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Abstract. The ideal convergence of sequences in topological spaces not only includes the usual convergence
of sequences, but also extends the statistical convergence of sequences with strong applying background.
This paper discusses the subject of spaces and mappings in the sense of ideal convergence, and studies
the spaces defined by ideal convergence and how to represent them as the images of metric spaces under
certain mappings. The following main results are obtained for an admissible ideal I on the setN of natural
numbers.

(1) A topological space X is a seq-I-space if and only if it is an I-quotient image of a metric space.
(2) A topological space X is a seq-Isn-space if and only if it is an Isn-quotient image of a metric space.

These show the unique role ofI-open sets andIsn-open sets in topological spaces, and present a version
using the notion of ideals.

1. Introduction

K. Kuratowski et al. [11, 23] introduced and studied ideals in topological spaces. An ideal I on a set S
is a family of subsets of S closed under the operations of taking finite unions and subsets of their elements.
The primary concept of topological spaces is open sets. For a topological space X and an ideal I on N, one
defines the ideal convergence of sequences in X and introduces the I-open sets of X [10, 12].

The ideal convergence of sequences in topological spaces not only includes the usual convergence of
sequences, but also generalizes the statistical convergence of sequences with extensive background in many
domains [7]. For a topological space X and an idealI onN, theI-open sets andI-continuity are extensions
of sequentially open sets and sequence-continuity, respectively. Compared to the open sets of topological
spaces, the I-open sets have the following two significant properties. The first is that the family of all
I-open subsets of a topological space X constitutes a generalized topology on X [6, 27], whereby the I-
continuity can be regarded as a kind of generalized continuity. The other is that an I-open set is defined by
the ideal convergence of sequences. We introduced Isn-open sets and Isn-continuity, where the family of
all Isn-open sets of a topological space X constitutes a topology on X [15]. Therefore, we can better study
the topological properties of spaces defined by ideal convergence, and further discuss how the continuity
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related to ideal convergence organically combines topology and algebra. Through the preliminary study of
ideal convergence in topological spaces, we have reason to believe that the exploration of ideal convergence
in topological algebra will exhibit good prospects [3].

This paper discusses the subject of spaces and mappings in the sense of ideal convergence. We study the
spaces defined by ideal convergence and how to represent them as the images of metric spaces under certain
mappings. Based on the I-interior operator and the Isn-interior operator, in Section 2, we introduce the
spaces of FU-type and seq-type defined by ideal convergence, and discuss some relationships and intrinsic
characterizations between them (see Theorems 2.5 and 2.6). As a continuation of the research on mutual
classifications between spaces and mappings, in Section 3, we discuss how some spaces defined in Section 2
can be represented as the images of metric spaces and analyze their causes. We obtain the characterizations
of I-quotient (resp., Isn-quotient) images and continuous pseudo-I-open (resp., pseudo-Isn-open) images
of metric spaces (see Theorems 3.7 and 3.8).

Readers may refer to [8] for some terminology unstated here.

2. Spaces defined by I -convergence

In this paper, I is always an admissible ideal on N, i.e., I is a hereditary family of subsets of N which
is stable under finite unions and covers N, and N < I. The smallest ideal {F ⊂N : |F| < ω} on N is denoted
by I f in.

Sequential neighborhoods,I-neighborhoods andIsn-neighborhoods at a point in topological spaces can
be defined by convergent sequences or I-convergent sequences. Thus sequential spaces [9], I-sequential
spaces [20] and Isn-sequential spaces [27] which are defined by convergence or I-convergence are intro-
duced. They are essentially determined by the relationship between interior operators defined on subsets
of topological spaces. The research on this aspect comes from both the inherent requirements of logical
reasoning and the external reflections of seeking topological properties or solving mathematical problems.
This idea is illustrated by the following three examples.

The first example is that we studied I-quotient mappings [25, 27, 29], but it still doesn’t know how to
characterize the images of metric spaces under I-quotient mappings. We will prove that this is determined
by the consistency between sequentially open sets and I-open sets in topological spaces (see Theorem 3.7).

The second example is that we know that each convergent sequence in a topological space is an I-
convergent sequence, and not vice versa. However, each I-convergent sequence in metric spaces has a
convergent subsequence, which allows us to better discussI-convergent properties by virtue of convergent
properties of sequences. How to characterize the topological properties that eachI-convergent sequence has
a convergent subsequence? We will prove that this is determined by the relationship between sequentially
interior operators and I-interior operators (see Theorem 2.6).

The third example is that networks in topological spaces, as a generalization of topological bases, are an
important tool for studying topological properties [2]. Corresponding to the case of dealing with convergent
sequences, cs-networks or sn-networks in topological spaces have better topological properties than spaces
determined by networks [14]. Combining with ideal convergence, the concepts of I-cs-networks and I-
sn-networks have emerged [27]. For an ideal I on N and a topological space X, we proved that each
I-sn-network of X is an sn-network [27, Lemma 5.2]. It is clear that each sn-network in metric spaces is an
I-sn-network. However, not every sn-network in topological spaces is an I-sn-network [27, Example 5.8].
What condition is concerned if each sn-network in topological spaces is an I-sn-network? We will prove
that the answer to this question is determined by the relationship between sequentially interior operators
and Isn-interior operators (see Theorem 2.6).

On the basis of sequentially interior operators, I-interior operators, Isn-interior operators and interior
operators, in this section we define the spaces of FU-type and seq-type, and discuss some relationships
and intrinsic characterizations among these spaces, which are prepared for studying the images of metric
spaces in next section.

Let X be a topological space. A sequence {xn}n∈N in X is said to be I-eventually in P ⊂ X if the set
{n ∈ N : xn < P} ∈ I [29, Definition 3.15]. A sequence {xn}n∈N is said to be I-convergent to x ∈ X if {xn}n∈N is
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I-eventually in each neighborhood U of x in X, which is denoted by xn
I

−→ x, and the point x is called the
I-limit point of the sequence {xn}n∈N [12]. A subset P of X is said to be an I-sequential neighborhood of x ∈ X if
every sequence which is I-convergent to x is I-eventually in P [28]. A subset U of X is said to be an I-open
set if there is no sequence in X \U which is I-convergent to some point in U [29, Definition 3.1]. A subset
U of X is said to be an Isn-open set if U is an I-sequential neighborhood of x for each x ∈ U [15], and then U
is also said to be an Isn-open neighborhood of each point in U. I f in-sequential neighborhoods, I f in-open sets
(= (I f in)sn-open sets) are called sequential neighborhoods and sequentially open sets, respectively [9].

In the following paragraphs, we introduce several interior operators in topological spaces formed by
sequential convergence or I-convergence [15]. Let X be a topological space and A ⊂ X. Put

(A)seq = {x ∈ X : A is a sequential neighborhood of x},

(A)I = {x ∈ X : there is no sequence {xn}n∈N in X \ A such that xn
I

−→ x},
(A)Isn = {x ∈ X : A is an I-sequential neighborhood of x}.

Lemma 2.1. Let X be a topological space and A ⊂ X.
(1) Open sets⇒ Isn-open sets⇒ I-open sets⇒ sequentially open sets [15, Lemma 2.1].
(2) A◦ ⊂ (A)Isn ⊂ (A)I ⊂ (A)seq ⊂ A [15, Lemma 2.6].
(3) A is I-open ⇔ A = (A)I [16, Corollary 3.6].
(4) A is Isn-open⇔ A = (A)Isn [15, p.1986].

According to the definitions of Fréchet-Urysohn spaces and sequential spaces [9], we draw into the
spaces of FU-type and seq-type, in which the four newly defined spaces have evidence to prove their
effectiveness (see Theorems 2.6 and 3.7).

Definition 2.2. Let X be a topological space.
(1) X is called an Fréchet-Urysohn space (or FU-space for short) [9] (resp., I-FU-space [21], or Isn-FU-

space [27]), provided (A)seq ⊂ A◦ (resp., (A)I ⊂ A◦, or (A)Isn ⊂ A◦) for each A ⊂ X; X is called an FU-Isn-space
(resp., FU-I-space), provided (A)seq ⊂ (A)Isn (resp., (A)seq ⊂ (A)I) for each A ⊂ X.

(2) X is called a sequential space (or seq-space for short) [9] (resp., an I-sequential space (or I-seq-space
for short) [20], or an Isn-sequential space (or Isn-seq-space for short) [27]), provided each sequentially open
(resp., I-open, or Isn-open) subset in X is open; X is called a seq-Isn-space (resp., seq-I-space), provided each
sequentially open subset in X is Isn-open (resp., I-open).

(3) X is called an I-neighborhood space (or I-nbhd-space for short) [15, Definition 3.1], provided each
I-open subset in X is Isn-open.

According to Definition 2.2, we have the following relationships.

Lemma 2.3. Let X be a topological space.
(1) X is an FU-space if and only if X is an FU-Isn-space and an Isn-FU-space, if and only if X is an FU-I-space

and an I-FU-space.
(2) X is a seq-space if and only if X is a seq-Isn-space and an Isn-seq-space, if and only if X is a seq-I-space and

an I-seq-space.
(3) X is a seq-Isn-space if and only if X is a seq-I-space and an I-nbhd-space.
(4) X is an I-seq-space if and only if X is an I-nbhd space and an Isn-seq-space.

A family P of subsets of a topological space X is called a network at x in X if x ∈
⋂

P and whenever U
is a neighborhood of x in X, then P ⊂ U for some P ∈P . If each element of the family P mentioned above
is a sequential neighborhood of x in X, then P is called an sn-network at x in X. A family P of subsets of X
is a network (resp., an sn-network) of X if P =

⋃
x∈X Px and each Px is a network [2] (resp., an sn-network

[13]) at x in X.
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Definition 2.4. A topological space X is of an I-cs f -network [26], if a sequence S in X is I-convergent to a
point x ∈ X, then there is a countable network P at x in X such that S is I-eventually in each element of
P . A family P of subsets of X is called an I-sn-network [27] of X, if P =

⋃
x∈X Px satisfies that each Px is

a network at x in X and each element of Px is an I-sequential neighborhood of x in X, in which the family
Px is called an I-sn-network at x in X.

Theorem 2.5. Each space of I-cs f -networks is an FU-Isn-space.

Proof. Let X be ofI-cs f -networks. Assume that there is a point x ∈ (A)seq \ (A)Isn for some A ⊂ X. Then there
is a sequence {an}n∈N in X which isI-convergent to x but notI-eventually in A. Since X is ofI-cs f -networks,
there is a countable network {Pm}m∈N at x such that the sequence {an}n∈N is I-eventually in each Pm. For
each k ∈N, put Qk =

⋂
m≤k Pm. If I1, I2 ∈ I, then

({x} ∪ {an : n ∈N \ I1}) ∩ ({x} ∪ {an : n ∈N \ I2}) = {x} ∪ {an : n ∈N \ (I1 ∪ I2)}.

It follows that the sequence {an}n∈N is still I-eventually in Qk. Thus the set Qk 1 A, and there is xk ∈ Qk \A.
Note that {Qk}k∈N is a decreasing network at x in X. Hence the sequence {xk}k∈N is convergent to x. This
contradicts to A being a sequential neighborhood of x. Thus X is an FU-Isn-space.

Figure 2.1 illustrates the basic relationships among these spaces introduced in Definitions 2.2 and 2.4,
which enriches [27, Figure 3.1].
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Figure 2.1 The relationships among spaces defined by certain I-open sets

Each topological space has an I-cs f -network for the ideal I f in on N [26, Example 5.5]. With further
research of ideal convergence, topological spaces begin to bloom and reap great benefits.

Let I be a K-uniform ideal on N [24, p.2]. Then each topological space is an I-neighborhood space [27,
Theorem 5.6], and thusI-open sets are coincident withIsn-open sets. And henceI-FU-spaces are coincident
with Isn-FU-spaces; I-seq-spaces are coincident with Isn-seq-spaces; FU-I-spaces are coincident with FU-
Isn-spaces; and seq-I-spaces are coincident with seq-Isn-spaces. The smallest idealI f in, asymptotic density
zero ideals and maximal ideals on N are all K-uniform ideals [24, Example 2.4].

Theorem 2.6. Let X be a topological space.
(1) X is an FU-Isn-space if and only if each sn-network at each point in X is an I-sn-network at the point.
(2) X is an FU-I-space if and only if each I-convergent sequence in X has a subsequence converging to the same

limit.

Proof. (1) The necessity is obvious. The sufficiency is proved as follows. Suppose that each sn-network at
each point in (X, τ) is an I-sn-network at the point. Assume that U ⊂ X and x ∈ (U)seq. Let Px = {U} ∪ {O ∈
τ : x ∈ O}. Then Px is an sn-network at x in X, thus Px is also an I-sn-network at x, and further x ∈ (U)Isn .
This implies that X is an FU-Isn-space.
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(2) Necessity. Let (X, τ) be an FU-I-space and a sequence {an}n∈N in X be I-convergent to x. Put
Ox =

⋂
{O ∈ τ : x ∈ O}, and I1 = {n ∈ N : an ∈ Ox}. If I1 is an infinite set, then there is a subsequence of

{an}n∈N converging to x. Now, assume that I1 is a finite set. Set V = X \ {an < Ox : n ∈ N}. Then x ∈ V ⊊ X.
Take a point y ∈ X \ V and define a sequence {bn}n∈N in X \ V by bn = y, if n ∈ I1; bn = an, if n < I1. It is easy
to see that the sequence bn

I

−→ x, hence x < (V)I. By the hypothesis, we have x < (V)seq. Hence there is a
sequence {ck}k∈N ⊂ {an < Ox : n ∈ N} converging to x. Then the set {k ∈ N : ck = cm} is finite for each m ∈ N
(otherwise, cm ∈ Ox). Thus there is a subsequence of {an}n∈N converging to x.

Sufficiency. Assume that each I-convergent sequence in X has a subsequence converging to the same
limit. If a point x ∈ X \ (A)I for some A ⊂ X, then there is a sequence {xn}n∈N in X \ A, I-converging to x.
Thus there is a subsequence {xnk }k∈N of {xn}n∈N converging to x, and further x < (A)seq. This implies that X
is an FU-I-space.

Example 2.7. (1) I-cs f -networks ⇏ Isn-seq-spaces.
Let X be the maximal compactification βN ofN and takeI = I f in. Since X has no non-trivial convergent

sequence [8, Corollary 3.6.15], the family {{x} : x ∈ X} of subsets of X forms an I-cs f -network of X, and
every subset of X is sequentially open in X, i.e., Isn-open. But X is not a discrete space, hence X is not an
Isn-seq-space.

(2) I-FU-spaces ⇏ seq-I-spaces.
Let I be an ideal onN and set X =N∪ {∞}. The set X endowed with the following topology is denoted

by X(I).
(a) Each point n ∈N is isolated.
(b) Each open neighborhood U of∞ is of the form (N \ I) ∪ {∞}, for each I ∈ I.
There exists a maximal idealI onN such that the space X(I) has neither non-trivial convergent sequence

nor an I-FU-space [29, Examples 2.7 and 6.5]. Since X(I) is not a seq-space [29, Example 3.9], it follows
from part (2) of Lemma 2.3 that X(I) is not a seq-I-space.

(3) Isn-FU-spaces ⇏ seq-I, I-nbhd-spaces.
H. Zhang and S.G. Zhang proved that the space X(I) for some ideal I on N has two I-open subsets

such that their intersection is not I-open [24, Theorem 2.9]. Then X(I) is an Isn-FU-space, but it is not an
I-nbhd-space [27, Example 3.4]. And thus sequentially open subsets in X(I) are not necessarily I-open,
hence X(I) is not a seq-I-space.

(4) Seq-spaces ⇏ Isn-FU-spaces.
Let X = {0} ∪

⋃
i∈N Xi, where each Xi = {1/i} ∪ {1/i + 1/k : k ∈ N, k ≥ i2}. The set X is endowed with the

following topology.
(a) Each point of the form 1/i + 1/ j is isolated.
(b) Each neighborhood of each point of the form 1/i contains a set of the form {1/i} ∪ {1/i + 1/k : k ≥ j},

where each j ≥ i2.
(c) Each neighborhood of the point 0 contains a set obtained from X by removing a finite number of Xi’s

and a finite number of points of the form 1/i + 1/ j in all the remaining Xi’s.
The topological space X is called Arens’ space and is denoted by S2 [8, Example 1.6.19]. Then S2 is a

seq-space instead of an FU-space. Take I = I f in. Then S2 is an FU-Isn-space. Put U = {0} ∪ {1/i : i ∈ N}.
Then 0 ∈ (U)seq. However, there is no sequentially open set V such that 0 ∈ V ⊂ U. Hence S2 is not an
Isn-FU-space.

In Example 2.7, the four examples are constructed for special idealI. The following questions are raised:
Can we construct related examples for each admissible ideal I?

Problem 2.8. (1) Is there a space of I-cs f -networks which is not an Isn-seq-space for each admissible ideal I?
(2) Is there an I-FU-space which is not a seq-I-space for each admissible ideal I?
(3) Is there an Isn-FU-space which is not a seq-I, I-nbhd-space for each admissible ideal I?
(4) Is there a seq-space which is not an Isn-FU-space for each admissible ideal I?

To obtain further relationships in Figure 2.1, we have the following questions.
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Problem 2.9. (1) Is there an FU-space having no I-cs f -network [26, Question 5.6]?
(2) Is each seq-space an FU-I-space?
(3) Is each FU-I-space an I-nbhd-space?

A topological space X is of countable tightness [19] if whenever A ⊂ X and x ∈ A in X, then x ∈ C for some
countable subset C of A. Every I-sequential space is of countable tightness [29, Theorem 3.8]. We have the
following question.

Problem 2.10. Does each Isn-sequential space have countable tightness?

3. Seq-I -spaces, seq-Isn-spaces and the images of metric spaces

Mappings are effective methods to reveal the relationships between spaces [2]. This section will discuss
how the spaces defined by ideal convergence in Section 2 are characterized as the images of metric spaces. We
obtain intrinsic characterizations ofI-quotient andIsn-quotient images of metric spaces, and systematically
describe the functions of the spaces of FU-type and seq-type in mutual classifications between spaces and
mappings.

Mappings that preserve or inversely preserve convergent sequences play positive roles in discussing
the spaces determined by sequences [4, 5, 14]. Let f : X → Y be a mapping. f is said to be sequentially
continuous [5], provided V is sequentially open in Y, then f−1(V) is sequentially open in X. f is said to be
sequentially quotient [5], provided V is sequentially open in Y if and only if f−1(V) is sequentially open in
X. f is said to be preserving convergent sequences [5], provided the image of each convergent sequence in
X under f is a convergent sequence in Y. f is said to be sequence-covering [22], provided each convergent
sequence in Y is the image of some convergent sequence in X under f . It is well-known that sequentially
continuous mappings coincide with the mappings preserving convergent sequences [5].

According to the definitions of continuous, quotient, pseudo-open and sequence-covering mappings,
we draw into several classes of mappings related to I-convergence, in which the two newly defined spaces
have evidence to prove their roles (see Theorem 3.6).

Definition 3.1. Let f : X→ Y be a mapping.
(1) f is said to be I-continuous [29, Definition 4.1] (resp., Isn-continuous [15, Definition 2.7]), provided V

is I-open (resp., Isn-open) in Y, then f−1(V) is I-open (resp., Isn-open) in X.

(2) f is said to be preserving I-convergent [12], provided for each sequence {xn}n∈N in X with xn
I
−→ x, the

sequence {( f (xn)}n∈N in Y is I-convergent to f (x); f is said to be I-covering [29, Definition 5.1], provided

{yn}n∈N is a sequence in Y with yn
I
−→ y, then there exists a sequence {xn}n∈N in X, I-converging to x ∈ f−1(y)

with each f (xn) = yn.
(3) f is said to be pseudo-open [1] (resp., pseudo-I-open, or pseudo-Isn-open), provided f−1(y) ⊂ U◦ (resp.,

f−1(y) ⊂ (U)I, or f−1(y) ⊂ (U)Isn ) for some y ∈ Y and U ⊂ X, then y ∈ ( f (U))◦ (resp., y ∈ ( f (U))I, or
y ∈ ( f (U))Isn ).

(4) f is said to be quotient [8] (resp., I-quotient [29, Definition 5.1], or Isn-quotient [15, Definition 4.1]),
provided f is surjective and V is open (resp., I-open, or Isn-open) in Y if and only if f−1(V) is open (resp.,
I-open, or Isn-open) in X.

I-covering mappings and mappings satisfying the condition of part (3) of Definition 3.1 are surjective.
For the ideal I f in on N, the following mappings are consistent with sequentially quotient mappings if the
mappings areI-continuous: pseudo-I-open mappings, pseudo-Isn-open mappings,I-quotient mappings,
and Isn-quotient mappings [17, Lemma 3.2].

Lemma 3.2. Let X be a topological space.
(1) X is a continuous and sequence-covering image of some metric space [18, Lemma 3.6].
(2) X is a seq-space if and only if X is a quotient image of some metric space [9].
(3) X is an FU-space if and only if X is a continuous and pseudo-open image of some metric space [9].
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Corresponding to ideal convergence, the continuous and I-covering images of metric spaces are char-
acterized by the spaces of I-cs f -networks [26, Theorem 3.5]. Parts (2) and (3) of Examples 2.7 show that
not every topological space is a continuous and I-covering image of a metric space. The main purpose of
this section is to explore I-convergent versions of parts (2) and (3) of Lemma 3.2. Spaces and mappings
introduced in Definitions 2.2 and 3.1 are the main objects of our discussion.

The following results are known.

Lemma 3.3. Let X, Y be topological spaces and f : X→ Y be a mapping.
(1) f is continuous⇒ f is Isn-continuous⇔ f preserves I-convergence⇒ f is I-continuous [15, Lemma 2.8

and Theorem 3.12].
(2) If X is a seq-space, then f is continuous ⇔ f is Isn-continuous ⇔ f is I-continuous ⇔ f is sequentially

continuous [29, Corollary 4.6].

The following further results are obtained

Lemma 3.4. Let X, Y be topological spaces and f : X→ Y be a mapping.
(1) If f is I-covering, then f is a pseudo-I-open mapping and a pseudo-Isn-open mapping.
(2) If f is an I-continuous (resp., Isn-continuous) pseudo-I-open (resp., pseudo-Isn-open) mapping, then f is

an I-quotient (resp., Isn-quotient) mapping.

Proof. (1) Suppose that f : X → Y is an I-covering mapping. Let y ∈ Y \ ( f (U))I for some U ⊂ X. Then
there is a sequence {yn}n∈N in Y \ f (U) such that it is I-convergent to y. Since f is an I-covering mapping,
there is a sequence {xn}n∈N in X such that it is I-convergent to some point x ∈ f−1(y) and each f (xn) = yn.
Thus each xn < U, and so x < (U)I. It follows that f−1(y) 1 (U)I. Hence f is a pseudo-I-open mapping.

Suppose that f−1(y) ⊂ (V)Isn for some y ∈ Y and V ⊂ X. If a sequence {yn}n∈N in Y is I-convergent
to y, then there is a sequence {xn}n∈N in X such that it is I-convergent to some point x ∈ f−1(y) and each
f (xn) = yn. Thus the sequence {xn}n∈N is I-eventually in V, and hence {yn}n∈N is I-eventually in f (V). It
follows that the set f (V) is an I-sequential neighborhood of y, i.e., y ∈ ( f (V))Isn . This implies that f is a
pseudo-Isn-open mapping.

(2) We only show the case ofI-continuous mappings. Let f : X→ Y be anI-continuous pseudo-I-open
mapping and f−1(U) be I-open in X for some U ⊂ Y. If y ∈ U, then f−1(y) ⊂ f−1(U) = ( f−1(U))I, and hence
y ∈ (U)I. This implies that U = (U)I is I-open in Y. Thus f is an I-quotient mapping.

Figure 3.1 illustrates the relationships between these mapping classes introduced in Definition 3.1.

pseudo-I-open I-quotient I-continuous
I-cont. - -

6I-covering ��*

HHj pseudo-Isn-open Isn-quotient Isn-continuous
Isn-cont.- -

Figure 3.1 I-quotient mappings

In Section 2, we mention the question to characterize the images of metric spaces under I-quotient
mappings. Similarly, [27, p.6] discussed the Isn-quotient images of metric spaces, which showed that it was
not necessarily an Isn-sequential space, but its characterization was not presented. We will use sequential
coreflections to study the I-quotient and Isn-quotient images of metric spaces.

Definition 3.5. Let (X, τ) be a topological space.
(1) The sequential coreflection of the space X, denoted by sX, is the set X with sequentially interior topology

(or sequentially closure topology) τs as follows: U ∈ τs if and only if U is a sequentially open subset of (X, τ)
[4, 9].

(2) The Isn-coreflection of the space X, denoted by XIsn , is the set X with Isn-topology τIsn as follows:
U ∈ τIsn if and only if U is an Isn-open subset of (X, τ) [15, Definition 3.1].
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(3) The family of all I-open subsets of the space X is called an I-topology if it is a topology of X, which
is denoted by τI. The space (X, τI) is called an I-coreflection of the space X, which is denoted by XI [15,
Definition 5.2].

It follows from [15, Lemma 3.2] that both spaces (X, τ) and (X, τIsn ) have the same I-convergent se-
quences, hence they have the same Isn-open sets. By part (1) of Lemma 2.1, we have that τ ⊂ τIsn ⊂ τI ⊂ τs.

Remark 3.6. Let (X, τ) be a topological space. We have the following three facts.
(i) Both τ and τs have the same convergent sequences [4, 9].
(ii) Let M be an Isn-seq-space. Then f : M→ (X, τ) is Isn-quotient⇔ f : M→ (X, τIsn ) is quotient.
In fact, for each V ⊂ X, the preceding formula is equivalent to that f−1(V) is Isn-open in M if and only if

V ∈ τIsn . The latter formula is equivalent to that f−1(V) is open in M if and only if V ∈ τIsn . Since M is an
Isn-seq-space, it follows that the preceding formula coincides with the latter formula.

(iii) Let M be a seq-space. Then f : M → (X, τ) is I-quotient ⇔ the family of all I-open subsets of X
forms a topology, and f : M→ (X, τI) is quotient.

In fact, for each V ⊂ X, the preceding formula is equivalent to that f−1(V) is I-open in M if and only if
V is I-open in (X, τ). If V ∈ τs, since every I-quotient mapping is I-continuous, it follows from part (2) of
Lemma 3.3 that f is sequentially continuous, thus f−1(V) is sequentially open in M, and so f−1(V) is I-open
in M. Hence this formula derives that the space (X, τ) is a seq-I-space, therefore τI = τs is an I-topology.
The latter formula is equivalent to that f−1(V) is open in M if and only if V ∈ τI. Since M is a seq-space, it
follows that the preceding formula coincides with the latter formula.

As an extension of part (2) of Lemma 3.2, the following theorem gives intrinsic characterizations of the
I-quotient and Isn-quotient images of metric spaces.

Theorem 3.7. Let X be a topological space.
(1) X is a seq-Isn-space if and only if X is an Isn-quotient image of a metric space.
(2) X is a seq-I-space if and only if X is an I-quotient image of a metric space.

Proof. (1) (X, τ) is a seq-Isn-space, by part (i) of Remark 3.6
⇔ (X, τIsn ) is a seq-space, by Lemma 3.2
⇔ there are a metric space M and a quotient mapping f : M→ (X, τIsn ), by part (ii) of Remark 3.6
⇔ there are a metric space M and an Isn-quotient mapping f : M→ (X, τ).
(2) (X, τ) is a seq-I-space, by (i) of Remark 3.6
⇔ (X, τI) is a seq-space, by Lemma 3.2
⇔ there are a metric space M and a quotient mapping f : M→ (X, τI), by (iii) of Remark 3.6
⇔ there are a metric space M and an I-quotient mapping f : M→ (X, τ).

As a further development of part (3) of Lemma 3.2, the following theorem gives intrinsic characteriza-
tions of the pseudo-I-open and pseudo-Isn-open images of metric spaces.

Theorem 3.8. Let X be a topological space.
(1) X is an FU-Isn-space if and only if X is a continuous pseudo-Isn-open image of a metric space.
(2) X is an FU-I-space if and only if X is a continuous pseudo-I-open image of a metric space.

Proof. Since the proofs of (1) and (2) are similar, we only prove that (1) is true.
Necessity. Let X be an FU-Isn-space. By part (1) of Lemma 3.2, there are a metric space M and a

continuous sequence-covering mapping f : M → X. Assume that x ∈ X \ ( f (U))Isn for some U ⊂ M. Since
X is an FU-Isn-space, it follows that x < ( f (U))seq, and that there is a sequence T in X \ f (U) such that it is
convergent to x. Note that f is a sequence-covering mapping. There is a sequence S in M such that f (S) = T
and S is convergent to some point z ∈ f−1(x). Thus S ∩U = ∅, and f−1(x) 1 (U)seq = (U)Isn . This shows that
f : M→ X is a pseudo-Isn-open mapping.
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Sufficiency. By part (2) of Lemma 3.2, it suffices to show that each FU-Isn-space is preserved by a
sequentially continuous and pseudo-Isn-open mapping. Let f : M → X be a sequentially continuous and
pseudo-Isn-open mapping, where M is an FU-Isn-space. Suppose that x ∈ X \ (U)Isn for some U ⊂ X. Since
f is a pseudo-Isn-open mapping, there exists z ∈ f−1(x) \ ( f−1(U))Isn . Note that M is an FU-Isn-space. Then
z < ( f−1(U))seq, and there is a sequence S in M \ f−1(U) such that it is convergent to z. And since every
convergent sequence is preserved by a sequentially continuous mapping [5, Theorem 3.1], it follows that
the sequence f (S) in X \U is convergent to x, and x < (U)seq. Therefore X is an FU-Isn-space.

Remark 3.9. Compare to Definition 2.2 and the properties of the images of metric spaces obtained in this
section, there are the following questions. Are there similar characterizations as Theorems 3.7 or 3.8 in the
following spaces: I-seq-spaces, Isn-seq-spaces, I-FU-spaces or Isn-FU-spaces? The information extracted
from Theorem 3.7 can be expressed as follows: Find a property Q of subsets of a topological space satisfying
the following requirements. Let X be an I-seq or Isn-seq-space. There are a metric space M and a mapping
f : M→ X such that:

(a) each open subset has property Q;
(b) a subset V of X has property Q if and only if f−1(V) has property Q in M;
(c) each subset having property Q is open in M and X.
Suppose that Q has the property. Then f is a quotient mapping, and X is a seq-space. Thus the I-FU-

space X(I) in part (2) of Example 2.7 does not satisfy the requirements. This seems to explain why I-seq,
Isn-seq, I-FU or Isn-FU-spaces do not have characterizations similar to Theorems 3.7 or 3.8.

At the end of this section, we will show the role of the four spaces listed in Remark 3.9 in mutual
classifications between spaces and mappings.

The following results are known.

Theorem 3.10. Let X be a topological space.
(1) X is an Isn-seq-space if and only if every continuous Isn-quotient mapping onto X is quotient [27, Theorem

3.10].
(2) X is an I-seq-space if and only if every continuous I-quotient mapping onto X is quotient, and X is an

I-nbhd-space [15, Theorem 4.10].

Lemma 3.11. ([27, Theorem 4.7]) A topological space X is anIsn-FU-space if and only if everyI-covering mapping
onto X is pseudo-open.

Theorem 3.12. Let X be a topological space.
(1) X is an Isn-FU-space if and only if every pseudo-Isn-open mapping onto X is pseudo-open.
(2) X is an I-FU-space if and only if every pseudo-I-open mapping onto X is pseudo-open, and (A)I ⊂ (A)Isn

for each A ⊂ X.

Proof. (1) The sufficiency follows from Lemmas 3.4 and 3.11. The necessity is proved as follows. Suppose
that X is an Isn-FU-space and f : Z → X is a pseudo-Isn-open mapping. Let f−1(x) ⊂ U◦ for some x ∈ X
and U ⊂ Z. Then f−1(x) ⊂ (U)Isn . Since f is pseudo-Isn-open, it follows that x ∈ ( f (U))Isn . Note that X is an
Isn-FU-space. Hence x ∈ ( f (U))◦. This implies that f is pseudo-open.

(2) Sufficiency. Suppose that every pseudo-I-open mapping onto X is pseudo-open, and (A)I ⊂ (A)Isn

for each A ⊂ X. It follows from Lemmas 3.4 and 3.11 that X is an Isn-FU-space. Since (A)I ⊂ (A)Isn ⊂ A◦ for
each A ⊂ X, the space X is an I-FU-space.

Necessity. Let X be anI-FU-space. It is clear that (A)I ⊂ (A)Isn for each A ⊂ X. Assume that f : Z→ X is
pseudo-I-open. Let f−1(x) ⊂ U◦ for some x ∈ X and U ⊂ Z. Then f−1(x) ⊂ (U)I. Since f is pseudo-I-open, it
follows that x ∈ ( f (U))I. Note that X is an I-FU-space. Hence x ∈ ( f (U))◦. Therefore f is pseudo-open.
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