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Abstract. The theory of generalized inverses of matrices and operators is closely connected with projec-
tions, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any
associative ringRwith a unit 1 , 0. We prove that generalized inverses inR are related to idempotent group
endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence
conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence,
we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an
idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses,
and (e, f ) Moore-Penrose, e-core, f -dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q)
inverses in rings with involution.

1. Introduction

For non-invertible operators and matrices, and more generally, for non-invertible elements of semi-
groups and rings, several generalized inverses were defined and studied. Each generalized inverse is used
to study specific types of problems. They are useful for solving matrix and operator equations (including
integral and differential equations), in probability theory, in the study of algebras, rings, and semigroups,
among others. See, e.g., [3, 6, 8, 10, 36, 41] and references therein.

Throughout this paper, R will be an associative ring with a unit 1 , 0. An involution ∗ of R is an
involutory anti-automorphism a 7→ a∗, i.e., (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for all a, b ∈ R. For a ∈ R,
consider the principal right (resp. left) ideal of R with generator a, aR = {ar : r ∈ R} (resp. Ra = {ra : r ∈ R}), and
the right (resp. left) annihilator of a, rann(a) = {r ∈ R : ar = 0} (resp. lann(a) = {r ∈ R : ra = 0}). For a, x ∈ R,
consider the following equalities:

axa = a, (1) xax = x, (2) (xa)∗ = xa, (3) (ax)∗ = ax, (4)

ax = xa, (5) xa2 = a, (6) ax2 = x, (7) a2x = a, (8) x2a = x, (9)

xak+1 = ak for some k ∈ {1, 2, . . .}, (1k) ak+1x = ak for some k ∈ {1, 2, . . .}, ( k1)

where (3) and (4) require R to be a ∗-ring.
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Definition 1.1. For any a ∈ R, let a{i, j, . . . , l} denote the set of elements x ∈ R which satisfy equations (i), (j), . . . ,
(l) from among equations (1)–(9),(1k) and ( k1). An element x ∈ a{i, j, . . . , l} is called an {i, j, . . . , l}-inverse of a, and
denoted by a(i, j,...,l).

The relation of generalized inverses of matrices and operators to oblique and orthogonal projections
is one of the most important properties for their study and applications. Before describing the approach
and the results for generalized inverses in rings that we present in this paper, we now recall some of these
relations.

Let Cm×n denote the set of matrices of order m × n. Let A ∈ Cm×n and X ∈ Cn×m. Then

X ∈ A{1} ⇔ AX = PR(A),S and XA = PT,N(A),

where S is some subspace of Cm complementary to the range R(A) of A, PR(A),S is the oblique projection
onto R(A) along S, T is some subspace of Cn complementary to the null space N(A) of A, and PT,N(A) is the
oblique projection onto T along N(A). We also have

X ∈ A{1, 3} ⇔ AX = PR(A)

and

X ∈ A{1, 4} ⇔ XA = PR(A∗),

where A∗ is the conjugate transpose of A, and PR(A) and PR(A∗) denote the orthogonal projections onto the
R(A) and R(A∗), respectively. See, e.g., [4] for more details.

Let H1 and H2 be Hilbert spaces over F = R or F = C. Let BC(H1,H2) denote the set of bounded
linear operators from H1 to H2 with closed range. If A ∈ BC(H1,H2), then the Moore-Penrose inverse
A† = A(1,2,3,4) exists and

AA† = PR(A) and A†A = PR(A∗),

where A∗ is the adjoint of A (see, e.g., [32, Theorem 1]).
Let now V be a complex Banach space. If A ∈ B(V) has finite index k, then the Drazin inverse

AD = A(1k ,2,5) of A exists and satisfies

AAD = ADA = PR(Ak),N(Ak),

where PR(Ak),N(Ak) is the oblique projection onto R(Ak) along N(Ak) (see, e.g., [20, Theorem 4 and its proof]).
The core A #O = A(1,2,3,6,7) and the dual core A #O = A(1,2,4,8,9) inverses of A ∈ Cn×n are defined by the

conditions

AA #O = PR(A) and R(A #O) ⊆ R(A) (10)

and

A #OA = PR(A∗) and R(A #O) ⊆ R(A∗), (11)

respectively (see [2, Definition 1, (i) and (ii) on page 693]).
Since the theory of generalized inverses of matrices and operators is closely connected with projections,

i.e., idempotent (bounded) linear transformations, it is natural to think about a similar situation when
working in any ring. In this paper, we show that we can similarly relate generalized inverses in a ring
R to idempotent group endomorphisms ρ : R → R, called projectors, which are linked to direct sum
decompositions of R, and use these relations in their study.

The organization of the paper is as follows:
In Section 2, we present some properties of generalized inverses, elements, direct sums and projectors

in rings that we use throughout the article.
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In Section 3, we relate {1}, {2}, {1, 2}, {1, 5}, and Drazin inverses to projectors.
Numerous particular generalized inverses are defined or studied by means of their associated principal

or annihilator ideals. In Sections 4, 5, and 6, we address this topic with generality using projectors. Let
a ∈ R, S, T be right ideals of R, and S′, T ′ be left ideals of R. We study {1}, {2}, and {1, 2}-inverses x of a
such that one of the following conditions holds: xaR = S and rann(xa) = T ; Rxa = S′ and lann(xa) = T ′;
xaR = S andRxa = S′; or rann(xa) = T and lann(xa) = T ′. We also consider {1} and {1, 2}-inverses such that
one of the following conditions holds: xaR = S; rann(xa) = T ; Rxa = S′; or lann(xa) = T ′. We give several
characterizations and existence conditions for these generalized inverses. We establish the connection of
the Mitsch partial order [27] with the {2}-inverses considered in Section 5. Since in these sections, we do
not make any additional a priori assumption for the ideals S, T , S′, and T ′, we can consider a large variety
of particular cases (as we do in Section 7). Moreover, as a consequence, we obtain sufficient conditions for
any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R.

In Section 7, we apply results of the previous sections to study some classes of {1}, {2}, and {1, 2}-inverses.
First, we consider {1, 3}, {1, 4}, {1, 3, 4}, {1, 3, 6}, {1, 4, 8}, {1, 3, 7}, and {1, 4, 9}-inverses. Then, we analyze the
(e, f ) Moore-Penrose inverse [30], the e-core and f -dual core inverses [29], the w-core and the dual v-core
inverses [47], and the right w-core and left dual v-core inverses [48]. Finally, we obtain some properties of
two types of {2}-inverses: the (b, c) inverses [13] and the (p, q) inverse [11]. We end Section 7 by giving an
illustrative example with a matrix over a field.

2. Preliminaries

This section presents notations, definitions and results about generalized inverses, elements, direct sums
and projectors in rings, that will be used later.

2.1. Generalized inverses
Let a ∈ R. If a{1} , ∅, then a is called regular (in the sense of von Neumann) and an x ∈ a{1} is called an

inner inverse of a. If a{2} , ∅, then a is called anti-regular and an x ∈ a{2} is called an outer inverse of a.
Note that if x ∈ a{5}, then (1k) is equivalent to ( k1). If there exists k ∈ {1, 2, . . .} such that a{2, 5, 1k

} , ∅,
then a is called Drazin invertible. The smallest of these positive integers k is called the index of a. The set
a{2, 5, 1k

} has a unique element called the Drazin inverse of a and denoted by aD. In particular, if a{1, 2, 5} , ∅,
then a is called group invertible and the group inverse of a is denoted by a#. For more details about these
inverses in rings see, e.g., [12, 23, 31].

Let R be a ∗-ring and a ∈ R. If a{1, 2, 3, 4} is not empty, then a is called Moore-Penrose invertible. In this
case, a{1, 2, 3, 4} has a unique element called the Moore-Penrose inverse of a and denoted by a†. See, e.g.,
[16, 21, 22, 42] for properties of the Moore-Penrose inverse in ∗-rings.

Baksalary and Trenkler [2] introduced two generalized inverses for complex matrices (see (10) and (11)).
Later, Rakić, Dinčić, and Djordjević [35] generalized these notions to an arbitrary ∗-ring. Let R be a ∗-ring
and a, x ∈ R. Then x is a core (resp. dual core) inverse of a if x ∈ a{1} and xR = x∗R = aR (resp. xR = x∗R = a∗R).
(see [35, Definitions 2.3 and 2.4]). If they exist, the core and the dual core inverses of an element a ∈ R are
unique and are denoted by a #O and a #O, respectively. By [35, Lemmas 2.1 and 2.2], the conditions of [35,
Definitions 2.3 and 2.4] for the core and dual core inverses are equivalent to the conditions (10) and (11)
for finite complex matrices. In [35], it is proved that a #O = a(1,2,3,6,7) and a #O = a(1,2,4,8,9). In [43], it is proved
that a #O = a(3,6,7), moreover, by the proof of [43, Theorem 3.1], a{6, 7} ⊆ a{1, 2}. Similarly, a #O = a(4,8,9) and
a{8, 9} ⊆ a{1, 2}. Properties of the core and dual core inverse in ∗-rings can be found in, e.g., [24, 35, 43].

Let us denote the sets of all Drazin invertible, group invertible, Moore-Penrose invertible, core invertible
and dual core invertible elements in R by RD, R#, R†, R #O and R #O, respectively. We will use the following
well-known equalities:

1. Let a ∈ R and a(1)
∈ a{1}. Then aa(1)

R = aR, rann(a(1)a) = rann(a), lann(aa(1)) = lann(a), and Ra(1)a = Ra.
2. Let a ∈ R and a(1)

∈ a{2}. Then rann(aa(2)) = rann(a(2)), a(2)aR = a(2)
R, Raa(2) = Ra(2), and lann(a(2)a) =

lann(a(2)).
3. Let a ∈ RD with index k and l ≥ k. Then aDaR = aaD

R = aD
R = al

R, rann(aaD) = rann(aDa) = rann(aD) =
rann(al), RaaD = RaDa = RaD = Ral and lann(aaD) = lann(aDa) = lann(aD) = lann(al).
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2.2. Elements in rings
An element p ∈ R is an idempotent if p = p2. If R is a ∗-ring and p = p∗, then p is said to be symmetric. If

p = p2 = p∗, then p is called a projection. The set of invertible and idempotent elements in R are denoted
with R−1 and R•, respectively. If R is a ∗-ring, the set of symmetric elements in R is denoted with Rsym.

For a ∈ R, we consider the group endomorphisms φa : R → R given by φa(x) = ax and aφ : R → R given
by aφ(x) = xa. We have, im(φa) = aR, ker(φa) = rann(a), im(aφ) = Ra, and ker(aφ) = lann(a).

Lemma 2.1. Let a ∈ R. Then the following assertions are equivalent:

1. a ∈ R−1.
2. aR = R and rann(a) = {0}.
3. Ra = R and lann(a) = {0}.

Proof. (1)⇒ (2)(3): It is immediate.
(2) ⇒ (1): Assume that aR = R and rann(a) = {0}. Then φa is a group automorphism. Let ψ be the

group automorphism such that ψ = φ−1
a . Since φa(1) = a, we have ψ(a) = 1. For each s ∈ R there exists

a unique r ∈ R such that ar = s. In particular, there exists a unique b ∈ R such that ab = 1. Then,
φa(r) = s⇔ ar = s⇔ ar = abs⇔ r = bs. Hence, ψ(s) = r = bs. From here, ψ = φb and ba = φb(a) = ψ(a) = 1.
This shows that b = a−1. Therefore, a ∈ R−1.

(3)⇒ (1): It is similar to the proof of (2)⇒ (1).

Lemma 2.2. Let p, q ∈ R•. Then:

1. pR = rann(1 − p), Rp = lann(1 − p).
2. pR ⊆ qR ⇔ lann(q) ⊆ lann(p), Rp ⊆ Rq⇔ rann(q) ⊆ rann(p).
3. q = p⇔ {qR ⊆ pR and rann(q) ⊆ rann(p)}.

Lemma 2.3. [35, Lemmas 2.5 and 2.6] Let a, b ∈ R. Then:

1. If aR ⊆ bR, then lann(b) ⊆ lann(a).
2. If lann(b) ⊆ lann(a) and b{1} , ∅, then aR ⊆ bR.
3. If Ra ⊆ Rb, then rann(b) ⊆ rann(a).
4. If rann(b) ⊆ rann(a) and b{1} , ∅, then Ra ⊆ Rb.

Lemma 2.4. Let a, b ∈ R be such that b{1} , ∅. Then:

1. If rann(b) ⊆ rann(a) and Rb ⊆ Ra, then a{1} , ∅.
2. If lann(b) ⊆ lann(a) and bR ⊆ aR, then a{1} , ∅.

Proof. (1): Let x ∈ b{1}. Since rann(b) ⊆ rann(a) and 1 − xb ∈ rann(b), we have a(1 − xb) = 0. From here,
a = axb ∈ aRb ⊆ aRa. Therefore, a{1} , ∅.

(2): The proof is similar to the proof of (1).

As a consequence of Lemmas 2.3(2)(4) and 2.4 we get the following result.

Lemma 2.5. Let a, b ∈ R be such that b{1} , ∅.

1. If rann(a) = rann(b), then Rb ⊆ Ra if and only if a{1} , ∅.
2. If lann(a) = lann(b), then bR ⊆ aR if and only if a{1} , ∅.

If R is a ∗-ring, then aR ⊆ bR ⇔ Ra∗ ⊆ Rb∗ and rann(a) ⊆ rann(b)⇔ lann(a∗) ⊆ lann(b∗).

Definition 2.6. Let R be a ∗-ring.

1. Let a, b ∈ R. Then a and b are right orthogonal (resp. left orthogonal), written a ⊥r b or b ⊥r a (resp. a ⊥l b
or b ⊥l a), if a∗b = 0 (resp. ab∗ = 0).
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2. Let S,T ⊆ R. Then S and T are right orthogonal (resp. left orthogonal), written S ⊥r T or T ⊥r S (resp.
S ⊥l T or T ⊥l S), if a ⊥r b (resp. a ⊥l b) for each a ∈ S and b ∈ T .

Lemma 2.7. Let R be a ∗-ring and a ∈ R. Then:

1. aR ⊥r rann(a∗).
2. If a ∈ Rsym then aR ⊥r rann(a).
3. If a ∈ R• and aR ⊥r rann(a), then a ∈ Rsym.

Proof. (1): Let x ∈ aR and y ∈ rann(a∗). Hence, there exists r ∈ R such that x = ar and a∗y = 0. Then,
x∗y = r∗a∗y = 0. This proves that aR ⊥r rann(a∗).

(2): It follows from (1).
(3): Assume that a ∈ R• and aR ⊥r rann(a). Since a ∈ R•, it follows that 1 − a ∈ rann(a). Then, since

aR ⊥r rann(a), we have a∗(1 − a) = 0. This last equality is equivalent to a∗ = a∗a. Then, a∗ = a.

Analogously to Lemma 2.7, we have:

Lemma 2.8. Let R be a ∗-ring and a ∈ R. Then:

1. Ra ⊥l lann(a∗).
2. If a ∈ Rsym then Ra ⊥l lann(a).
3. If a ∈ R• and Ra ⊥l lann(a), then a ∈ Rsym.

2.3. Projectors
In vector spaces and modules, idempotent linear transformations are well known as (oblique) projections

or projectors (see, e.g., [1, 37]). In rings, we consider idempotent group endomorphisms, called projectors,
to use them to study generalized inverses. Let S and T be subgroups of R. Let

S + T = {s + t : s ∈ S and t ∈ T }.

Definition 2.9. LetS andT be subgroups ofR. ThenR is the (internal) direct sum ofS andT , writtenR = S⊕T ,
if R = S + T and S ∩ T = {0}. In this case, S and T are called direct summands of R, and T (resp. S) is called a
complement of S (resp. T ) in R.

Associated with a direct sum decomposition of R we have a group endomorphism:

Definition 2.10. Let S and T be subgroups of R such that R = S ⊕ T . The group endomorphism ρS,T : R → R
defined by ρS,T (s + t) = s, where s ∈ S and t ∈ T , is called the oblique projector onto S along T . If R is a ∗-ring
and S ⊥r T (resp. S ⊥l T ), we say that ρS,T is a right (resp. left) orthogonal projector.

We usually say projector and orthogonal projector instead of oblique projector and right (left) orthogonal
projector, respectively. From Definition 2.10 we obtain:

Lemma 2.11. Let S and T be subgroups of R such that R = S ⊕ T . Then:

1. ρS,T + ρT ,S = idR.
2. im(ρS,T ) = S and ker(ρS,T ) = T .
3. r ∈ im(ρS,T )⇔ ρS,T (r) = r.

Another property of projectors derived easily from Definition 2.10 is the following:

Lemma 2.12. If φ : R → R is a group endomorphism such that R = im(φ) ⊕ ker(φ) and φ|im(φ) = idim(φ), then
φ = ρim(φ),ker(φ).

The next lemma asserts that projectors are precisely idempotent group endomorphisms.

Lemma 2.13. A group endomorphism φ : R → R is a projector if and only if φ is idempotent, and in this case,
R = im(φ) ⊕ ker(φ) and φ = ρim(φ),ker(φ).
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Proof. Assume that there exist S and T subgroups of R such that R = S⊕T and φ = ρS,T . Let r ∈ R. There
exist s ∈ S and t ∈ T such that r = s+ t. Then φ2(r) = ρS,T (ρS,T (s+ t)) = ρS,T (s) = s = ρS,T (r) = φ(r). Hence,
φ2 = φ.

Conversely, suppose that φ is idempotent. Let r ∈ R, s = φ(r) and t = r − s. Then φ(t) = φ(r − s) =
φ(r)−φ(s) = φ(r)−φ2(r) = 0. Thus, r = s+t with s ∈ im(φ) and t ∈ ker(φ). This shows thatR = im(φ)+ker(φ).
If r ∈ im(φ), then there exists s ∈ R such that

r = φ(s) = φ2(s) = φ(r). (12)

Hence, φ|im(φ) = idim(φ). By (12), if r ∈ im(φ) ∩ ker(φ), then r = 0. Thus, im(φ) ∩ ker(φ) = {0}. Therefore,
R = im(φ) ⊕ ker(φ). Applying now Lemma 2.12, we get φ = ρim(φ),ker(φ).

So far, we only required S and T to be subgroups of R. The next two lemmas give properties of the
projectors when S and T are right (left) ideals of R.

Lemma 2.14. Let S and T be subgroups of R such that R = S ⊕ T . Then:

1. S and T are right ideals of R if and only if ρS,T (r1r2) = ρS,T (r1)r2 for each r1, r2 ∈ R.
2. S and T are left ideals of R if and only if ρS,T (r1r2) = r1ρS,T (r2) for each r1, r2 ∈ R.

Proof. We prove (1). The proof of (2) is similar.
Assume that S and T are right ideals of R. Let r1, r2 ∈ R. Since ρS,T (r1)r2 ∈ S and ρT ,S(r1)r2 ∈ T , we

have ρS,T (r1r2) = ρS,T (ρS,T (r1)r2 + ρT ,S(r1)r2) = ρS,T (r1)r2.
Conversely, assume that ρS,T (r1r2) = ρS,T (r1)r2 for each r1, r2 ∈ R. Take r1 ∈ S and r2 ∈ R. Then

ρS,T (r1r2) = r1r2 and by Lemma 2.11(2), r1r2 ∈ S. This shows that S is a right ideal of R. Take now r1 ∈ T

and r2 ∈ R. Then ρS,T (r1r2) = 0 and by Lemma 2.11(2), r1r2 ∈ T . This shows that T is a right ideal of R.

As a consequence of Lemmas 2.11 and 2.14 we get:

Lemma 2.15. Let S and T be subgroups of R such that R = S ⊕ T and a ∈ R. Then the following assertions hold:

1. If S and T are right ideals of R, then ρS,T (1)a = a⇔ aR ⊆ S and aρS,T (1) = a⇔ T ⊆ rann(a).
2. If S and T are left ideals of R, then aρS,T (1) = a⇔ Ra ⊆ S and ρS,T (1)a = a⇔ T ⊆ lann(a).

Proof. Assume that S and T are right ideals of R. Then ρS,T (1)a = a ⇔ ρS,T (a) = a ⇔ a ∈ S ⇔ aR ⊆ S
and aρS,T (1) = a ⇔ aρS,T (1) = a(ρS,T (1) + ρT ,S(1)) ⇔ aρT ,S(1) = 0 ⇔ ∀r ∈ R : aρT ,S(1)r = 0 ⇔ ∀r ∈ R :
aρT ,S(r) = 0⇔ T ⊆ rann(a). This proves (1). The proof of (2) is similar.

In what follows, whenever we write ρS,T , we are implicity asserting thatR = S⊕T . Part (1) of the following
corollary is a consequence of Lemma 2.13 whereas part (2) follows from Lemma 2.14.

Corollary 2.16. The following assertions hold:

1. If a ∈ R•, then φa = ρaR,rann(a) and aφ = ρRa,lann(a).
2. Let S, T be right (resp. left) ideals of R and a = ρS,T (1), then a ∈ R• and φa = ρS,T (resp. aφ = ρS,T ).

3. Relations of {1}, {2}, {1, 2}, {1, 5}, and Drazin inverses to projectors

Let a{1} , ∅ and a(1)
∈ a{1}. Since aa(1), a(1)a ∈ R•, Corollary 2.16(1) yields the next theorem that relates

{1}-inverses to projectors.

Theorem 3.1. Let a ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1}.
2. φax = ρaR,rann(ax).
3. φxa = ρxaR,rann(a).
4. axφ = ρRax,lann(a).
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5. xaφ = ρRa,lann(xa).

Since a(2)
∈ a{2} if and only if a ∈ a(2)

{1}, Theorem 3.1 has an analogous version for {2}-inverses:

Theorem 3.2. Let a ∈ R. Then the following assertions are equivalent:

1. x ∈ a{2}.
2. φax = ρaxR,rann(x).
3. φxa = ρxR,rann(xa).
4. axφ = ρRx,lann(ax).
5. xaφ = ρRxa,lann(x).

The following lemma will be used later.

Lemma 3.3. Let a, b ∈ R be such that (ab){1} , ∅. Let (ab)(1)
∈ (ab){1}. Then:

1. ab(ab)(1)a = a⇔ abR = aR ⇔ lann(ab) = lann(a).
2. b(ab)(1)ab = b⇔ rann(ab) = rann(b)⇔ Rab = Rb.

Proof. We always have abR ⊆ aR, lann(a) ⊆ lann(ab), rann(b) ⊆ rann(ab) and Rab ⊆ Rb. Using Theorem 3.1
and Lemma 2.15 we get:

ab(ab)(1)a = a⇔ ρabR,rann(ab(ab)(1))(1)a = a⇔ aR ⊆ abR,

ab(ab)(1)a = a⇔ ρRab(ab)(1),lann(ab)(1)a = a⇔ lann(ab) ⊆ lann(a),

b(ab)(1)ab = b⇔ bρ(ab)(1)abR,rann(ab)(1) = b⇔ rann(ab) ⊆ rann(b)

and

b(ab)(1)ab = b⇔ bρRab,lann((ab)(1)ab)(1)⇔ Rb ⊆ Rab.

This proves (1) and (2).

The next theorem is a consequence of Theorems 3.1 and 3.2. It relates {1, 2}-inverses to projectors.

Theorem 3.4. Let a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 2}.
2. φax = ρaR,rann(x).
3. φxa = ρxR,rann(a).
4. axφ = ρRx,lann(a).
5. xaφ = ρRa,lann(x).

We note that Theorem 3.1(1)(2)(3) is related to [3, Lemma 1.1(f) and (2.28)], whereas Lemma 3.3 and
Theorem 3.4 generalize [3, Lemma 1.2], [3, Ex. 2.21] and [3, Corollary 2.7] (see also [41, Corollary 1.3.2]),
respectively.

Remark 3.5. Let a ∈ R and x ∈ a{1, 2}. Using an argument similar to the one used in the proof of the if part of [3,
Theorem 1.2] we get:

1. If a ∈ R, x ∈ a{1} and xR = xaR (or Rx = Rax), then x ∈ a{1, 2}.
2. If a ∈ R, x ∈ a{2} and aR = axR (or Ra = Rxa), then x ∈ a{1, 2}.

The characterizations of Moore-Penrose, core, and dual core inverses using φax (resp. axφ) and φxa (resp.
xaφ) appear in Section 7.2 as a consequence of some general results. Now, we present an example to show
that only these group endomorphisms are not sufficient to characterize x as the Drazin, the Moore-Penrose,
the core, or the dual core inverse.
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Example 3.6. Consider the real matrices X =
(

x1,1 x1,2
x2,1 x2,2

)
and A =

(
2 −2
0 0

)
. Then A# =

(
1/2 −1/2
0 0

)
,

A† =
(

1/4 0
−1/4 0

)
, A #O =

(
1/2 0
0 0

)
, and A #O =

(
1/4 −1/4
−1/4 1/4

)
. We have:

1. AX = XA = AA# = A#A if and only if x1,1 = 1/2, x2,1 = 0 and x2,2 = x1,2 + 1/2 if and only if X ∈ A{1, 5}.
2. AX = AA† and XA = A†A if and only if x1,1 = −x2,1 = 1/4, and x1,2 = x2,2 if and only if X ∈ A{1, 3, 4}.
3. AX = AA #O and XA = A #OA if and only if x1,1 = 1/2, x2,1 = 0 and x1,2 = x2,2 if and only X ∈ A{3, 6}.
4. AX = AA #O and XA = A #OA if and only if x1,1 = −x2,1 = 1/4 and x2,2 = x1,2 + 1/2 if and only X ∈ A{4, 8}.

We have the following immediate result.

Theorem 3.7. Let a ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 5}.
2. φax = φxa = ρaR,rann(a).
3. axφ = xaφ = ρRa,lann(a).

The next theorem relates the Drazin inverse to projectors.

Theorem 3.8. Let a, x ∈ R. Then the following assertions are equivalent:

1. a ∈ RD with index k ≤ l and x = aD.
2. φxa = φax = ρalR,rann(al) and xR ⊆ al

R.
3. φxa = φax = ρalR,rann(al) and rann(al) ⊆ rann(x).
4. xaφ = xaφ = ρRal,lann(al) and Rx ⊆ Ral.
5. xaφ = xaφ = ρRal,lann(al) and lann(al) ⊆ lann(x).

Proof. The implications (1)⇒ (2)–(5) follow from the definition of the Drazin inverse and Corollary 2.16.
If φxa = φax = ρalR,rann(al), then ax = xa and xal+1 = ρalR,rann(al)(al) = al. Thus, x ∈ a{5, 1l

}. Similarly, if
xaφ = xaφ = ρRal,lann(al), then x ∈ a{5, 1l

}.
(2)⇒ (1): Assume that (2) holds. Then x ∈ a{5, 1l

} and xax = ρalR,rann(al)(x) = x. So, a ∈ RD with index
k ≤ l and x = aD.

The proofs of the other implications are similar.

4. {1}-inverses with prescribed principal and annihilator ideals

As a consequence of Theorem 4.1 below, we can assert that if we choose arbitrary right ideals S and
T of R complementary to rann(a) and aR, respectively, then there exists x ∈ a{1} such that xaR = S
and rann(ax) = T . Similar considerations can be made for Theorems 4.2-4.8. Before we enunciate these
theorems, we observe that ifR = aR⊕T , then there exists z ∈ R such that az = ρaR,T (1) and aza = ρaR,T (a) = a.
Hence, a{1} , ∅. Analogously, if T ′ is a left ideal of R and R = Ra ⊕ T ′, then a{1} , ∅.

Theorem 4.1. Let a, x ∈ R and S, T be right ideals of R. Then the following assertions are equivalent:

1. x ∈ a{1}, xaR = S, and rann(ax) = T .
2. φax = ρaR,T and φxa = ρS,rann(a).
3. x = ρS,rann(a)(1)a(1)ρaR,T (1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

Proof. (1)⇒ (2): It follows from Theorem 3.1.
(2)⇒ (3): Assume that (2) holds. Then, x ∈ a{1} and

ρS,rann(a)(xρaR,T (1))+ (1− xa)x(1− ax) = xa(x(ax))+ x− xax− xax+ xaxax = xax+ x− xax− xax+ xax = x.

Thus, (3) holds with a(1) = y = x.
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(3)⇒ (1): Assume that (3) holds. Using Lemma 2.15(1) we obtain, ax = aa(1)ρaR,T (1), xa = ρS,rann(a)(a(1)a)
and axa = a. Hence, x ∈ a{1}, and by Theorem 3.1, φax = ρaR,rann(ax) and φxa = ρxaR,rann(a).

Let r ∈ R. Then

axr = 0⇔ aa(1)ρaR,T (r) = 0⇔ {∃s ∈ R, ρaR,T (r) = as and aa(1)as = 0}
⇔ {∃s ∈ R, ρaR,T (r) = as and as = 0} ⇔ r ∈ T .

Thus, rann(ax) = T . By Theorem 3.1, φ1−a(1)a = ρrann(a),a(1)aR. Then, ρS,rann(a)((1 − a(1)a)R) = {0} and

ρS,rann(a)(r) = ρS,rann(a)(a(1)ar) + ρS,rann(a)((1 − a(1)a)r) = ρS,rann(a)(a(1)ar) = xar.

From here, xaR = S. Consequently, (1) holds.

Theorem 4.1 generalizes [3, Theorem 2.12(a)(b)]. Using Theorem 3.1 and Lemma 2.15(2), we analogously
prove the next result about {1}-inverses with given left principal and annihilator ideals.

Theorem 4.2. Let a, x ∈ R and S, T be left ideals of R. Then the following assertions are equivalent:

1. x ∈ a{1}, Rax = S, and lann(xa) = T .
2. axφ = ρS,lann(a) and xaφ = ρRa,T .
3. x = ρRa,T (1)a(1)ρS,lann(a)(1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

With similar proofs, we obtain the next six theorems. The first is about {1}-inverses with given right and
left principal ideals.

Theorem 4.3. Let a, x ∈ R, S be a right ideal of R, and S′ be a left ideal of R. Then the following assertions are
equivalent:

1. x ∈ a{1}, xaR = S, and Rax = S′.
2. φxa = ρS,rann(a) and axφ = ρS′,lann(a).
3. a{1} , ∅ and x = ρS,rann(a)(1)a(1)ρS′,lann(a)(1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

Now we give a theorem for {1}-inverses with given right and left annihilator ideals.

Theorem 4.4. Let a, x ∈ R, T be a right ideal of R, and T ′ be a left ideal of R. Then the following assertions are
equivalent:

1. x ∈ a{1}, rann(ax) = T , and lann(xa) = T ′.
2. φax = ρaR,T and xaφ = ρRa,T ′ .
3. x = ρRa,T ′ (1)a(1)ρaR,T (1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

The following two theorems are about {1}-inverses for which only a right principal or annihilator ideal is
prefixed.

Theorem 4.5. Let a, x ∈ R and S be a right ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1}, xaR = S.
2. φxa = ρS,rann(a).
3. a{1} , ∅ and x = ρS,rann(a)(1)a(1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

Theorem 4.6. Let a, x ∈ R and T be a right ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1} and rann(ax) = T .
2. φax = ρaR,T .
3. x = a(1)ρaR,T (1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

In the next two theorems, we consider the case of {1}-inverses for which only a left principal or annihilator
ideal is prefixed.
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Theorem 4.7. Let a, x ∈ R and S be a left ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1} and Rax = S.
2. axφ = ρS,lann(a).
3. a{1} , ∅ and x = a(1)ρS,lann(a)(1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

Theorem 4.8. Let a, x ∈ R and T be left a ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1} and lann(xa) = T .
2. xaφ = ρRa,T .
3. x = ρRa,T (1)a(1) + (1 − a(1)a)y(1 − aa(1)) where a(1)

∈ a{1} and y ∈ R.

In the previous results, we can replace the hypothesis a{1} , ∅ by the condition ρS,rann(a)(1) ∈ aR (resp.
ρS,lann(a)(1) ∈ Ra).

Part (1) of Proposition 4.9 generalizes [3, Corollary 2.9].

Proposition 4.9. Let a ∈ R and a(1)
∈ a{1}. LetA = {a(1) + (1 − a(1)a)y(1 − aa(1)) : y ∈ R}. The following assertions

hold:

1. Let S, T be right ideals of R such that R = aR ⊕ T and R = S ⊕ rann(a). If a(1)aR = S and rann(aa(1)) = T ,
thenA = {x ∈ a{1} : xaR = S and rann(ax) = T }.

2. Let S, T be left ideals of R such that R = Ra ⊕ T and R = S ⊕ lann(a). If Raa(1) = S and lann(a(1)a) = T ,
thenA = {x ∈ a{1} : Rax = S and lann(xa) = T }.

3. Let S be a right ideal of R and S′ be a left ideal of R such that R = S ⊕ rann(a) and R = S′ ⊕ lann(a). If
a(1)aR = S and Raa(1) = S′, thenA = {x ∈ a{1} : xaR = S and Rax = S′}.

4. LetT be a right ideal ofR andT ′ be a left ideal ofR such thatR = aR⊕T andR = Ra⊕T ′. If rann(aa(1)) = T
and lann(a(1)a) = T ′, thenA = {x ∈ a{1} : rann(ax) = T and lann(xa) = T ′}.

5. Let S be a right ideal of R such that R = S ⊕ rann(a). If a(1)aR = S, thenA = {x ∈ a{1} : xaR = S}.
6. Let S be a left ideal of R such that R = S ⊕ lann(a). If Raa(1) = S, thenA = {x ∈ a{1} : Rax = S}.
7. Let T be a right ideal of R such that R = aR ⊕ T . If rann(aa(1)) = T , thenA = {x ∈ a{1} : rann(ax) = T }.
8. Let T ′ be a left ideal of R such that R = Ra ⊕ T ′. If lann(a(1)a) = T ′, thenA = {x ∈ a{1} : lann(xa) = T ′}.

Proof. (1): By Theorem 4.1, x ∈ a{1}, xaR = S, and rann(ax) = T if and only if φax = ρaR,T and φxa = ρS,rann(a).
Then ax = aa(1) and xa = a(1)a. Consequently, x = a(1) + (1 − a(1)a)y(1 − aa(1)) with y = x − a(1). Conversely if
there exists y ∈ R such that x = a(1) + (1 − a(1)a)y(1 − aa(1)), then ax = aa(1) and xa = a(1)a. This implies that
x ∈ a{1}, xaR = S, and rann(ax) = T . This shows that (1) holds.

Using Theorems 4.2-4.8, parts (2)-(8) can be similarly proved.

5. {2}-inverses with prescribed principal and annihilator ideals

Taking into account that x ∈ a{2} if and only if a ∈ x{1}, applying the results of Section 4 we obtain
corresponding results for {2}-inverses x of a such that axR, rann(xa), Rxa, and/or lann(ax) are given. In this
section, we further study {2}-inverses with prescribed principal and/or annihilator ideals. We begin with
the following two results about uniqueness and relations to projectors.

Theorem 5.1. Let a ∈ R, letS,T be right ideals ofR. If a has a {2}-inverse x such that xR = S and rann(x) = T , then
φax = ρφa(S),T and φxa = ρS,φ−1

a (T ). If there exists, this {2}-inverse x is unique and will be denoted by a(2)
rprin=S,rann=T .

Proof. Assume that x ∈ a{2}, xR = S and rann(x) = T . We have axR = φa(S) and rann(xa) = φ−1
a (T ).

Thus, by Theorem 3.2, φax = ρφa(S),T and φxa = ρS,φ−1
a (T ). Assume that x1, x2 ∈ a{2}, x1R = x2R = S and

rann(x1) = rann(x2) = T . Using Lemma 2.15(1) we get, x1 = ρS,φ−1
a (T )(x1) = x2ax1 = x2ρφa(S),T (1) = x2. This

shows that x is unique.

Using Theorem 3.2 and Lemma 2.15(2), we analogously obtain:
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Theorem 5.2. Let a ∈ R and let S, T be left ideals of R. If a has a {2}-inverse x such that Rx = S, and lann(x) = T ,
then xaφ = ρ aφ(S),T and axφ = ρS, aφ−1(T ). If there exists, this {2}-inverse x is unique and will be denoted by
a(2)

lprin=S,lann=T .

The next theorem gives necessary and sufficient conditions for the existence of a(2)
rprin=S,rann=T . The equiv-

alence (1) ⇔ (3) is a generalization of [9, Theorem 2.8] in complex Banach algebras and of [45, Theorem
2.4] in rings. In [9, Theorem 2.8], S = pR and T = qR with p, q ∈ R•. In [45, Theorem 2.4], S = bR and
T = rann(c) with b, c ∈ R.

Theorem 5.3. Let a ∈ R and let S, T be right ideals of R. Then the following statements are equivalent:

1. a(2)
rprin=S,rann=T exists.

2. There exists x ∈ S such that φax = ρaS,T and rann(a) ∩ S = {0}.
3. R = aS ⊕ T and rann(a) ∩ S = {0}.
4. There exists x ∈ S such that xas = s for all s ∈ S, 1 − ax ∈ T , and xt = 0 for all t ∈ T .

Proof. (2)⇒ (3) and (1)⇒ (4) are immediate.
(1) ⇒ (2): Suppose that a(2)

rprin=S,rann=T exists and x = a(2)
rprin=S,rann=T . Then x ∈ S and, by Theorem 5.1,

φax = ρaS,T and φxa = ρS,φ−1
a (T ). In particular, xas = s for all s ∈ S. From this last property, rann(a) ∩ S = {0}.

(2) ⇒ (1): Assume that there exists x ∈ S such that φax = ρaS,T and rann(a) ∩ S = {0}. Then, xR ⊆ S,
rann(ax) = T and axax = ax. Since x ∈ S, from the last equality we obtain, xax − x ∈ rann(a) ∩ S. Thus,
xax = x.

By Theorem 5.1,φxa = ρxR,φ−1
a (T ). Let s ∈ S and r, y ∈ R be such that s = xr+y is the unique decomposition

of s as a sum of an element in xR and an element in φ−1
a (T ). Then 0 = a(xr− s)+ ay where a(xr− s) ∈ aS and

ay ∈ T . Since aS ∩ T = {0}, it follows that a(xr − s) = 0. From this last equality, using that xr − s ∈ S and
rann(a) ∩ S = {0}, we obtain s = xr. Thus, S ⊆ xR.

We have proved that x = a(2)
rprin=S,rann=T .

(3)⇒ (2): Assume that R = aS ⊕ T and rann(a) ∩ S = {0}. Then, there exists a unique x ∈ S such that
ax = ρaS,T (1). Hence, φax = ρaS,T .

(4) ⇒ (1): Suppose that there exists x ∈ S such that xas = s for all s ∈ S, 1 − ax ∈ T , and xt = 0
for all t ∈ T . Clearly, x ∈ a{2}. We also have, x ∈ S ⇒ xR ⊆ S, {xas = s for all s ∈ S} ⇒ S ⊆ xR,
1 − ax ∈ T ⇒ (1 − ax)R ⊆ T , and {xt = 0 for all t ∈ T } ⇒ T ⊆ rann(x). Since rann(x) = rann(ax) = (1 − ax)R,
we conclude that (1) holds.

Using Theorem 5.2, we obtain the next theorem which is analogous to Theorem 5.3.

Theorem 5.4. Let a ∈ R and let S, T be left ideals of R. Then the following statements are equivalent:

1. a(2)
lprin=S,lann=T exists.

2. There exists x ∈ S such that xaφ = ρSa,T and lann(a) ∩ S = {0}.
3. R = Sa ⊕ T and lann(a) ∩ S = {0}.
4. There exists x ∈ S such that sax = s for all s ∈ S, 1 − xa ∈ T , and tx = 0 for all t ∈ T .

The next theorem is about the elements x ∈ a{2} such that xR and Rx are given. If A ⊆ R, we consider
rann(A) = {r ∈ R : ar = 0 for all a ∈ A} and lann(A) = {r ∈ R : ra = 0 for all a ∈ A}.

Theorem 5.5. Let a ∈ R, S be a right ideal of R and S′ be a left ideal of R. Then the following statements are
equivalent:

1. There exists x ∈ a{2} such that xR = S and Rx = S′.
2. R = aS ⊕ rann(S′) and R = S′a ⊕ lann(S).
3. There exists x ∈ S ∩ S′ such that xas = s for all s ∈ S and sax = s for all s ∈ S′.
4. There exists x ∈ S ∩ S′ such that φax = ρaS,rann(S′) and xaφ = ρS′a,lann(S).
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If the above x exists, then it is unique. This generalized inverse is equal to a(2)
rprin=S,rann=rann(S′) (resp. a(2)

lprin=S′,lann=lann(S))

and will be denoted by a(2)
rprin=S,lprin=S′ .

Proof. (1) ⇒ (2)(4): Since rann(x) = rann(Rx) and lann(x) = lann(xR), the implications follow from Theo-
rems 5.3 and 5.4.

(2)⇒ (1): Suppose that (2) holds. Assume that s ∈ S and as = 0. Let z ∈ S′ such that zaφ = ρS′a,lann(S).
Then s = 1s = ρS′a,lann(S)(1)s = zas = 0. This shows that rann(a) ∩ S = {0}. Similarly, lann(a) ∩ S′ = {0}. By
Theorems 5.3 and 5.4, a(2)

rprin=S,rann=rann(S′) and a(2)
lprin=S′,lann=lann(S) exist. Denote them by x and y, respectively.

Since rann(x) = rann(S′) = rann(Ry) = rann(y) and lann(y) = lann(S) = lann(xR) = lann(x), it follows
that y(ax) = yρaS,rann(S′)(1) = y, and (ya)x = ρS′a,lann(S)(1)x = x. Hence, x = y = a(2)

rprin=S,rann=rann(S′) =

a(2)
lprin=S′,lann=lann(S). In particular, x ∈ a{2}, xR = S, Rx = S′, and by Theorem 5.1 (or Theorem 5.2), this

generalized inverse is unique.
(1)⇔ (3): It is immediate.
(4) ⇒ (1): Since x ∈ S ∩ S′, we have xR ⊆ S, Rx ⊆ S′, lann(S) ⊆ lann(x), rann(S′) ⊆ rann(x),

xax = xρaS,rann(S′)(1) = ρS′a,lann(S)(1)x = x. If s ∈ S and s′ ∈ S′, then xas = ρS′a,lann(S)(1)s = s and s′ax =
s′ρaS,rann(S′)(1) = s′. Thus, S ⊆ xR, S′ ⊆ Rx. We conclude that (1) holds.

Assume that there exist b, c ∈ R such that S = bR and S′ = Rc. In this case, Theorem 5.5(2) coincides with
[13, Proposition 2.7(ii)], whereas Theorem 5.5(3) coincides with the definition of the (b, c) inverse (see [13,
Definition 1.3] and [33, page 103]).

The following theorem is about {2}-inverses x such that rann(x) and lann(x) are given.

Theorem 5.6. Let a, x ∈ R, T be a right ideal of R, and T ′ be a left ideal of R. Then the following statements are
equivalent:

1. x ∈ a{2}, rann(x) = T , and lann(x) = T ′.
2. φax = ρaxR,T , xaφ = ρRxa,T ′ , and rann(a) ∩ xR = {0}.
3. φax = ρaxR,T , xaφ = ρRxa,T ′ , and lann(a) ∩ Rx = {0}.
4. φax = ρaxR,T , xaφ = ρRxa,T ′ , and T ⊆ rann(x).
5. φax = ρaxR,T , xaφ = ρRxa,T ′ , and T ′ ⊆ lann(x).
6. 1 − ax ∈ T , xt = 0 for all t ∈ T , 1 − xa ∈ T ′, and tx = 0 for all t ∈ T ′.

If the above x exists, then it is unique and will be denoted by a(2)
lann=T ′,rann=T .

Proof. The implications (1)⇒ (2)(3) follow from Theorems 5.3 and 5.4, the equivalences (1)⇔ (4) and (1)⇔
(5) follow from Theorem 3.2, and the implication (1)⇒ (6) is immediate.

Assume that (2) holds. Then xax − x ∈ rann(a) ∩ xR. Taking into account that rann(a) ∩ xR = {0}, we get
x ∈ a{2}. Applying Theorem 3.2, we conclude that (1) holds. The proof of (3)⇒ (1) is similar.

The proof of (6)⇒ (1) is similar to the proof of (3)⇒ (1) in Theorems 5.3 and 5.4.
Let x, y ∈ a{2} be such that rann(x) = rann(y) = T and lann(x) = lann(y) = T ′. Since x{1} , ∅ and

y{1} , ∅, from Lemma 2.3, xR = yR and xR = Ry. By Theorem 5.1 (or Theorem 5.2), x = y. This proves the
uniqueness.

We note that [45, Proposition 3.1], in which T = rann(c) and T ′ = lann(b) for some b, c ∈ R, follows from
Theorem 5.6(1)(6).

In [13], the connection of (b, c) inverses with the MitschMpartial order [27] in a semigroup is established.
Here, we considerM in relation to the {2}-inverses considered in this section obtaining results similar to
[13, Lemmas 4.2 and 6.5, Theorems 4.3 and 6.6]. We recall that if y, z ∈ R, then yMz if there exists v,w ∈ R
such that vz = vy = y = yw = zw. Let S, T (resp. S′, T ′) be right (resp. left) ideals of R. Consider the pair
of sets

Ya,S,S′ = {y ∈ R : y ∈ a{2}, y ∈ S ∩ S′},
Za,S,S′ = {z ∈ R : z ∈ a{2},S ⊆ zR,S′ ⊆ Rz},
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Ya,S,T = {y ∈ R : y ∈ a{2}, y ∈ S,T ⊆ rann(y)},
Za,S,T = {z ∈ R : z ∈ a{2},S ⊆ zR, rann(z) ⊆ T },

Ya,S′,T ′ = {y ∈ R : y ∈ a{2}, y ∈ S′,T ′ ⊆ lann(y)},
Za,S′,T ′ = {z ∈ R : z ∈ a{2},S′ ⊆ Rz, lann(z) ⊆ T ′},

Ya,T ,T ′ = {y ∈ R : y ∈ a{2},T ⊆ rann(y),T ′ ⊆ lann(y)},
Za,T ,T ′ = {z ∈ R : z ∈ a{2}, rann(z) ⊆ T , lann(z) ⊆ T ′}.

Lemma 5.7. Let a ∈ R, and S, T (resp. S′, T ′) be right (resp. left) ideals of R. Then:

1. yMz for each y ∈ Ya,S,S′ and z ∈ Za,S,S′ .
2. yMz for each y ∈ Ya,S,T and z ∈ Za,S,T .
3. yMz for each y ∈ Ya,S′,T ′ and z ∈ Za,S′,T ′ .
4. yMz for each y ∈ Ya,T ,T ′ and z ∈ Za,T ,T ′ .

Proof. (1): Let y ∈ Ya,S,S′ and z ∈ Za,S,S′ . Then y, z ∈ {2}, φza = ρzR,rann(za), azφ = ρRz,lann(az), y ∈ S ⊆ zR = zaR,
and y ∈ S′ ⊆ Rz = Raz. Therefore, zay = ρzR,rann(za)(y) = y and yaz = ρRz,lann(az)(y) = y. Now, as in the proof
of [13, Lemma 4.2], (ya)z = (ya)y = y = y(ay) = z(ay).

The proofs of (2), (3), and (4) are similar to the proof of (1).

Theorem 5.8. Let a ∈ R, and S, T (resp. S,T ′) be right (resp. left) ideals of R. Then:

1. x = a(2)
rprin=S,lprin=S′ ⇔ x ∈ Ya,S,S′ ∩ Za,S,S′ ⇔ x = maxMYa,S,S′ = minMZa,S,S′ .

2. x = a(2)
rprin=S,rann=T ⇔ x ∈ Ya,S,T ∩ Za,S,T ⇔ x = maxMYa,S,T = minMZa,S,T .

3. x = a(2)
lprin=S′,lann=T ′ ⇔ x ∈ Ya,S′,T ′ ∩ Za,S′,T ′ ⇔ x = maxMYa,S′,T ′ = minMZa,S′,T ′ .

4. x = a(2)
rann=T ,lann=T ′ ⇔ x ∈ Ya,T ,T ′ ∩ Za,T ,T ′ ⇔ x = maxMYa,T ,T ′ = minMZa,T ,T ′ .

Proof. (1): The equivalence x = a(2)
rprin=S,lprin=S′ ⇔ x ∈ Ya,S,S′ ∩ Za,S,S′ and the implication x = maxMYa,S,S′ =

minMZa,S,S′ ⇒ x ∈ Ya,S,S′ ∩ Za,S,S′ are immediate. The implication x ∈ Ya,S,S′ ∩ Za,S,S′ ⇒ x = maxMYa,S,S′ =
minMZa,S,S′ follows from Lemma 5.7(1).

The proofs of (2), (3), and (4) are similar to the proof of (1).

6. {1, 2}-inverses with prescribed principal and annihilator ideals

Let S, T be right ideals of R. If x = a(2)
rprin=S,rann=T ∈ a{1}, then we write x = a(1,2)

rprin=S,rann=T . Similar

meaning will have a(1,2)
lprin=S′,lann=T ′ , a(1,2)

rprin=S,lprin=S′ , and a(1,2)
lann=T ′,rann=T , where S′ and T ′ are left ideals of R.

Theorem 6.1 below characterizes a(1,2)
rprin=S,rann=T for right ideals S, T of R. The equivalences (1)⇔ (4)⇔

(8) are a generalization of [3, Theorem 2.12(c) and Ex. 2.37] for finite complex matrices.

Theorem 6.1. Let a, x ∈ R and S, T be right ideals of R. Then the following assertions are equivalent:

1. x = a(1,2)
rprin=S,rann=T .

2. φax = ρaR,T , φxa = ρS,rann(a), and x ∈ S.
3. φax = ρaR,T , φxa = ρS,rann(a), and lann(S) ⊆ lann(x).
4. φax = ρaR,T , φxa = ρS,rann(a), and T ⊆ rann(x).
5. x ∈ a{1}, xaR = S, rann(ax) = T , and x ∈ S.
6. x ∈ a{1}, xaR = S, rann(ax) = T , and lann(S) ⊆ lann(x).
7. x ∈ a{1}, xaR = S, rann(ax) = T , and T ⊆ rann(x).
8. x = ρS,rann(a)(1)a(1)ρaR,T (1) where a(1)

∈ a{1}.
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Proof. The equivalences (1)⇔ (2) and (1)⇔ (4) follow from Theorem 3.4. Note that if φxa = ρS,rann(a), then
1 − xa ∈ lann(S). Hence, by Theorem 3.4, (1)⇔ (3).

The implications (1)⇒ (5)(6)(7) are immediate. The implications (5)⇒ (2), (6)⇒ (3), and (7)⇒ (4) follow
from Theorem 3.1.

(1)⇒ (8): By Theorem 4.1, x = ρS,rann(a)(1)a(1)ρaR,T (1) + (1 − a(1)a)y(1 − aa(1)) where a(1)
∈ a{1} and y ∈ R.

Then ax = aa(1)ρaR,T (1) and xa = ρS,rann(a)(1)a(1)a. Let r ∈ R be such that ρaR,T (1) = ar. Since x ∈ a{2}, we get
x = x(ax) = (xa)a(1)ρaR,T (1) = ρS,rann(a)(1)a(1)aa(1)ar = ρS,rann(a)(1)a(1)ar = ρS,rann(a)(1)a(1)ρaR,T (1). This shows
that (8) holds.

(8) ⇒ (1): By Theorem 4.1, x ∈ a{1}, xaR = S and rann(ax) = T . As in the proof of (1) ⇒ (8),
xax = ρS,rann(a)(a(1)ρaR,T (1)) = x. Hence, (1) holds.

Using Theorems 3.1, 3.4, and 4.2, we analogously obtain:

Theorem 6.2. Let a, x ∈ R and S, T be left ideals of R. Then the following assertions are equivalent:

1. x = a(1,2)
lprin=S′,lann=T ′ .

2. axφ = ρS,lann(a), xaφ = ρRa,T and x ∈ S.
3. axφ = ρS,lann(a), xaφ = ρRa,T and rann(S) ⊆ rann(x).
4. axφ = ρS,lann(a), xaφ = ρRa,T and T ⊆ lann(x).
5. x ∈ a{1}, Rax = S, lann(ax) = T , x ∈ S.
6. x ∈ a{1}, Rax = S, lann(ax) = T , rann(S) ⊆ rann(x).
7. x ∈ a{1}, Rax = S, lann(ax) = T , T ⊆ lann(x).
8. x = ρRa,T (1)a(1)ρS,lann(a)(1) for some a(1)

∈ a{1}.

Analogously we have the following six theorems with proofs similar to the proof of Theorem 6.1. As in
Section 4, in the next results, we can replace the hypothesis a{1} , ∅ by the condition ρS,rann(a)(1) ∈ aR (resp.
ρS,lann(a)(1) ∈ Ra).

Theorem 6.3. Let a, x ∈ R, S be a right ideal of R, and S′ be left a ideal of R. Then the following assertions are
equivalent:

1. x = a(1,2)
rprin=S,lprin=S′ .

2. φxa = ρS,rann(a), axφ = ρS′,lann(a) and x ∈ S ∪ S′.
3. φxa = ρS,rann(a), axφ = ρS′,lann(a) and lann(S) ⊆ lann(x).
4. φxa = ρS,rann(a), axφ = ρS′,lann(a) and rann(S′) ⊆ rann(x).
5. x ∈ a{1}, xaR = S, Rax = S′, x ∈ S ∪ S′.
6. x ∈ a{1}, xaR = S, Rax = S′, lann(S) ⊆ lann(x).
7. x ∈ a{1}, xaR = S, Rax = S′, rann(S′) ⊆ rann(x).
8. a{1} , ∅ and x = ρS,rann(a)(1)a(1)ρS′,lann(a)(1) where a(1)

∈ a{1}.

Theorem 6.4. Let a, x ∈ R, T be a right ideal of R, and T ′ be left a ideal of R. Then the following assertions are
equivalent:

1. x = a(1,2)
lann=T ′,rann=T .

2. φax = ρaR,T , xaφ = ρRa,T ′ and T ⊆ rann(x).
3. φax = ρaR,T , xaφ = ρRa,T ′ and T ′ ⊆ lann(x).
4. x ∈ a{1}, rann(ax) = T , lann(ax) = T ′, T ⊆ rann(x).
5. x ∈ a{1}, rann(ax) = T , lann(ax) = T ′, T ′ ⊆ lann(x).
6. x = ρRa,T ′ (1)a(1)ρaR,T (1) where a(1)

∈ a{1}.

Theorem 6.5. Let a, x ∈ R and S be a right ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1, 2} and xR = S.
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2. φxa = ρS,rann(a) and x ∈ S.
3. φxa = ρS,rann(a) and lann(S) ⊆ lann(x).
4. x ∈ a{1}, xaR = S, and x ∈ S.
5. x ∈ a{1}, xaR = S, and lann(S) ⊆ lann(x).
6. a{1} , ∅ and x = ρS,rann(a)(1)a(1) where a(1)

∈ a{1}.

Theorem 6.6. Let a, x ∈ R and T be a right ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1, 2} and rann(x) = T .
2. φax = ρaR,T and T ⊆ rann(x).
3. x ∈ a{1}, rann(ax) = T , and T ⊆ rann(x).
4. x = a(1)ρaR,T (1) where a(1)

∈ a{1}.

Theorem 6.7. Let a, x ∈ R and S be a left ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1, 2} and Rx = S.
2. axφ = ρS,lann(a) and x ∈ S.
3. axφ = ρS,lann(a) and rann(S) ⊆ rann(x).
4. x ∈ a{1}, Rax = S, x ∈ S.
5. x ∈ a{1}, Rax = S, and rann(S) ⊆ rann(x).
6. a{1} , ∅ and x = a(1)ρS,lann(a)(1) for some a(1)

∈ a{1}.

Theorem 6.8. Let a, x ∈ R and T be left a ideal of R. Then the following assertions are equivalent:

1. x ∈ a{1, 2} and lann(x) = T .
2. xaφ = ρRa,T and T ⊆ lann(x).
3. x ∈ a{1}, lann(ax) = T , T ⊆ lann(x).
4. x = ρRa,T (1)a(1) for some a(1)

∈ a{1}.

If the {1, 2}-inverses characterized in Theorems 6.5-6.8 exist, then they are not necessarily unique. To see
this note that if a ∈ R#

∩ R
†
∩ R

#O
∩ R #O, then a#, a†, a #O, a #O ∈ a{1, 2}, a#

R = a #O
R = aR, a†R = a #OR = a∗R,

rann(a#) = rann(a #O) = rann(a), rann(a†) = rann(a #O) = rann(a∗), Ra# = Ra #O = Ra, Ra† = Ra #O = Ra∗,
lann(a#) = lann(a #O) = lann(a), and lann(a†) = lann(a #O) = lann(a∗).

Theorems 6.9 and 6.10 give other characterizations of a(1,2)
rprin=S,rann=T and a(1,2)

lprin=S,lann=T , respectively.

Theorem 6.9. Let a ∈ R. Let S, T be right ideals of R such that R = S ⊕ rann(a) and R = aR ⊕ T . Let (φa)|S be
the group isomorphism obtained by the restriction of φa from S to aR. Let ψ : R → R be the group endomorphism
given by ψ(r) = ((φa)|S)−1(ρaR,T (r)) for each r ∈ R. Then the following assertions are equivalent:

1. b is the unique element in S such that ab = ρaR,T (1).
2. ψ = φb.
3. b = a(1,2)

rprin=S,rann=T .

Proof. Note that ker(ψ) = T and im(ψ) = S. Since φa(ρS,rann(a)(1)) = φa(1) = ρaR,T (a), we obtain ψ(a) =
ρS,rann(a)(1).

(1)⇒ (2): Let r, s ∈ R be such that ψ(r) = s. We have ψ(r) = s if and only if s ∈ S and (φa)|S(s) = ρaR,T (r).
Thus, as = (φa)|S(s) = ρaR,T (r) = ρaR,T (1)r = abr. Then s = br. From here, ψ = φb.

(2) ⇒ (3): Suppose that ψ = φb. Then bR = im(ψ) = S, rann(b) = ker(ψ) = T , ba = φb(a) = ψ(a) =
ρS,rann(a)(1), aba = aρS,rann(a)(1) = a, and bab = ρS,rann(a)(b) = b. Therefore, (3) holds.

(3) ⇒ (1): Assume that (3) holds. Then, b ∈ bR = S and, by Theorem 3.4, φab = ρaR,T . In particular,
ab = ρaR,T (1). Since S ∩ rann(a) = {0}, there is a unique element that satisfies (1).

Theorem 6.9 can be viewed as a generalization of [8, Theorem 6.2.1] about the equivalence of three defi-
nitions of {1, 2}-inverses of linear transformations with prescribed range and null spaces. Analogously to
Theorem 6.9, we get:
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Theorem 6.10. Let a ∈ R. Let S, T be left ideals of R such that R = S⊕ lann(a) and R = Ra⊕T . Let ( aφ)|S be the
group isomorphism obtained as the restriction of aφ from S to Ra. Let ψ : R → R be the group endomorphism given
by ψ(r) = (( aφ)|S)−1(ρRa,T (r)) for each r ∈ R. Then the following assertions are equivalent:

1. b is the unique element in S such that ba = ρRa,T (1).
2. ψ = bφ.
3. b = a(1,2)

lprin=S,lann=T .

The next theorem generalizes [44, Theorem 3.1] for finite matrices over an associative ring and [9, Theorem
3.3] in complex Banach algebras with S = pR, T = qR, and p, q ∈ R•. The proof of (2)⇒ (3)⇒ (1) is similar
to the one presented for Theorem 3.3 in [9]. Here we use Theorem 5.3 to prove (3)⇒ (1).

Theorem 6.11. Let a ∈ R and let S, T be right ideals of R. Then the following statements are equivalent:

1. a(1,2)
rprin=S,rann=T exists.

2. R = aR ⊕ T and R = S ⊕ rann(a).
3. R = aS ⊕ T , rann(a) ∩ S = {0}, and aR ∩ T = {0}.
4. There exists x ∈ S such that φax = ρaS,T , rann(a) ∩ S = {0}, and aR ∩ T = {0}.

Proof. (1)⇒ (2): It follows from the definition of a(1,2)
rprin=S,rann=T and Theorem 3.4.

(2) ⇒ (3): Suppose that R = aR ⊕ T and R = S ⊕ rann(a). Then aR ∩ T = {0} and rann(a) ∩ S = {0}.
Clearly, aS ⊆ aR. Let t ∈ aR. Then there exists s ∈ R such that t = as = aρS,rann(a)(s). Hence, aR ⊆ aS.

(3) ⇒ (1): Assume that R = aS ⊕ T , rann(a) ∩ S = {0}, and aR ∩ T = {0}. By Theorem 5.3, a has a
{2}-inverse x such that xR = S and rann(x) = T . Then axa − a ∈ aR ∩ T , and consequently axa = a. Hence,
x = a(1,2)

rprin=S,rann=T .
(3)⇔ (4): It follows from Theorem 5.3.

Using Theorems 3.4 and 5.4, we obtain the following result.

Theorem 6.12. Let a ∈ R and let S, T be left ideals of R. Then the following statements are equivalent:

1. a(1,2)
lprin=S,lann=T exists.

2. R = Ra ⊕ T and R = S ⊕ lann(a).
3. R = Sa ⊕ T , lann(a) ∩ S = {0}, and Ra ∩ T = {0}.
4. There exists x ∈ S such that xaφ = ρSa,T , lann(a) ∩ S = {0}, and Ra ∩ T = {0}.

We note that (2) ⇒ (1) in Theorem 6.11 (resp. Theorem 6.12) follows also from Theorem 6.9 (resp. The-
orem 6.10). Now we obtain a theorem that gives necessary and sufficient conditions for the existence of
{1, 2}-inverses with given right and left principal ideals.

Theorem 6.13. Let a ∈ R, let S be a right ideal of R, and S′ be a left ideal of R. Then the following statements are
equivalent:

1. a(1,2)
rprin=S,lprin=S′ exists.

2. R = aR ⊕ rann(S′), R = S ⊕ rann(a), R = Ra ⊕ lann(S), and R = S′ ⊕ lann(a).
3. R = aS ⊕ rann(S′), aR ∩ rann(S′) = {0}, R = Sa ⊕ lann(S), and Ra ∩ lann(S) = {0}.
4. There exists x ∈ S∩S′ such thatφax = ρaS,rann(S′), aR∩rann(S′) = {0}, xaφ = ρS′a,lann(S), andRa∩lann(S) =
{0}.

Proof. From Theorems 6.11 and 6.12, we get (1) ⇒ (2) ⇒ (3). The implication (1) ⇒ (4) follows from
Theorem 3.4. The proof of (3) ⇒ (1) is similar to the proof of (2) ⇒ (1) in Theorem 5.5 and is based on
Theorems 6.11 and 6.12. The implication (4)⇒ (3) is immediate.

From previous results, we derive the next sufficient conditions for right/left ideal of R to be princi-
pal/annhililator ideals of idempotent elements of R.
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Corollary 6.14. Let a ∈ R, S, T be right ideals of R and S′, T ′ be left ideals of R. The following assertions hold:

1. If any of the equivalent statements (1)-(4) of Theorem 5.3 (or Theorem 6.11) holds, then there exist p, q ∈ R•

such that S = pR and T = rann(q).
2. If any of the equivalent statements (1)-(4) of Theorem 5.4 (or Theorem 6.12) holds, then there exist p, q ∈ R•

such that S = Rp and T = lann(q).
3. If any of the equivalent statements (1)-(4) of Theorem 5.5 (or Theorem 6.13) holds, then there exist p, q ∈ R•

such that S = pR and S′ = Rq.
4. If any of the equivalent statements (1)-(6) of Theorem 5.6 holds, then there exist p, q ∈ R• such thatT = rann(p)

and T ′ = lann(q).

Proof. (1): By Theorem 5.3 (resp. Theorem 6.11), x = a(2)
rprin=S,rann=T (resp. x = a(1,2)

rprin=S,rann=T ) exists and the
conclusion follows taking p = xa and q = ax. The rest of the proof is similar.

7. Particular classes of {1}, {2}, and {1, 2}-inverses

In this section, we apply previous results to study particular classes of {1}, {2}, and {1, 2}-inverses. We
also give an illustrative example with a matrix over a field.

7.1. {1, 3}, {1, 4}, {1, 3, 4}, {1, 3, 6}, {1, 4, 8}, {1, 3, 7}, and {1, 4, 9}-inverses
For {1, 3}-inverses we have:

Theorem 7.1. Let R be a ∗-ring and a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 3}.
2. φax = ρaR,rann(a∗).
3. axφ = ρRa∗,lann(a).

Proof. (1)⇒ (2): It follows from Theorem 3.1 and the equality rann(ax) = rann(a∗).
(2)⇒ (1): If φax = ρaR,rann(a∗), then x ∈ a{1}, ax ∈ R•, axR = aR, and rann(ax) = rann(a∗). By Lemma 2.7,

ax ∈ Rsym, i.e, x ∈ a{3}.
(1)⇔ (3): It is analogous to the proof of (1)⇔ (2).

Similar to Theorem 7.1, we obtain:

Theorem 7.2. Let R be a ∗-ring and a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 4}.
2. φxa = ρa∗R,rann(a).
3. xaφ = ρRa,lann(a∗).

As a consequence of Theorems 7.1 and 7.2, we obtain the next theorem.

Theorem 7.3. Let R be a ∗-ring and a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 3, 4}.
2. φax = ρaR,rann(a∗) and φxa = ρa∗R,rann(a).
3. φax = ρaR,rann(a∗) and xaφ = ρRa,lann(a∗).
4. axφ = ρRa∗,lann(a) and φxa = ρa∗R,rann(a).
5. axφ = ρRa∗,lann(a) and xaφ = ρRa,lann(a∗).

In the next two theorems, we give the projectors associated with {1, 3, 6} and {1, 4, 8}-inverses.

Theorem 7.4. Let R be a ∗-ring and a, x ∈ R. Each of the assertions

1. φax = ρaR,rann(a∗) and φxa = ρaR,rann(a),
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2. φax = ρaR,rann(a∗) and xaφ = ρRa,lann(a),
3. axφ = ρRa∗,lann(a) and φxa = ρaR,rann(a),
4. axφ = ρRa∗,lann(a) and xaφ = ρRa,lann(a),

implies x ∈ a{1, 3, 6}.

Proof. Suppose that (1) holds. By Theorem 7.1, x ∈ a{1, 3}. Since xa2 = ρaR,rann(a)(a) = a, we have x ∈ a{6}.
The remainder of the implications can be similarly proved.

We analogously have:

Theorem 7.5. Let R be a ∗-ring and a, x ∈ R. Each of the assertions

1. φax = ρaR,rann(a) and φxa = ρa∗R,rann(a),
2. φax = ρaR,rann(a) and xaφ = ρRa,lann(a∗),
3. axφ = ρRa,lann(a) and φxa = ρa∗R,rann(a),
4. axφ = ρRa,lann(a) and xaφ = ρRa,lann(a∗),

implies x ∈ a{1, 4, 8}.

From Theorems 7.1 and 7.2, we obtain the next two theorems.

Theorem 7.6. Let R be a ∗-ring and a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 3, 7}.
2. φax = ρaR,rann(a∗) and x ∈ aR.
3. axφ = ρRa∗,lann(a) and lann(a) ⊆ lann(x).

We note that the elements of a{1, 3, 7} are the right core inverses of a which are a particular case of right (b, c)
inverse of a (see [14, 39, 40], in particular, [39, Theorem 5.1]).

Theorem 7.7. Let R be a ∗-ring and a, x ∈ R. Then the following assertions are equivalent:

1. x ∈ a{1, 4, 9}.
2. φxa = ρa∗R,rann(a) and rann(a) ⊆ rann(x).
3. xaφ = ρRa,lann(a∗) and x ∈ Ra.

In Section 4, we studied {1}-inverses with given principal and annihilator ideals. Now, we consider
some examples of sets of these {1}-inverses. Let a ∈ R. From Theorems 3.1 and 3.7,

a{1, 5} = {x ∈ a{1} : xaR = aR and rann(ax) = rann(a)}
= {x ∈ a{1} : Rax = Ra and lann(xa) = lann(a)}.

Let R be a ∗-ring and a ∈ R. By Theorems 4.6, 4.7 and 7.1,

a{1, 3} = {x ∈ a{1} : rann(ax) = rann(a∗)} = {x ∈ a{1} : Rax = Ra∗},

and by Theorems 4.5, 4.8 and 7.2,

a{1, 4} = {x ∈ a{1} : xaR = a∗R} = {x ∈ a{1} : lann(xa) = lann(a∗)}.

From the above equalities, we get

a{1, 3, 4} = {x ∈ a{1} : xaR = a∗R and rann(ax) = rann(a∗)}
= {x ∈ a{1} : lann(xa) = lann(a∗) and rann(ax) = rann(a∗)}
= {x ∈ a{1} : xaR = a∗R and Rax = Ra∗} = {x ∈ a{1} : Rax = Ra∗ and lann(xa) = lann(a∗)}.
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From Theorems 4.1 and 7.4,

a{1, 3, 6} ⊇ {x ∈ a{1} : xaR = aR and rann(ax) = rann(a∗)}
= {x ∈ a{1} : lann(xa) = lann(a) and rann(ax) = rann(a∗)}
= {x ∈ a{1} : xaR = aR and Rax = Ra∗} = {x ∈ a{1} : Rax = Ra∗ and lann(xa) = lann(a))} (13)

and from Theorems 4.2 and 7.5,

a{1, 4, 8} ⊇ {x ∈ a{1} : xaR = a∗R and rann(ax) = rann(a)}
= {x ∈ a{1} : lann(xa) = lann(a∗) and rann(ax) = rann(a)}
= {x ∈ a{1} : xaR = a∗R and Rax = Ra} = {x ∈ a{1} : Rax = Ra and lann(xa) = lann(a∗)}.

We comment on the previous inclusions. Let R be a ∗-ring and a, x ∈ R be such that x ∈ a{1, 3, 6}. Then
aR ⊆ xaR and rann(ax) = rann(x∗a∗) = rann(a∗). Depending on the ring R, we can always have aR = xaR
or not; consequently, the equality in (13) is always satisfied or not. We next consider two examples.
Let R = Cn×n and A,X ∈ Cn×n be such that X ∈ A{1, 3, 6}. Then R(A) ⊆ R(XA) and dim(R(XA)) =
n − dim(N(XA)) = n − dim(N(A)) = dim(R(A)). Thus, R(XA) = R(A) and the equality in (13) holds for A.
Let now ℓ2(N) be the Hilbert space of the complex sequences x = (xi)i∈N such that

∑
∞

i=1 |xi|
2 < ∞ with inner

product ⟨x, y⟩ =
∑
∞

i=1 xiyi. Let R = B(ℓ2(N)) be the ring of all bounded linear operators from ℓ2(N) to ℓ2(N).
Let A,X ∈ B(ℓ2(N)) defined by A(x1, x2, . . .) = (0, x1, x2, . . .) and X(x1, x2, . . .) = (x2, x3, . . .). These operators
were considered in [34, Remark 3.1] and satisfy X ∈ A{1, 3, 6} and R(A) ⊊ R(XA) = ℓ2(N). Therefore, the
strict inclusion in (13) holds for A. Similar considerations are valid for the other inclusion.

By Theorems 4.6, 4.7 and 7.6,

a{1, 3, 7} = {x ∈ a{1} : rann(ax) = rann(a∗) and x ∈ aR}
= {x ∈ a{1} : Rax = Ra∗ and lann(a) ⊆ lann(x)}

and by Theorems 4.5, 4.8 and 7.7,

a{1, 4, 9} = {x ∈ a{1} : xaR = a∗R and rann(a) ⊆ rann(x)}
= {x ∈ a{1} : lann(xa) = lann(a∗) and x ∈ Ra}.

7.2. Generalizations of Moore-Penrose, core, and dual core inverses
In this section, we consider some generalizations of Moore-Penrose, core, and dual core inverses. As in

Section 7.1, the focus is on their relation to projectors.

7.2.1. The (e, f ) Moore-Penrose inverse
Let R be a ∗-ring. Let a ∈ R and e, f ∈ R−1

∩R
sym. In [30], if x ∈ a{1, 2}, (eax)∗ = eax and ( f xa)∗ = f xa, then

x ∈ R is called the (weighted) (e, f ) Moore-Penrose inverse of a. This generalized inverse is denoted by a†e, f and

a† = a†1,1. If x = a†e, f , then xe−1
∈ (ea){1} and f x ∈ (a f−1){1}. More details can be found in, e.g., [30, 38, 46]. If

a†e, f exists, then

a†e, f = a(1,2)
rprin= f−1a∗R,rann=rann(a∗e)

= a(1,2)
lprin=Ra∗e,lann=lann( f−1a∗)

= a(1,2)
rprin= f−1a∗R,lprin=Ra∗e

= a(1,2)
lann=lann( f−1a∗),rann=rann(a∗e)

.

Consider the conditions

φax = ρaR,rann(a∗e), φxa = ρ f−1a∗R,rann(a). (14a)

axφ = ρRa∗e,lann(a), xaφ = ρRa,lann( f−1a∗). (14b)

φax = ρaR,rann(a∗e), xaφ = ρRa,lann( f−1a∗). (14c)

axφ = ρRa∗e,lann(a), φxa = ρ f−1a∗R,rann(a). (14d)

xR ⊆ f−1a∗R. (14e)

lann( f−1a∗) ⊆ lann(x). (14f)
Rx ⊆ Ra∗e. (14g)
rann(a∗e) ⊆ rann(x). (14h)
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From Theorems 6.1-6.4, a†e, f exists and x = a†e, f if and only if one of the conditions (14a)-(14d) holds and
one of the conditions (14e)-(14h) holds. Let now e = f = 1. For Hilbert space operators with closed range,
conditions (14a) and (14e) coincide with the conditions (iii) of [32, Theorem 1]. Conditions (14a) and (14h)
are a generalization of the conditions of [3, Ex. 2.58]. The relations of generalized inverses to projectors can
be used to extend to any ring results of matrices and operators. In particular, the characterizations of the
Moore-Penrose inverse using orthogonal projectors given in Section 7.2.1 can be used to generalize results
of [28, Section 2] to ∗-rings.

7.2.2. The e-core and the f -dual core inverses
LetR be a ∗-ring. Let a, x ∈ R and e, f ∈ R−1

∩R
sym. Then x is the e-core inverse of a if x ∈ a{1}, xR = aR, and

Rx = Ra∗e, whereas x is the f -dual core inverse of a if x ∈ a{1}, xR = f−1a∗R, and Rx = Ra. These generalized
inverses were defined and studied in [29] (see also, e.g., [46] for more properties). If they exist, then they
are unique, and we denote them with a #O,e and a #O, f , respectively. We have a #O,1 = a #O and a #O,1 = a #O. By [29,
Theorems 2.1 and 2.2], a #O,e, a #O, f ∈ a{1, 2}.

If a #O,e exists, then

a #O,e = a(1,2)
rprin=aR,lprin=Ra∗e = a(1,2)

rprin=aR,rann=rann(a∗e) = a(1,2)
lprin=Ra∗e,lann=lann(a) = a(1,2)

lann=lann(a),rann=rann(a∗e).

If a #O, f exists, then

a #O, f = a(1,2)
rprin= f−1a∗R,lprin=Ra

= a(1,2)
rprin= f−1a∗R,rann=rann(a)

= a(1,2)
lprin=Ra,lann=lann( f−1a∗)

= a(1,2)
lann=lann( f−1a∗),rann=rann(a)

.

As a consequence of Theorems 6.1-6.4, a #O,e exists and x = a #O,e if and only if one of the conditions (15a)-(15d)
holds and one of the conditions (15e)-(15h) holds, where the conditions are

φax = ρaR,rann(a∗e), φxa = ρaR,rann(a). (15a)

axφ = ρRa∗e,lann(a), xaφ = ρRa,lann(a). (15b)
φax = ρaR,rann(a∗e), xaφ = ρRa,lann(a). (15c)

axφ = ρRa∗e,lann(a), φxa = ρaR,rann(a). (15d)

xR ⊆ aR. (15e)
lann(a) ⊆ lann(x). (15f)
Rx ⊆ Ra∗e. (15g)
rann(a∗e) ⊆ rann(x). (15h)

Similarly, a #O, f exists and x = a #O, f if and only if one of the conditions (16a)-(16d) holds and one of the
conditions (16e)-(16h) holds, where the conditions are

φax = ρaR,rann(a), φxa = ρ f−1a∗R,rann(a), (16a)

axφ = ρRa,lann(a), xaφ = ρRa,lann( f−1a∗), (16b)

φax = ρaR,rann(a), xaφ = ρRa,lann( f−1a∗), (16c)

axφ = ρRa,lann(a), φxa = ρ f−1a∗R,rann(a), (16d)

xR ⊆ f−1a∗R, (16e)

lann( f−1a∗) ⊆ lann(x), (16f)
Rx ⊆ Ra, (16g)
rann(a) ⊆ rann(x). (16h)

7.2.3. The w-core and the dual v-core inverses
LetR be a ∗-ring and a, x,w, v ∈ R. Then x is the w-core inverse of a if (awx)∗ = awx, xawa = a, and awx2 = x.

Similarly, x is the dual v-core inverse of a if (xva)∗ = xva, avax = a, and x2va = x. The w-core and the dual
v-core inverses of a are unique if they exist, and are denoted by a #O,w and a #O,v, respectively. We have a #O

1 = a #O

and a #O,1 = a #O. We refer the reader to, e.g. [17, 47] for more details. We note that the equivalence (1)⇔ (2)
of the next proposition was given in [47, Theorem 2.10]. Here, we present a proof based on Theorem 3.4.

Proposition 7.8. Let R be a ∗-ring and a,w, x ∈ R. The following assertions are equivalent:

1. x = a #O,w.
2. x = (aw) #O and aR ⊆ awR.
3. x = (aw) #O and lann(aw) ⊆ lann(a).
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Proof. (1) ⇒ (2): If x = a #O,w, then x = (aw) #O and, by Theorem 3.4, a = xawa = ρawR,rann(aw)(a). This last
equality implies that aR ⊆ awR.

(2)⇒ (3) is immediate.
(3) ⇒ (1): If x = (aw) #O and lann(aw) ⊆ lann(a), then (awx)∗ = awx, awx2 = x and, by Theorem 3.4,

xawa = ρRaw,lann(aw)(1)a = a.

For the dual v-core inverse we analogously have:

Proposition 7.9. Let R be a ∗-ring and a, v, x ∈ R. The following assertions are equivalent:

1. x = a #O,v.
2. x = (va) #O and Ra ⊆ Rva.
3. x = (va) #O and rann(va) ⊆ rann(a).

By Proposition 7.8, if a #O,w exists, then

a #O,w=a(1,2)
rprin=awR,rann=rann((aw)∗)=a(1,2)

lprin=R(aw)∗,lann=lann(aw)=a(1,2)
rprin=awR,lprin=R(aw)∗ =a(1,2)

lann=lann(aw),rann=rann((aw)∗).

If a #O,v exists, then

a #O,v=a(1,2)
rprin=(va)∗R,rann=rann(va)=a(1,2)

lprin=Rva,lann=lann((va)∗)=a(1,2)
rprin=(va)∗R,lprin=Rva = a(1,2)

lann=lann((va)∗),rann=rann(va).

Let b = aw and c = va. By Theorems 6.1-6.4 and Proposition 7.8 (resp. Proposition 7.9), a #O,w exists and
x = a #O,w if and only if one of the conditions (17a)-(17d) holds, one of the conditions (17e)-(17h) holds, and
one of the conditions (17i)-(17j) holds, where the conditions are

φbx = ρbR,rann(b∗), φxa = ρbR,rann(b), (17a)

bxφ = ρRb∗,lann(b), xaφ = ρRb,lann(b), (17b)
φbx = ρbR,rann(b∗), xaφ = ρRb,lann(b), (17c)

bxφ = ρRb∗,lann(b), φxa = ρbR,rann(b), (17d)

xR ⊆ bR, (17e)
lann(b) ⊆ lann(x), (17f)
Rx ⊆ Rb∗, (17g)
rann(b∗) ⊆ rann(x), (17h)

aR ⊆ bR, (17i)
lann(b) ⊆ lann(a). (17j)

We also have a #O,v exists and x = a #O,v if and only if one of the conditions (18a)-(18d) holds, one of the
conditions (18e)-(18h) holds, and one of the conditions (18i)-(18j) holds, where the conditions are

φcx = ρcR,rann(c), φxc = ρc∗R,rann(c), (18a)

cxφ = ρRc,lann(c), xcφ = ρRc,lann(c∗), (18b)
φcx = ρcR,rann(c), xcφ = ρRc,lann(c∗), (18c)

cxφ = ρRc,lann(c), φxc = ρc∗R,rann(c), (18d)

xR ⊆ c∗R, (18e)
lann(c∗) ⊆ lann(x), (18f)
Rx ⊆ Rc, (18g)
rann(c) ⊆ rann(x), (18h)

Ra ⊆ Rc, (18i)
rann(c) ⊆ rann(a). (18j)

Let w = 1. The conditions φax = ρaR,rann(a∗), φxa = ρaR,rann(a) and xR ⊆ aR are stronger than the conditions
(10) of the definition of the core inverse for finite complex matrices. Let H be an arbitrary Hilbert space
and L(H) be the ring of all bounded linear operators fromH toH . In [34, Remark 3.1], it is shown that the
conditions A,X ∈ L(H), AX = PR(A) and R(X) ⊆ R(A), do not imply that X = A #O. Similar considerations can
be made for the dual core inverse.

7.2.4. The right w-core and left dual v-core inverses
The right w-core inverse x of a is defined by the equations awxa = a, (awx)∗ = awx, and awx2 = x. We

analogously have the left dual v-core inverse x of a defined by the equations axva = a, (xva)∗ = xva, and
x2va = x. These generalized inverses were defined in [48]. From Theorem 7.6 we obtain:

Proposition 7.10. Let R be a ∗-ring and a,w, x ∈ R. The following assertions are equivalent:

1. x is a right w-core inverse of a.
2. x ∈ (aw){1, 3, 7} and aR ⊆ awR.
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3. x ∈ (aw){1, 3, 7} and lann(aw) ⊆ lann(a).

We note that the equivalence (1) ⇔ (2) of Proposition 7.10 appears in [48, Theorem 2.14]. Analogously,
using Theorem 7.7 we get:

Proposition 7.11. Let R be a ∗-ring and a, v, x ∈ R. The following assertions are equivalent:

1. x is a left dual v-core inverse of a.
2. x ∈ (va){1, 4, 9} and Ra ⊆ Rva.
3. x ∈ (va){1, 4, 9} and rann(va) ⊆ rann(a).

From Proposition 7.10 and Theorem 7.6, x is a right w-core inverse of a if and only if one of the conditions
(19a)-(19b) holds and one of the conditions (19c)-(19d) holds, where the conditions are

φawx = ρawR,rann((aw)∗), x ∈ awR, (19a)

axφ = ρRa∗,lann(a), lann(aw) ⊆ lann(x), (19b)
aR ⊆ awR, (19c)
lann(aw) ⊆ lann(a). (19d)

By Proposition 7.11 and Theorem 7.7, x is a left dual v-core inverse of a if and only if one of the one of the
conditions (20a)-(20b) holds and one of the conditions (20c)-(20d) holds, where the conditions are

φxva = ρ(va)∗R,rann(va), x ∈ Rva, (20a)

xaφ = ρRa,lann(a∗), rann(va) ⊆ rann(x), (20b)
Ra ⊆ Rva, (20c)
rann(va) ⊆ rann(a). (20d)

7.3. (b, c)-inverses

Let a, x, b, c, d ∈ R. In this section, we consider the (b, c) inverses defined by Drazin in [13]: a(2)
rprin=bR,lprin=Rc

is the (b, c) inverse of a, a(2)
rprin=bR,rann=rann(c) is the right hybrid (b, c) inverse of a, a(2)

rprin=Rb,rann=lann(c) is the left hybrid

(b, c) inverse of a, and a(2)
lann=lann(b),rann=rann(c) is the annihilator (b, c) inverse of a. See, e.g., [5, 13, 15, 18, 19, 25,

26, 33, 45]. Indeed in [13], Drazin calls x the (b, c)-inverse of a if x ∈ bRx ∩ xRc, xab = b, and cax = c. In [13,
page 1922], Drazin shows that this definition is equivalent to the given here for the (b, c)-inverse. The (d, d)-
inverse of a is the inverse of a along d defined by Mary in [25]. Conversely, each (b, c)-inverse is a (d, d)-inverse
[26]. In [15], the previous inverses were generalized as follows. Let v,w ∈ R. Then, (vaw)(2)

rprin=bR,lprin=Rc is

the (w, v)-weighted (b, c)-inverse of a, (vaw)(2)
rprin=bR,rann=rann(c) is the right hybrid (w, v)-weighted (b, c)-inverse of

a, (vaw)(2)
rprin=Rb,rann=lann(c) is the left hybrid (w, v)-weighted (b, c)-inverse of a, and (vaw)(2)

lann=lann(b),rann=rann(c) is the
annihilator (w, v)-weighted (b, c)-inverse of a.

Theorem 7.12(1)-(3) below can be seen as a generalization of [3, Theorem 2.13].

Theorem 7.12. Let a, b, c ∈ R be such that (cab){1} , ∅. Let (cab)(1)
∈ (cab){1} and x = b(cab)(1)c. Then:

1. x ∈ a{1} ⇔ {abR = aRand rann(cab) = rann(ab)} ⇔ {abR = aRandRcab = Rab}.
2. {x ∈ a{2} and xR = bR} ⇔ rann(cab) = rann(b)⇔ Rcab = Rb.
3. {x ∈ a{2} and rann(x) = rann(c)} ⇔ cabR = cR ⇔ lann(cab) = lann(c).
4. {x ∈ a{2} and Rx = Rc} ⇔ lann(cab) = lann(c)⇔ cabR = cR.
5. {x ∈ a{2} and lann(x) = lann(b)} ⇔ Rcab = Rb⇔ rann(cab) = rann(b).

Proof. We first observe that by Lemma 3.3, cabR = caR (resp. cabR = cR) if and only if lann(cab) = lann(ca)
(resp. lann(cab) = lann(c)), and Rcab = Rab (resp. Rcab = Rb) if and only if rann(cab) = rann(ab) (resp.
rann(cab) = rann(b)).

(1): If x ∈ a{1}, then a = ab(cab)(1)ca and ab = ab(cab)(1)(cab). By the last equalities and Lemma 3.3(2),
abR = aR and rann(cab) = rann(ab). Conversely, if abR = aR and rann(cab) = rann(ab), then there exists r ∈ R
such that a = abr and, using again Lemma 3.3(2), axa = a(b(cab)(1)c)a = (ab)(cab)(1)(cab)r = abr = a. Hence,
x ∈ a{1}.
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(2): We have, x ∈ a{2} and xR = bR if and only if x = xax and there exists r ∈ R such that b = xr. By the
expression of x, we obtain b = xr = xaxr = b(cab)(1)cab. By Lemma 3.3(2), this last equality is equivalent to
rann(cab) = rann(b). Conversely, by Lemma 3.3(2), if rann(cab) = rann(b), then xab = b(cab)(1)cab = b. From
the last equality, x = b(cab)(1)c = xab(cab)(1)c = xax and xR = bR.

(3): By Theorem 3.2, if x ∈ a{2} and rann(x) = rann(c), then R = ab(cab)(1)cR ⊕ rann(c). Therefore,
cR ⊆ cab(cab)(1)cR ⊆ cabR. This implies that cR = cabR. Conversely, using Lemma 3.3(1), we obtain that if
cabR = cR, then cax = cab(cab)(1)c = c. From here, rann(x) = rann(c) and xax = b(cab)(1)cax = b(cab)(1)c = x.

The proofs of (4) and (5) are similar to the proofs of (2) and (3), respectively.

We get the next result for right hybrid (b, c) inverses.

Theorem 7.13. Let a, b, c ∈ R. If any of the conditions

1. rann(ab) = {0}, cR = R and R = abR ⊕ rann(c), or
2. rann(b) = {0}, caR = R and R = bR ⊕ φ−1

a (rann(c))

holds, then cab ∈ R−1 and b(cab)−1c = a(2)
rprin=bR,rann=rann(c).

Proof. We only prove (1) since the proof of (2) is similar. Assume that rann(ab) = {0}, cR = R and
R = abR ⊕ rann(c). Then cabR = cR = R. Let r ∈ R. If cabr = 0, then abr ∈ abR ∩ rann(c). Hence, abr = 0.
This shows that rann(cab) = rann(ab) = rann(b) = {0}. By Lemma 2.1, cab ∈ R−1, and by Theorem 7.12(2)(3),
if x = b(cab)−1c, then x ∈ a{2}, xR = bR and rann(x) = rann(c).

Theorems 5.1 and 7.13 can be seen as generalizations of [3, Theorem 2.14]. Let Cm×n
r denote the class of

complex matrices of rank r. Let A ∈ Cm×n
r , s ≤ r, U ∈ Cn×s

s and V ∈ Cs×n. Then, rank(V) = s⇔ R(V) = Cs and
equality [3, (2.62)] is equivalent to N(AU) = {0}. This shows that the hypotheses rann(ab) = {0} and cR = R
in Theorem 7.13 are natural generalizations of the hypotheses of [3, Theorem 2.14].

Using Lemma 2.1 and Theorem 7.12(4)(5), we analogously obtain:

Theorem 7.14. Let a, b, c ∈ R. If any of the conditions

1. lann(ca) = {0}, Rb = R and R = Rca ⊕ lann(b), or
2. lann(c) = {0}, Rab = R and R = Rc ⊕ aφ−1(lann(b))

holds, then cab ∈ R−1 and b(cab)−1c = a(2)
lprin=Rc,lann=lann(b).

The next theorem gives relations between the different types of (b, c)-inverses.

Theorem 7.15. Let a, b, c, x ∈ R. The following assertions are equivalent:

1. x = a(2)
rprin=bR,rann=rann(c) and x ∈ Rc (or c{1} , ∅).

2. x = a(2)
rprin=bR,rann=rann(c) and (cab){1} , ∅.

3. x = a(2)
lprin=Rc,lann=lann(b) and x ∈ bR (or b{1} , ∅).

4. x = a(2)
lprin=Rc,lann=lann(b) and (cab){1} , ∅.

5. x = a(2)
rprin=bR,lprin=Rc.

6. x = a(2)
lann=lann(b),rann=rann(c) and x ∈ bR (or b{1} , ∅) and x ∈ Rc (or c{1} , ∅).

7. x = a(2)
lann=lann(b),rann=rann(c) and (cab){1} , ∅.

8. (cab){1} , ∅, Rcab = Rb (or rann(cab) = rann(b)), cabR = cR (or lann(cab) = lann(c)), and x = b(cab)(1)c for
any (cab)(1)

∈ (cab){1}.
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Proof. If x ∈ {2}, then a ∈ x{1}. Hence, from Lemma 2.5, in (1) and (6): x ∈ Rc⇔ c{1} , ∅, and in (3) and (6):
x ∈ bR ⇔ b{1} , ∅.

As a consequence of [45, Theorem 2.4] (or Theorem 5.3) and [45, Corollary 2.6], we get (1)⇔ (2)⇔ (5).
From Theorem 5.4 and [45, Corollary 2.6], we obtain (3)⇔ (4)⇔ (5).

(5)⇒ (6): It is immediate.
(6) ⇒ (5): Suppose that x = a(2)

lann=lann(b),rann=rann(c), x ∈ bR, and x ∈ Rc. By Theorem 5.6(6), c = cax and

b = xab. Hence, Rc ⊆ Rx and bR ⊆ xR. We conclude that x = a(2)
rprin=bR,lprin=Rc.

(5) ⇒ (8): Suppose that x = a(2)
rprin=bR,lprin=Rc. Then x = a(2)

rprin=bR,lprin=rann(c). Thus, (8) follows from [45,
Proposition 2.5] and Theorem 7.12(2)(4).

(8)⇒ (5): It follows from Theorem 7.12(2)(4).
(7)⇔ (8): It follows from Theorem 7.12(3)(5).

From Theorems 5.3(3), 5.4(3) and 7.15(5)(1)(3), we get [19, Proposition 2.7].

7.4. The (p, q) inverse
We now consider {2}-inverses defined using prefixed idempotent elements in R. Let a ∈ R and p, q ∈ R•.

Then a(2)
rprin=pR,rann=qR is the image-kernel (p, q) inverse of a (see [18, Definition 3.1]). The image-kernel (p, q)

inverse is the Cao-Xue (p, q, l) inverse (see [9, Definition 2.10]).
Let a ∈ R and p ∈ R•. Then a is called Bott-Duffin invertible if 1 − p + ap ∈ R−1, and in this case, the

Bott-Duffin p inverse of a is p(1−p+ap)−1 (see [7, Definitions (c)]). If x ∈ R is such that x = px = xq, xap = p, and
qax = q, then x is called the Bott-Duffin (p, q) inverse of a (see [13, Definition 3.2]). The Bott-Duffin (p, p) inverse
of a is the Bott-Duffin p inverse of a (see [13, Proposition 3.1]). By [18, Proposition 3.4], x = a(2)

rprin=pR,rann=qR if
and only if x is the Bott-Duffin (p, 1 − q) inverse of a.

Let a ∈ R and p, q ∈ R•. Then x ∈ R is called the Djordjević-Wei (p, q) inverse of a if x ∈ a{2}, xa = p
and ax = 1 − q (see [11, Definition 2.1]). We note that a(2)

p,q = a(2)
rprin=pR,rann=qR with rann(a(2)

p,qa) = rann(p) and

aa(2)
p,qR = rann(q). We also have, a(2)

p,q = a(2)
lprin=lann(q),lann=lann(p) with Ra(2)

p,qa = Rp and lann(aa(2)
p,q) = Rq. Since

(1−q)a = (1−q)ap⇔ a(1−p) = qa(1−p)⇒ a(1−p)R ⊆ qR, the conditions of part (2) of the following theorem
are weaker than the conditions of [11, Theorem 2.1(2)] that include the equality px = x. The conditions of
part (4) are with inclusions instead of with equalities as in [9, Theorem 2.4(2)] in a complex Banach algebra.

Theorem 7.16. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

1. x ∈ R is the Djordjević-Wei (p, q) inverse of a.
2. a(1 − p)R ⊆ qR, xap = p, 1 − q = ax, and xq = 0.
3. Rqa ⊆ R(1 − p), p = xa, px = x, and (1 − q)ax = 1 − q.
4. x ∈ a{2}, xaR ⊆ pR, rann(xa) ⊆ rann(p) (or pR ⊆ xaR, rann(p) ⊆ rann(xa)) and axR ⊆ rann(q), rann(ax) ⊆

qR (or rann(q) ⊆ axR, qR ⊆ rann(ax)).

If a(2)
p,q exists, then rann(p) = φ−1

a (qR) and Rq = aφ−1(lann(p)).

Proof. (1)⇒ (2)(3): It follows from the definition of a(2)
p,q that xap = p, 1 − q = ax, xq = 0, p = xa, px = x, and

(1 − q)ax = 1 − q.
By Theorems 5.1 and 5.2, rann(p) = (1− p)R = rann(xa) = φ−1

a (qR) and Rq = lann(1− q) = aφ−1(R(1− p)).
Then a(1 − p)R ⊆ qR and Rqa ⊆ R(1 − p).

(2)⇒ (1): Assume that a(1 − p)R ⊆ qR and there exists x ∈ R such that xap = p, 1 − q = ax, and xq = 0.
Then xax = x and xa(1 − p) = 0. Since xap = p and xa(1 − p) = 0, we have xa = p.

The proof of (3)⇒ (1) is similar to the proof of (2)⇒ (1) and the proof of (1)⇒ (4) is immediate.
If x is a {2}-inverse of a, then ax, xa ∈ R•. Hence, (4)⇒ (1) follows from Lemma 2.2(3).

In [18], it is noted that if x = a(2)
rprin=pR,rann=qR, then x is the Djordjević-Wei (pxa, q(1 − ax)) inverse of a. Using

Theorems 5.1 and 5.2, we obtain the following proposition.
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Proposition 7.17. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

1. x is the Djordjević-Wei (p, q) inverse of a.
2. x = a(2)

rprin=pR,rann=qR, apR = (1 − q)R, and φ−1
a (qR) = (1 − p)R.

3. x = a(2)
lprin=lann(q),lann=lann(p), R(1 − q)a = Rp, and aφ−1(R(1 − p)) = Rq.

Let a ∈ R and p, q ∈ R•. If a(2)
p,q exists and a(2)

p,q ∈ a{1}, then a(2)
p,q is the Djordjević-Wei (p, q)-reflexive generalized

inverse of a and it is denoted by a(1,2)
p,q (see [11, page 3054]).

Example 7.18. If a ∈ RD with ind(a) ≤ l, then aD = a(2)
aaD,1−aaD . Let R be a ∗-ring. If a ∈ R†, then a† = a(2)

a†a,1−aa† =

a(1,2)
a†a,1−aa† . If a ∈ R #O, then a #O = a(2)

a #Oa,1−aa #O = a(1,2)
a #Oa,1−aa #O . If a ∈ R #O, then a #O = a(2)

a #Oa,1−aa #O
= a(1,2)

a #Oa,1−aa #O
.

The equivalence (1) ⇔ (2) of the following proposition coincides with [9, Proposition 3.1] for complex
Banach algebras.

Proposition 7.19. Let a ∈ R. Then the following statements are equivalent:

1. a{1, 2} , ∅.
2. There exist p, q ∈ R• such that rann(a) = rann(p) and aR = qR.
3. There exist p, q ∈ R• such that Ra = Rp and lann(a) = lann(q).
4. There exist p, q ∈ R• such that Ra = Rp and aR = qR.

Proof. (1)⇒ (2)(3): Let x ∈ a{1, 2}. Setting p = xa and q = ax, these implications follow from Theorem 3.4.
(2)⇒ (1): From the hypotheses, R = pR ⊕ rann(p) = pR ⊕ rann(a) and R = qR ⊕ rann(q) = qR ⊕ aR. By

Theorem 6.11, a(1,2)
rprin=pR,rann=qR exists. Thus, a{1, 2} , ∅.

Using Theorems 6.12 and 6.13, the proofs of the remainder implications are similar to the proof of (2)⇒
(1).

7.5. An example
Let F be a field with char(F) , 2 and Ei, j = eiet

j ∈ F
2×2 for each i, j ∈ {1, 2}where e1 = (1, 0)t and e2 = (0, 1)t.

Let A = E1,2. Then A2 = 0, AF2×2 = rann(A), F2×2A = lann(A), AF2×2 = {(xi, j) ∈ F2×2 : x2,1 = x2,2 = 0}, and
F2×2A = {(xi, j) ∈ F2×2 : x1,1 = x2,1 = 0}.

By a direct computation, we get A{1} = {(xi, j) ∈ F2×2 : x2,1 = 1} and

A{2}= {(xi, j) ∈ F2×2 : x1,1=x1,1x2,1, x1,2=x1,1x2,2, x2,1=x2,1x2,1, x2,2=x2,1x2,2}.

Hence, A{1, 2} = {(xi, j) ∈ F2×2 : x2,1 = 1 and x1,2 = x1,1x2,2}.
Let S and S′ be the right and the left ideals of F2×2 such that F2×2 = AF2×2

⊕ S and F2×2 = F2×2A ⊕ S′.
Then S = {(xi, j) ∈ F2×2 : x1,1 = x1,2 = 0} and S′ = {(xi, j) ∈ F2×2 : x1,2 = x2,2 = 0}. We set T = S and T ′ = S′.
We have ρAF2×2,T (I) = ρS′,lann(A)(I) = E1,1 and ρS,rann(A)(I) = ρF2×2A,T ′ (I) = E2,2.

Let Z ∈ A{1} and Y = (yi, j) ∈ F2×2. Then ρS,rann(A)(I)Z = ρF2×2A,T ′ (I)Z = E2,1 + z2,2E2,2, ZρAF2×2,T (I) =
ZρS′,lann(A)(I) = z1,1E1,1 + E2,1, ρS,rann(A)(I)ZρAF2×2,T (I) = ρF2×2A,T ′ (I)ZρS′,lann(A)(I) = ρS,rann(A)(I)ZρS′,lann(A)(I) =
E2,1, and (I − ZA)Y(I − AZ) = (y1,2 − z1,1y2,2 − z2,2y1,1 − z1,1z2,2y2,1)E1,2.

By Theorems 4.1(3)-4.4(3),

{aE1,2 + E2,1 : a ∈ F} = {X ∈ A{1} : XAF2×2 = S and rann(AX) = T }
= {X ∈ A{1} : F2×2AX = S′ and lann(XA) = T ′}
= {X ∈ A{1} : lann(XA) = T ′ and rann(AX) = T }
= {X ∈ A{1} : XAF2×2 = S and F2×2AX = S′}.

As a consequence of Theorems 4.5(3) and 4.8(3), we obtain

{aE2,2 + E2,1 + bE1,2 : a, b ∈ F} = {X ∈ A{1} : XAF2×2 = S} = {X ∈ A{1} : lann(XA) = T ′},
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and from Theorems 4.6(3) and 4.7(3) we get,

{aE1,2 + E2,1 + bE1,1 : a, b ∈ F} = {X ∈ A{1} : rann(AX) = T } = {X ∈ A{1} : F2×2AX = S′}.

Let Zr = {Z ∈ F2×2 : AZ = ρAF2×2,T (I)} and Zl = {Z ∈ F2×2 : ZA = ρF2×2A,T ′ (I)}. Then Zr ∩ Zl ⊆ A{1},
Zr = {(zi, j) ∈ F2×2 : z2,1 = 1 and z2,2 = 0} andZl = {(zi, j) ∈ F2×2 : z1,1 = 0 and z2,1 = 1}. Since F2×2 = AF2×2

⊕S

and A2 = 0, we have AF2×2 = AS. Similarly, F2×2A = S′A. We also have rann(S′) = T and lann(S) = T ′.
Hence, by Theorem 5.3(2), A(2)

rprin=S,rann=T ∈ S ∩ Zr, by Theorem 5.4(2), A(2)
lprin=S′,lann=T ′ ∈ S

′
∩ Zl, and by

Theorem 5.5(4), A(2)
rprin=S,lprin=S′ ∈ S ∩ S

′
∩Zr ∩Zl. From here,

E2,1 = A(2)
rprin=S,rann=T = A(2)

lprin=S′,lann=T ′ = A(2)
rprin=S,lprin=S′ .

Applying Theorem 5.6(6), we obtain E2,1 = A(2)
lann=T ′,rann=T .

By parts (8) of Theorems 6.1-6.4,

E2,1 = A(1,2)
rprin=S,rann=T = A(1,2)

lprin=S′,lann=T ′ = A(1,2)
rprin=S,lprin=S′ = A(1,2)

lann=T ′,rann=T .

By Theorems 6.5(6) and 6.8(4),

{E2,1 + aE2,2 : a ∈ F} = {X ∈ A{1, 2} : XAF2×2 = S} = {X ∈ A{1, 2} : lann(XA) = T ′}.

By Theorems 6.6(6) and 6.7(4),

{aE1,1 + E2,1 : a ∈ F} = {X ∈ A{1, 2} : rann(AX) = T } = {X ∈ A{1, 2} : F2×2AX = S′}.

It is easy to see that

{B ∈ F2×2 : S = BF2×2
} = {B ∈ F2×2 : T ′ = lann(B)} = {(bi, j) ∈ F2×2 : b1,1=b1,2=0 and (b2,1, b2,2) , 0}

and

{C ∈ F2×2 : T = rann(C)} = {C ∈ F2×2 : S′ = F2×2C} = {(ci, j) ∈ F2×2 : c1,2=c2,2=0 and (c1,1, c2,1) , 0}.

We note that we have obtained the unique {2}-inverse corresponding to the right ideals S and T such
that F2×2 = AF2×2

⊕ T and F2×2 = S ⊕ rann(A) (resp. left ideals S′ and T ′ such that F2×2 = F2×2A ⊕ T ′ and
F2×2 = S′ ⊕ lann(A)). There are other {2}-inverses with other principal/annihilator ideals. For example, as
in [13, Example 2.5], we can consider B = (λ, 1)t(α, β) and C = (γ, δ)t(1, µ) with (α, β), (γ, δ) ∈ F2

\ {0} and
λ, µ ∈ F. The conditions that any pair of ideals must satisfy are given in Theorems 5.3-5.6.

Acknowledgements. The author thanks the reviewer for the useful observations.
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