2.1688 1.7931 0.4932 0.4447 4.4591 2.2495 1.8693 0.4890 0.4413
(0.2628) (0.2531) (0.1870) (0.0770) (0.0606) (0.2718) (0.4731) (0.4049) (0.1007) (0.0789)

1000 4.4897 2.1181 1.7821 0.4985 0.4447 4.4812 2.1665 1.8481 0.5009 0.4468
(0.1896) (0.1716) (0.1214) (0.0518) (0.0427) (0.1933) (0.4572) (0.2955) (0.0637) (0.0544)

b) µ = 4.5, α = 2.1, β = 1.8, p = 0.8 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 4.5029 2.4827 1.9255 0.8315 0.8263 4.4384 2.5995 1.9798 0.7932 0.8302
(0.5730) (1.5224) (0.5522) (0.3626) (0.1724) (0.6241) (1.3790) (0.8661) (0.2682) (0.1716)

200 4.5446 2.1574 1.8366 0.8000 0.8092 4.5187 2.2823 1.8568 0.7951 0.8054
(0.3942) (0.4297) (0.3281) (0.1210) (0.1198) (0.4174) (0.9266) (0.5257) (0.1528) (0.1309)

500 4.5190 2.1191 1.8161 0.8001 0.7940 4.5052 2.1812 1.7950 0.8042 0.7944
(0.2191) (0.2317) (0.1847) (0.0718) (0.0731) (0.2316) (0.4667) (0.3361) (0.0961) (0.0849)

1000 4.4831 2.1257 1.7998 0.8017 0.7964 4.4845 2.1687 1.7742 0.7981 0.7977
(0.1868) (0.2001) (0.1101) (0.0575) (0.0472) (0.1910) (0.2785) (0.2298) (0.0683) (0.0584)

c) µ = 4.5, α = 2.1, β = 1.8, p = 0.2 and q = 0.2
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 4.4162 2.3442 1.9733 0.1165 0.1348 4.3782 4.0544 2.2307 0.0887 0.1541
(0.5817) (0.7397) (0.7115) (0.3145) (0.2240) (0.6160) (13.0328) (1.1650) (0.4058) (0.2280)

200 4.4541 2.1571 1.8844 0.1839 0.1704 4.4241 2.2944 1.9559 0.1830 0.1826
(0.3818) (0.3699) (0.359) (0.1369) (0.1192) (0.3992) (0.8274) (0.5578) (0.1443) (0.1327)

500 4.4650 2.1251 1.8528 0.1926 0.1832 4.4511 2.1930 1.8898 0.1925 0.1786
(0.2509) (0.2433) (0.1996) (0.0744) (0.0683) (0.2512) (0.6626) (0.3519) (0.1028) (0.0892)

1000 4.4661 2.1104 1.8073 0.1985 0.1919 4.4520 2.1099 1.8114 0.2014 0.1909
(0.1734) (0.1675) (0.1364) (0.0510) (0.0446) (0.1815) (0.3015) (0.2443) (0.0642) (0.0601)

d) µ = 4.5, α = 2.1, β = 1.8, p = 0.2 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 4.5110 2.3653 2.1221 0.1300 0.8724 4.4855 2.6287 2.1809 0.1526 0.8535
(0.5351) (1.2689) (2.3449) (0.3245) (0.3543) (0.5443) (2.2505) (1.3486) (0.3311) (0.1757)

200 4.4930 2.1528 1.8693 0.1771 0.8235 4.4814 2.3608 1.9918 0.1624 0.8249
(0.3597) (0.4400) (0.3150) (0.1179) (0.0929) (0.3653) (0.8732) (0.6896) (0.1517) (0.1220)

500 4.5338 2.1111 1.8377 0.2065 0.8051 4.5189 2.1825 1.8799 0.1974 0.8151
(0.2429) (0.2868) (0.1798) (0.0697) (0.0509) (0.2498) (0.6240) (0.3055) (0.1056) (0.0651)

1000 4.5038 2.0928 1.8090 0.2030 0.7995 4.4915 2.1375 1.7957 0.2030 0.8010
(0.1714) (0.1456) (0.1221) (0.0424) (0.0395) (0.1758) (0.3465) (0.2418) (0.0595) (0.0484)

Table 2: Estimates for different cases of true values of the parameters obtained using the conditional maximum likelihood method
and the conditional least squares method
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a) µ = 2, α = 0.7, β = 0.68, p = 0.5 and q = 0.45
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 2.0003 0.7934 0.7884 0.4964 0.4663 2.0198 0.8539 0.8451 0.4652 0.4576
(0.3877) (0.2322) (0.2165) (0.1455) (0.1401) (0.6067) (0.4222) (0.4065) (0.1692) (0.1862)

200 2.0485 0.7342 0.7318 0.4937 0.4538 1.9755 0.7897 0.7677 0.4616 0.4450
(0.3016) (0.0888) (0.0973) (0.0860) (0.1047) (0.2942) (0.2471) (0.2155) (0.1110) (0.1330)

500 2.0262 0.7138 0.7092 0.4945 0.4463 1.9735 0.7521 0.7295 0.4792 0.4407
(0.2005) (0.0502) (0.0523) (0.0661) (0.0612) (0.1770) (0.1390) (0.1363) (0.0770) (0.0809)

1000 2.0472 0.7141 0.6918 0.4921 0.4475 2.002 0.7381 0.7077 0.4834 0.4428
(0.1826) (0.0421) (0.0286) (0.0425) (0.0450) (0.1241) (0.1028) (0.0958) (0.0572) (0.0580)

b) µ = 2, α = 0.7, β = 0.68, p = 0.8 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 1.9332 0.8231 0.7881 0.8666 0.8620 1.9916 0.9406 0.8139 0.8473 0.8630
(0.4046) (0.4771) (0.2216) (0.3173) (0.1756) (0.6364) (0.6750) (0.4729) (0.1980) (0.1843)

200 1.9369 0.7190 0.7185 0.8131 0.8260 1.8888 0.8152 0.6758 0.8201 0.8270
(0.3182) (0.1039) (0.0879) (0.0983) (0.1028) (0.3395) (0.2687) (0.2154) (0.1264) (0.1081)

500 1.9766 0.7112 0.6939 0.8051 0.8195 1.9691 0.7611 0.6740 0.8063 0.8171
(0.1682) (0.0514) (0.0475) (0.0650) (0.0530) (0.1928) (0.1317) (0.1237) (0.0791) (0.0685)

1000 2.0000 0.7077 0.6913 0.8006 0.8133 1.9861 0.7277 0.6897 0.8055 0.8113
(0.1457) (0.0407) (0.0310) (0.0448) (0.0435) (0.1310) (0.0858) (0.0808) (0.0541) (0.0518)

c) µ = 2, α = 0.7, β = 0.68, p = 0.2 and q = 0.2
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

00 2.1466 0.8217 0.7746 0.1609 0.1480 2.0915 0.8062 0.8448 0.1509 0.1410
(0.4583) (0.2288) (0.1953) (0.2245) (0.1497) (1.1920) (0.3865) (0.4333) (0.1818) (0.1754)

200 2.1729 0.7687 0.7307 0.2036 0.1863 1.9843 0.7778 0.7651 0.1788 0.1823
(0.3858) (0.1316) (0.0678) (0.1176) (0.0899) (0.3156) (0.2454) (0.1964) (0.1308) (0.1232)

500 2.1510 0.7323 0.7151 0.2060 0.1925 2.0001 0.7318 0.7249 0.1904 0.1929
(0.2747) (0.0630) (0.0484) (0.0617) (0.0550) (0.1798) (0.1334) (0.1223) (0.0661) (0.0746)

1000 2.1130 0.7206 0.7017 0.2012 0.1946 2.0057 0.7296 0.7056 0.1908 0.1962
(0.2218) (0.0374) (0.0360) (0.0435) (0.0406) (0.1364) (0.1021) (0.0930) (0.0474) (0.0550)

d) µ = 2, α = 0.7, β = 0.68, p = 0.2 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 1.9683 0.8303 0.7661 0.1515 0.8177 1.9604 0.9286 0.8789 0.1361 0.8069
(0.3906) (0.2367) (0.1806) (0.1456) (0.1395) (0.5372) (0.4762) (0.4113) (0.1295) (0.1613)

200 1.9990 0.7731 0.7326 0.1770 0.8091 1.9322 0.8108 0.7813 0.1685 0.8067
(0.3115) (0.1256) (0.1011) (0.0792) (0.0820) (0.3424) (0.2530) (0.2477) (0.0969) (0.1006)

500 2.0299 0.7262 0.7040 0.1941 0.8036 1.9691 0.7389 0.7170 0.1885 0.8062
(0.2123) (0.0726) (0.0479) (0.0490) (0.0468) (0.1887) (0.1400) (0.1198) (0.0679) (0.0684)

1000 2.0742 0.7150 0.7003 0.2005 0.8035 1.9966 0.7293 0.7110 0.1963 0.8069
(0.1886) (0.0423) (0.0298) (0.0383) (0.0323) (0.1437) (0.0948) (0.0902) (0.0487) (0.0441)

Table 3: Estimates for different cases of true values of the parameters obtained using the conditional maximum likelihood method
and the conditional least squares method
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a) µ = 2, α = 1.55, β = 1.45, p = 0.5 and q = 0.45
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 2.0036 1.8048 2.1343 0.4593 0.4925 1.9798 2.1395 2.4074 0.4349 0.4901
(0.2329) (0.9395) (3.9253) (0.2604) (0.2665) (0.2295) (1.7311) (3.6484) (0.2695) (0.3036)

200 1.9794 1.6669 1.7035 0.5046 0.4516 1.9624 1.6913 1.9148 0.4819 0.4545
(0.1669) (0.6425) (0.8250) (0.1662) (0.1325) (0.1679) (0.8421) (1.1688) (0.1799) (0.1705)

500 1.9965 1.5562 1.5432 0.5106 0.4543 1.9894 1.5701 1.5562 0.5008 0.4508
(0.0947) (0.2843) (0.2633) (0.0847) (0.0782) (0.0980) (0.4263) (0.3763) (0.0933) (0.0891)

1000 2.0008 1.5512 1.5086 0.5094 0.4496 1.9968 1.5778 1.5216 0.5008 0.4487
(0.0707) (0.2074) (0.1738) (0.0569) (0.0566) (0.0735) (0.3220) (0.2701) (0.0678) (0.0695)

b) µ = 2, α = 1.55, β = 1.45, p = 0.8 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 2.0137 1.8566 2.0294 0.8529 0.8343 1.9769 2.2310 1.8214 0.8688 0.8242
(0.2803) (0.8454) (2.8367) (0.2927) (0.3542) (0.2943) (1.5556) (1.4830) (0.3441) (0.2721)

200 2.0080 1.6468 1.5407 0.8263 0.7963 1.9897 1.8065 1.5569 0.8370 0.7971
(0.1837) (0.5127) (0.4542) (0.1689) (0.1457) (0.1823) (0.7773) (0.5996) (0.1900) (0.1402)

500 2.0208 1.5577 1.5183 0.7988 0.8000 2.0081 1.6342 1.5256 0.8047 0.8055
(0.1101) (0.2547) (0.2695) (0.0754) (0.0745) (0.1137) (0.4160) (0.4202) (0.0946) (0.0914)

1000 2.0137 1.5402 1.4729 0.7921 0.7990 2.0071 1.5826 1.4885 0.7925 0.8026
(0.0729) (0.1729) (0.1732) (0.0585) (0.0591) (0.0731) (0.3057) (0.2912) (0.0789) (0.0726)

c) µ = 2, α = 1.55, β = 1.45, p = 0.2 and q = 0.2
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 1.9537 1.8928 1.8643 0.1663 0.1556 1.9436 2.6808 2.105 0.0971 0.1601
(0.2893) (1.1360) (1.0949) (0.2924) (0.3006) (0.3099) (6.4100) (1.4172) (0.8390) (0.2459)

200 1.9699 1.7271 1.5233 0.1635 0.2049 1.9577 1.7824 1.7669 0.1634 0.1922
(0.2084) (0.7133) (0.4296) (0.2354) (0.1379) (0.2136) (0.9255) (0.8487) (0.1882) (0.1511)

500 1.9811 1.5331 1.4719 0.2036 0.1955 1.9780 1.5514 1.5566 0.2023 0.1892
(0.1210) (0.2627) (0.2542) (0.0836) (0.0779) (0.1259) (0.3705) (0.4238) (0.0891) (0.0912)

1000 1.9903 1.5402 1.4679 0.1994 0.1918 1.9886 1.5582 1.5060 0.2007 0.1856
(0.0776) (0.1808) (0.1896) (0.0653) (0.0645) (0.0790) (0.2708) (0.2491) (0.0694) (0.0755)

d) µ = 2, α = 1.55, β = 1.45, p = 0.2 and q = 0.8
n µ̂CML α̂CML β̂CML p̂CML q̂CML µ̂CLS α̂CLS β̂CLS p̂CLS q̂CLS

100 1.9981 9.9492 2.0570 0.6249 0.9482 1.9803 5.9522 1.9492 0.2329 0.8626
(0.2321) (70.9957) (3.1647) (8.6664) (0.7300) (0.2415) (35.1240) (1.9149) (1.6462) (0.3405)

200 1.9929 1.7254 1.5742 0.1635 0.8183 1.9875 1.7345 1.6515 0.1696 0.8233
(0.1749) (0.4795) (0.4969) (0.1589) (0.1439) (0.1861) (0.6525) (0.6447) (0.1626) (0.1557)

500 2.0003 1.6013 1.4826 0.1919 0.8048 1.9983 1.6562 1.4878 0.1858 0.7991
(0.1123) (0.2485) (0.2557) (0.0734) (0.0885) (0.1163) (0.3998) (0.3898) (0.1093) (0.1038)

1000 2.0057 1.5788 1.465 0.1951 0.8006 2.0045 1.6070 1.4653 0.1929 0.7985
(0.0754) (0.1975) (0.1686) (0.0557) (0.0592) (0.0797) (0.2868) (0.2652) (0.0709) (0.0676)

Table 4: Estimates for different cases of true values of the parameters obtained using the conditional maximum likelihood method
and the conditional least squares method
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The parameters α and β belong to the interval ( µ1+µ ,∞), and therefore, we choose values that are close
to the lower limit and values that are distant from the boundary. For values close to the limit, we use
α = 0.88; β = 0.9 (Table 1) and α = 0.7; β = 0.68 (Table 3), while for values that are not close to the limit, we
use α = 2.1; β = 1.8 (Table 2) and α = 1.55; β = 1.45 (Table 4). We choose values for the parameters p and q
to cover four different cases. First, we consider the case when p=0.5 and q=0.45. Then both, Xt−1 and Yt−1
equally often participate in the construction of sequences Xt and Yt. The second scenario is where Xt−1 is
the more dominant branch in constructing Xt and Yt. This happens when the values for p and q are large
and we will observe here the case p=q=0.8. Contrary to the second case, we have the third case where, e.g.,
p=q=0.2 and then Yt−1 participates much more often in the formation of the Xt and Yt series. Finally, we
consider the case when p is small and q is large. Then, more often Xt is formed on the basis of Yt−1 and Yt
on the basis of Xt−1. For the values of the parameters p and q we will here take p=0.2 and q=0.8. In this
way, we have covered all the interesting cases of construction of the process in the sense of cross-correlation
inference.

Based on the data from Table 1, Table 2, Table 3 and Table 4 we can conclude that both methods give solid
estimates with small standard deviations, except for some cases where the sample size is small, which can
happen for such a sample size. For sample lengths of 100 and 200, we cannot decide which of the methods is
more suitable. When the sample lengths are 500 and 1000, we observe a difference in the standard deviation
of the estimations of the parameters α, β, p and q, in favor of the CML methods. Finally, we can conclude
that as the sample size increases, the estimated values converge towards the real values in both methods.

5. Concluding remarks

In this manuscript, a new bivariate minification model based on a modified negative binomial tinning
operator was presented. Transition probabilities, conditional expectations and conditional variances of
the model were observed. The estimates were obtained using two parameter estimation methods: the
conditional maximum likelihood method and the conditional least squares method. The effectiveness of
both methods was proven on simulated data.

For future research, observing four different tinning operators instead of two would be interesting, as
was done in this manuscript.
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