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Abstract. In this research paper, we delve into a comprehensive exploration of geodesics and F-geodesics
inquiries. Our investigation centers around a vertical generalized Berger-type deformed Sasaki metric,
which is applied to both the tangent bundle TM and the φ-unit tangent bundle Tφ1 M. These bundles are
situated over an anti-paraKähler manifold (M2m, φ, 1).

1. Introduction

The study of the differential geometry of the tangent bundle has opened up a rich domain in the field of
differential geometry, presenting various new challenges and problems to explore. Since the middle of the
last century, geometric structures on bundles have been a subject of extensive study. The natural extensions
of a Riemannian metric 1 from a Riemannian manifold (M, 1) to its tangent or cotangent bundles create
new (pseudo) Riemannian structures, each possessing interesting geometric properties. One of the most
well-known Riemannian metrics on the tangent bundle over a Riemannian manifold (M, 1) is the Sasaki
metric, denoted as 1S, introduced by Sasaki in [22]. Over time, the geometric properties of the Sasaki metric
garnered significant attention from researchers. However, in many instances, their investigations led to
the conclusion that the base manifold was flat, as exemplified in [12, 16]. Consequently, this realization
prompted many researchers to explore various deformations of the Sasaki metric. In addition to the Sasaki
metric, there is another Riemannian metric defined on the tangent bundle TM by Musso and Tricerri [16],
known as the Cheeger-Gromoll metric 1CG. Although originally introduced by Cheeger and Gromoll in
[5], Musso and Tricerri later provided a more comprehensible expression for it and gave it its name. In this
context, Abbassi and Sarih [1] introduced natural metrics on both the tangent bundle and the unit tangent
bundles. These metrics encompass the Sasaki metric, the Cheeger-Gromoll metric and all other well-known
1-natural metrics in the literature.

Inspired by the Berger deformation of metrics on a unit sphere, Yampolsky [26] proposed an alternative
approach to deform the Sasaki metric on slashed and unit tangent bundles over Kählerian manifolds,
utilizing an almost complex structure denoted as J. This deformed metric, referred to as a Berger type
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deformed Sasaki metric, was examined for its geodesic properties. In a subsequent work published as [2],
Altunbas, Simsek, and Gezer introduced the Berger type deformed Sasaki metric on the tangent bundle
over an anti-paraKähler manifold. They conducted a comprehensive analysis of the Riemannian curvature
tensors associated with this metric and presented various geometric results. Additionally, they defined
certain almost anti-paraHermitian structures on the tangent bundle and established conditions under
which these structures could be classified as anti-paraKähler or quasi-anti-paraKähler.

Geodesics have applications in various fields, including physics, geometry, and computer graphics,
where they are used to find optimal paths on curved surfaces. Many authors have extensively investigated
geodesy on the tangent bundle, focusing on oblique geodesics, non-vertical geodesics, and their projections
onto the base manifold (see [9, 20, 26, 28]). Sasaki [23] and Sato [24] provided a comprehensive description
of the curves and the associated vector fields that generate non-vertical geodesics on the tangent bundle and
the unit tangent bundle, respectively. Their works demonstrated that the projected curves exhibit constant
geodesic curvatures (Frenet curvatures). Nagy [18] extended these findings to the scenario of locally
symmetric base manifolds, further enriching our understanding of geodesics in such contexts. Yampolsky
[26] pursued similar studies on the tangent bundle and the unit tangent bundle, utilizing the Berger-type
deformed Sasaki metric over Kählerian manifolds. This research extended to both locally symmetric base
manifolds and base manifolds with constant holomorphic curvature.

The concept of F-planar curves serves as a generalization encompassing magnetic curves and, by
extension, geodesics, as detailed in references [11] and [17]. It is worth noting that the notion of F-
geodesics, introduced in [3], presents a variation that slightly differs from that of F-planar curves. In recent
mathematical literature, there has been a series of papers dedicated to the exploration of magnetic curves,
F-planar curves, and F-geodesics (for example, see [7], [8], and [19]). These works have contributed to a
deeper understanding of these mathematical concepts and their applications.

In this paper, we begin with an introduction and provide preliminary information. In Section 3, we
introduce and analyze the vertical generalized Berger-type deformed Sasaki metric on both the tangent
bundle TM and the φ-unit tangent bundle Tφ1 M over an anti-paraKähler manifold (M2m, φ, 1). We also
delve into the Levi-Civita connection associated with this metric, as demonstrated in Theorem 3.3. Moving
on to Section 4, we explore various aspects of geodesics and F-geodesics related to the vertical generalized
Berger-type deformed Sasaki metric. Firstly, we investigate geodesics on the tangent bundle, establishing
both necessary and sufficient conditions for a curve to be a geodesic with respect to this metric, as described
in Theorems 4.1 and 4.7. Secondly, we study the geodesics on the φ-unit tangent bundle concerning the
vertical generalized Berger-type deformed Sasaki metric. In this context, we once again provide necessary
and sufficient conditions for a curve to qualify as a geodesic under this metric, as elucidated in Theorem
4.9. Furthermore, we delve into the Frenet curvatures of the projected non-vertical geodesics, as discussed
in Theorems 4.11, 4.13, 4.15 and 4.17. In the third part of Section 4, our focus shifts to F-geodesics and
F-planar curves on the tangent bundle. We examine these concepts in relation to the Levi-Civita connection
of the vertical generalized Berger-type deformed Sasaki metric, providing relevant conditions and results,
including Theorems 5.1, 5.3 and 5.5. Finally, we extend our exploration to the φ-unit tangent bundle in the
same section. Here, we study F-geodesics and F-planar curves with respect to the Levi-Civita connection
of this metric. The results and conditions for these cases are given in Theorems 5.9, 5.11, 5.13 and 5.15.

2. Preliminaries

Consider the tangent bundle TM over an m-dimensional Riemannian manifold (Mm, 1), with the natural
projectionπ : TM→Mm. If you have a local chart (U, xi)i=1,m for Mm, it induces a local chart (π−1(U), xi, ξi)i=1,m
for TM. Let Γk

i j represent the Christoffel symbols of 1, and ∇ be the Levi-Civita connection of 1.
The Levi-Civita connection ∇ provides a direct sum decomposition of the tangent bundle of TM at any

point (x, ξ) in TM into the vertical subspace

V(x,ξ)TM = Ker(dπ(x,ξ)) = {ai ∂

∂ξi |(x,ξ), ai
∈ R}
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and the horizontal subspace

H(x,ξ)TM = {ai ∂

∂xi |(x,ξ) − aiu jΓk
i j
∂

∂uk
|(x,ξ), ai

∈ R}.

Let us consider X = Xi ∂
∂xi as a local vector field on the manifold Mm. We define the vertical and horizontal

lifts of X as follows [27]

Vertical lift : VX = Xi ∂

∂ξi ,

Horizontal lift : HX = Xi(
∂

∂xi − ξ
jΓk

i j
∂

∂ξk
).

It is worth noting that H( ∂∂xi ) = ∂
∂xi − ξ jΓk

i j
∂
∂ξk and V( ∂∂xi ) = ∂

∂ξi . Consequently, the pair (H( ∂∂xi ), V( ∂∂xi ))i=1,m for
i = 1 to m forms a locally adapted frame on the tangent bundle TM.

Additionally, we can define the vertical spray Vξ on TM as

Vξ = ξiV(
∂

∂xi ) = ξi ∂

∂ξi .

Vξ is also known as the canonical or Liouville vector field on TM [27].

3. A vertical generalized Berger-type deformed Sasaki metric

An almost product structure φ on a manifold M is a (1, 1)-tensor field on M that satisfies the condition:
φ2 = idM, where idM represents the identity tensor field of type (1, 1) on M and φ is distinct from ±idM. The
pair (M, φ) is denoted as an almost product manifold. An almost para-complex manifold is essentially an
almost product manifold (M, φ) with the additional requirement that the two eigenbundles, TM+ and TM−,
corresponding to the eigenvalues +1 and −1 of φ, must have the same rank. It is important to note that the
dimension of an almost para-complex manifold is always even, as noted by [6]. An almost para-complex
structure φ is considered integrable when the Nijenhuis tensor Nφ, defined as

Nφ(X,Y) = [φX, φY] − φ[X, φY] − φ[φX,Y] + [X,Y]

vanishes entirely on the manifold M2m. Moreover, an almost para-complex structure is integrable if and
only if it is possible to introduce a torsion-free linear connection ∇ such that ∇φ = 0, as indicated by [21].

A Riemannian metric 1 is identified as an anti-paraHermitian metric when it satisfies the condition

1(φX, φY) = 1(X,Y)

or equivalently, the purity condition, often referred to as a B-metric

1(φX,Y) = 1(X, φY)

for all vector fields X and Y on the manifold M2m [10, 13–15, 21].
If (M2m, φ) is an almost para-complex manifold with an anti-paraHermitian metric 1, the triple (M2m, φ, 1)

is recognized as an almost anti-paraHermitian manifold, also referred to as an almost B-manifold [10, 13–
15, 21]. Additionally, (M2m, φ, 1) is labeled as an anti-paraKähler manifold (B-manifold) if the almost
para-complex structure φ is parallel with respect to the Levi-Civita connection ∇ of the metric g, meaning
∇φ = 0. It is a well-known fact that in the case of an anti-paraKähler manifold (M2m, φ, 1), the Riemannian
curvature tensor is pure, as mentioned by [21].
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Definition 3.1. Suppose we have an almost anti-paraHermitian manifold (M2m, φ, 1) with its tangent bundle denoted
as TM. We define a fiber-wise vertical generalized Berger-type deformation of the Sasaki metric on TM as follows [4]

1̃(HX, HY) = 1(X,Y),
1̃(VX, HY) = 1̃(HX, VY) = 0,
1̃(VX, VY) = 1(X,Y) + f1(X, φξ)1(Y, φξ)

for all vector fields X and Y on M2m, where f : M2m
→]0,+∞[ is a strictly positive smooth function.

Subsequently, we consider λ = 1 + f r2, where r2 = 1(ξ, ξ) = |ξ|2 and |.| denotes the norm with respect to
1.

The Levi-Civita connection ∇̃ associated with the vertical generalized Berger-type deformed Sasaki
metric on TM is described by the Koszul formula, which can be expressed as

21̃(∇̃X̃Ỹ, Z̃) = X̃
(
1̃(Ỹ, Z̃)

)
+ Ỹ

(
(1̃(Z̃, X̃)

)
− Z̃

(
1̃(X̃, Ỹ)

)
+1̃(Z̃, [X̃, Ỹ]) + 1̃(Ỹ, [Z̃, X̃]) − 1̃(X̃, [Ỹ, Z̃]),

where X̃, Ỹ and Z̃ are vector fields defined on TM. Through standard direct calculations, we arrive at the
following outcome.

Theorem 3.2. [4] In the context of an anti-paraKähler manifold (M2m, φ, 1), when we consider its tangent bundle
(TM, 1̃) endowed with the vertical generalized Berger-type deformed Sasaki metric, the following formulas can be
established

1) ∇̃HX
HY = H(∇XY) −

1
2

V(R(X,Y)ξ),

2) ∇̃HX
VY =

1
2

H(R(ξ,Y)X) + V(∇XY) +
1

2λ
X( f )1(Y, φξ)V(φξ),

3) ∇̃VX
HY =

1
2

H(R(ξ,X)Y) +
1

2λ
Y( f )1(X, φξ)V(φξ),

4) ∇̃VX
VY = −

1
2
1(X, φξ)1(Y, φξ)H(1rad f ) +

f
λ
1(X, φY)V(φξ)

for all vector fields X and Y on M2m, where ∇ is the Levi-Civita connection of (M2m, φ, 1) and R is its Riemannian
curvature tensor.

The φ-unit tangent (sphere) bundle over an anti-paraKähler manifold (M2m, φ, 1) is a hypersurface
defined as

Tφ1 M =
{
(x, ξ) ∈ TM, 1(ξ, φξ) = 1

}
.

The unit normal vector field to Tφ1 M is expressed as

N =

√
f

λ(λ − 1)
V(φξ),

where λ = 1 + f1(ξ, ξ).
The tangential lift, denoted as TX, of a vector X ∈ TxM at point x on the manifold M2m to the point

(x, ξ) ∈ Tφ1 M is obtained by projecting the vertical lift of X to the point (x,u) with respect to the unit normal
vectorN . This is expressed as

TX = VX − 1̃(x,ξ)(VX,N(x,ξ))N(x,ξ) =
VX −

f
λ − 1

1x(X, φξ)V(φξ)(x,ξ).
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The tangent space T(x,ξ)T
φ
1 M of Tφ1 M at (x, ξ) ∈ Tφ1 M is defined as

T(x,ξ)T
φ
1 M = {HX + TY /X ∈ TxM,Y ∈ (φξ)⊥ ⊂ TxM},

where (φξ)⊥ =
{
Y ∈ TxM, 1(Y, φξ) = 0

}
. Given a vector field X on M2m, the tangential lift TX of X is given by

TX(x,ξ) =
(

VX − 1̃(VX,N)N
)

(x,ξ)
= VX(x,ξ) −

f
λ − 1

1x(Xx, φξ)V(φξ)(x,ξ).

For the sake of clarity in notation, we can express X̄ as X̄ = X −
f
λ − 1

1(X, φξ)φξ, , and in this form, TX

is equivalent to VX̄.
The Levi-Civita connection ∇̂ on Tφ1 M with respect to the vertical generalized Berger-type deformed

Sasaki metric is characterized by the Gauss formula

∇̂X̂Ŷ = ∇̃X̂Ŷ − 1̃(∇̃X̂Ŷ,N)N

for all vector fields X̂ and Ŷ on Tφ1 M. Using usual direct calculations, we find the following result.

Theorem 3.3. [4] In the context of an anti-paraKähler manifold (M2m, φ, 1) and its φ-unit tangent bundle Tφ1 M
equipped with the vertical generalized Berger-type deformed Sasaki metric, the Levi-Civita connection ∇̂ of this metric
on Tφ1 M gives rise to the following formulas

1) ∇̂HX
HY = H(∇XY) −

1
2

T(R(X,Y)ξ),

2) ∇̂HX
TY =

1
2

H(R(ξ,Y)X) + T(∇XY),

3) ∇̂TX
HY =

1
2

H(R(ξ,X)Y) ,

4) ∇̂TX
TY =

f 2

(λ − 1)2 1(X, φξ)1(Y, φξ)
Tξ −

f
λ − 1

1(Y, φξ)T(φX)

for all vector fields X,Y on M2m.

4. Geodesics

4.1. Geodesics on the tangent bundle with the vertical generalized Berger-type deformed Sasaki metric
Consider a curve Γ = (γ(t), ξ(t)) naturally parameterized on the tangent bundle TM, where t serves as

an arc length parameter along Γ. In this parameterization, γ represents a curve on the manifold M, and
ξ is a vector field along this curve. We introduce the following notations: γ′t =

dγ
d t , γ′′t = ∇γ′tγ

′

t, ξ
′

t = ∇γ′tξ,
ξ′′t = ∇γ′tξ

′

t and Γ′t =
dΓ
d t . With these notations in place, the relationship can be expressed as

Γ′t =
Hγ′t +

Vξ′t. (1)

Theorem 4.1. In the context of an anti-paraKähler manifold (M2m, φ, 1), where (TM, 1̃) represents its tangent bundle
equipped with the vertical generalized Berger-type deformed Sasaki metric, a curve Γ = (γ(t), ξ(t)) on TM is a geodesic
if and only if the following conditions hold

γ′′t = R(ξ′t, ξ)γ
′

t +
1
2
1(ξ′t, φξ)

2 1rad f ,

ξ′′t = −
1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ.

(2)
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Proof. From 1 and Theorem 3.2, we find

∇̃Γ′t
Γ′t = ∇̃(Hγ′t +

Vξ′t)
(Hγ′t +

Vξ′t)

= ∇̃Hγ′t
Hγ′t + ∇̃Hγ′t

Vξ′t + ∇̃Vξ′t
Hγ′t + ∇̃Vξ′t

Vξ′t

= Hγ′′t +
H(R(ξ, ξ′t)γ

′

t) +
Vξ′′t +

1
λ
γ′t( f )1(ξ′t, φξ)

V(φξ)

−
1
2
1(ξ′t, φξ)

2H(1rad f ) +
f
λ
1(ξ′t, φξ

′

t)
V(φξ)

= H
(
γ′′t + R(ξ, ξ′t)γ

′

t −
1
2
1(ξ′t, φξ)

2 1rad f
)

+V
(
ξ′′t +

1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ

)
.

If we put ∇̃Γ′tΓ
′

t equal to zero, we find (2).

Corollary 4.2. In the context of an anti-paraKähler manifold (M2m, φ, 1) and its tangent bundle (TM, 1̃) equipped
with the vertical generalized Berger-type deformed Sasaki metric, when considering a curve Γ = (γ(t), ξ(t)) on TM, if
the function f is a constant, then Γ is a geodesic if and only if γ

′′

t = R(ξ′t, ξ)γ
′

t

ξ′′t = −
f
λ
1(ξ′t, φξ

′

t)φξ.

If γ is a curve on the manifold M2m, then the curve Γ = (γ(t), γ′t(t)) is referred to as the natural lift of the
curve γ [27]. Thus, we have the following result.

Corollary 4.3. In the context of an anti-paraKähler manifold (M2m, φ, 1) and its tangent bundle (TM, 1̃) equipped
with the vertical generalized Berger-type deformed Sasaki metric, it is noteworthy that the natural lift Γ = (γ(t), γ′t(t))
of any geodesic curve γ is itself a geodesic on (TM, 1̃).

When discussing a curve Γ = (γ(t), ξ(t)) on TM, it is termed a horizontal lift of the curve γ(t) on M2m if
and only if the condition ξ′t = 0 holds [27]. Hence, we have the following.

Corollary 4.4. In the context of an anti-paraKähler manifold (M2m, φ, 1) and its tangent bundle (TM, 1̃) equipped
with the vertical generalized Berger-type deformed Sasaki metric, it is important to note that the horizontal lift
Γ = (γ(t), ξ(t)) of any geodesic curve γ is itself a geodesic on (TM, 1̃).

Remark 4.5. As a reminder, note that locally we have

γ′′t =
2m∑
l=1

(
d2γl

dt2 +

2m∑
i, j=1

dγi

dt
dγ j

dt
Γl

i j)
∂

∂xl
, (3)

and

ξ′t =
2m∑
l=1

(
dξl

dt
+

2m∑
i, j=1

dγ j

dt
ξiΓl

i j)
∂

∂xl
. (4)

Example 4.6. Let
(
]0,+∞[2, 1, φ

)
be an anti-paraKähler manifold such that

1 = x2dx2 + y2dy2

and

φ
∂
∂x
=

x
y
∂
∂y

, φ
∂
∂y
=

y
x
∂
∂x
.
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The non-null Christoffel symbols of the Riemannian connection are

Γ1
11 =

1
x
, Γ2

22 =
1
y
.

1) Let γ be a curve such that γ(t) = (x(t), y(t)), from (3), the geodesic γ such that γ(0) = (a, b) ∈]0,+∞[2 and
γ′t(0) = (µ, η) ∈]0,+∞[2 satisfies the system of differential equations

γ′′t = 0⇔
d2γl

dt2 +

2∑
i, j=1

dγi

dt
dγ j

dt
Γl

i j = 0 ⇔


d2x
dt2 +

(
dx
dt

)2

x
= 0

d2y
dt2 +

(
dy
dt

)2

y
= 0

⇔

{
x(t) =

√
2aµt + a2

y(t) =
√

2bηt + b2
.

Hence γ′t(t) =
aµ√

2aµt + a2
∂x +

bη√
2bηt + a2

∂y and γ(t) = (
√

2aµt + a2,
√

2bηt + b2).

From Corollary 4.3, the curve Γ1 = (γ(t), γ′t(t)) is a geodesic on T]0,+∞[2.
2) If Γ2 = (γ(t), ξ(t)) is the horizontal lift of γ, such that ξ(t) = (u(t), v(t)), i.e., ξ′t = 0, from (4), we have

ξ′t = 0⇔
dξl

dt
+

2∑
i, j=1

dγ j

dt
ξiΓl

i j = 0⇔


du
dt
+

dx
dt

u
x
= 0,

dv
dt
+

dy
dt

v
y
= 0,

⇔


u(t) =

k1√
2aµt + a2

,

v(t) =
k2√

2bηt + b2
.

Hence ξ(t) =
k1√

2aµt + a2
∂x +

k2√
2bηt + b2

∂y, where k1, k2 ∈ R.

From Corollary 4.4, the curve Γ2 = (γ(t), ξ(t)) is a geodesic on T]0,+∞[2.

Theorem 4.7. In the context of an anti-paraKähler manifold (M2m, φ, 1) and its tangent bundle (TM, 1̃) equipped
with the vertical generalized Berger-type deformed Sasaki metric, if we have a geodesic γ on M2m and Γ = (γ(t), ξ(t))
is a geodesic on TM with the condition that 1(ξ, φξ) is not constant, then it follows that the function f is constant
along the curve γ.

Proof. Let γ be a geodesic on M2m, then γ′′t = 0. Using the first equation of the formula (2), we obtain

1(γ′′t , γ
′

t) = 0 ⇒ 1(R(ξ′t, ξ)γ
′

t, γ
′

t) +
1
2
1(ξ′t, φξ)

21(1rad f , γ′t) = 0

⇒
1
2
1(ξ′t, φξ)

21(1rad f , γ′t) = 0,

from which we have

1(ξ, φξ) , const ⇒ γ′t1(ξ, φξ) , 0
⇒ 1(ξ′t, φξ) , 0.

Hence, 1(1rad f , γ′t) = 0⇒ γ′t( f ) = 0.

4.2. Geodesics on the φ-unit tangent bundle with the vertical generalized Berger-type deformed Sasaki metric
Lemma 4.8. In the context of an anti-paraKähler manifold (M2m, φ, 1) and its φ-unit tangent bundle Tφ1 M equipped
with the vertical generalized Berger-type deformed Sasaki metric, when considering a curve Γ = (γ(t), ξ(t)) on Tφ1 M ,
we can state the following

Γ′t =
Hγ′t +

Tξ′t. (5)
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Proof. Utilizing equation (1), we can express

Γ′t =
Hγ′t +

Vξ′t =
Hγ′t +

Tξ′t +
f
λ − 1

1(ξ′t, φξ)
V(φξ).

Since Γ = (γ(t), ξ(t)) ∈ Tφ1 M, we have 1(ξ, φξ) = 1. Additionally, we observe

0 = γ′t1(ξ, φξ) = 21(ξ′t, φξ),

which implies

1(ξ′t, φξ) = 0. (6)

Thus, we have successfully completed the proof of the lemma.

Subsequently, considering t as an arc length parameter on C, based on equation (5), we can state the
following

1 = |γ′t |
2 + |ξ′t |

2. (7)

Theorem 4.9. In the scenario of an anti-paraKähler manifold (M2m, φ, 1)) and its φ-unit tangent bundle Tφ1 M
equipped with the vertical generalized Berger-type deformed Sasaki metric, the curve Γ = (γ(t), ξ(t)) qualifies as a
geodesic on Tφ1 M if and only if{

γ′′t = R(ξ′t, ξ)γ
′

t,
ξ′′t = 0. (8)

Moreover{
|ξ′t | = κ,

|γ′t | =
√

1 − κ2,
(9)

where κ = const. and 0 ≤ κ ≤ 1.

Proof. By employing equation (5) and Theorem 3.3, we can compute the derivative ∇̂Γ′tΓ
′

t as follows

∇̂Γ′t
Γ′t = ∇̂(Hγ′t +

Tξ′t)
(Hγ′t +

Tξ′t)

= ∇̂Hγ′t
Hγ′t + ∇̂Hγ′t

Tξ′t + ∇̂Tξ′t
Hγ′t + ∇̂Tξ′t

Tξ′t

= Hγ′′t +
H(R(u, ξ′t)γ

′

t) +
Tξ′′t

= H
(
γ′′t − R(ξ′t, ξ)γ

′

t

)
+ Tξ′′t .

If we set ∇̂Γ′tΓ
′

t equal to zero, we obtain equation (8). On the other hand, using the second equation from
equation (8), we derive

γ′t |ξ
′

t |
2 = γ′t1(ξ

′

t, ξ
′

t) = 21(ξ′′t , ξ
′

t) = 0,

which leads to |ξ′t | = κ = const. From equation (7), we deduce 0 ≤ κ ≤ 1 and |γ′t | =
√

1 − κ2.

Remark 4.10. Based on equation (9), the geodesics Γ = (γ(t), ξ(t)) of Tφ1 M can be naturally categorized into three
distinct classes, as follows:

(1) Horizontal geodesics: These geodesics occur when κ = 0, which is determined by equation (9). They are
characterized by |γ′t | = 1. Equation (7) further reveals that ξ′t = 0, meaning that these geodesics are generated by
parallel vector fields ξ along the geodesics γ on the base manifold.

(2) Vertical geodesics: When κ = 1, in accordance with equation (9), we observe that |γ′t | = 0. Consequently, γ(t)
becomes a constant, and Γ represents a geodesic in Euclidean space, specifically on a fixed fiber.

(3) Umbilical (oblique) geodesics: These geodesics correspond to 0 < κ < 1, as indicated in equation (9). In such
cases, Γ can be interpreted as a non-zero vector field ξ along the curve γ (see also [25]).
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When we have a curve Γ on TM, we use the term ”projection” to describe the curve γ = π ◦ Γ, which
represents the curve Γ projected onto M2m.

Theorem 4.11. In the context of a locally symmetric anti-paraKähler manifold (M2m, φ, 1) and its φ-unit tangent
bundle Tφ1 M equipped with the vertical generalized Berger-type deformed Sasaki metric, when considering Γ as a
non-vertical geodesic on Tφ1 M, it can be concluded that all the Frenet curvatures of the projected curve γ = π ◦ Γ are
constant.

Proof. By utilizing the first equation in (8), we have γ′′t = R(ξ′t, ξ)γ
′

t. It is straightforward to observe that

γ′t1(γ
′

t, γ
′

t) = 21(γ′′t , γ
′

t) = 21(R(ξ′t, ξ)γ
′

t, γ
′

t) = 0,

which leads to the conclusion that |γ′t | = const. Calculating the third derivative, we obtain

γ′′′t = (∇γ′t R)(ξ′t, ξ)γ
′

t + R(ξ′′t , ξ)γ
′

t + R(ξ′t, ξ
′

t)γ
′

t + R(ξ′t, ξ)γ
′′

t

= R(ξ′t, ξ)γ
′′

t .

Since

γ′t1(γ
′′

t , γ
′′

t ) = 21(γ′′′t , γ
′′

t ) = 21(R(ξ′t, φξ)γ
′′

t , γ
′′

t ) = 0,

we deduce that |γ′′t | = const. Continuing this process, we arrive at

γ(p+1)
t = R(ξ′t, ξ)γ

(p)
t , p ≥ 1

and

γ′t1(γ
(p)
t , γ

(p)
t ) = 21(γ(p+1)

t , γ(p)
t ) = 21(R(ξ′t, ξ)γ

(p)
t , γ

(p)
t ) = 0.

Thus, we establish that

|γ(p)
t | = const, p ≥ 1. (10)

Denoting s as an arc length parameter on γ, i.e., (|x′s| = 1), we have γ′t = γ
′
s
ds
dt

. Using (9), we find

ds
dt
=
√

1 − κ2 = const. (11)

Let ν1 = γ′s, ν2, . . . , ν2m−1 represent the Frenet frame along γ and k1, . . . , k2m−1 denote the Frenet curvatures
of γ. Then the Frenet formulas hold

(ν1)′s = k1ν2
(νi)′s = −ki−1νi−1 + kiνi+1, 2 ≤ i ≤ 2m − 2
(ν2m−1)′s = −k2m−2ν2m−2.

From (11), we have

γ′t = γ
′

s
d s
dt
=
√

1 − κ2 ν1.

By applying the Frenet formulas, we deduce

γ′′t =
√

1 − κ2 (ν1)′t =
√

1 − κ2 (ν1)′s
d s
dt
= (1 − κ2)k1ν2. (12)

Now, (10) implies that k1 = const. Similarly, we find

γ′′′t = (1 − κ2)k1(ν2)′t = (1 − κ2)k1(ν2)′s
d s
dt

(13)

= (1 − κ2)
3
2 k1(−k1ν1 + k2ν3).

and again (10) reveals that k2 is also a constant. This process continues, and the proof is completed.
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Lemma 4.12. In the context of an anti-paraKähler manifold (M2m, φ, 1) and itsφ-unit tangent bundle Tφ1 M equipped
with the vertical generalized Berger-type deformed Sasaki metric, if Γ = (γ(t), ξ(t)) is a curve on Tφ1 M, then we have

(1) If Γ = (γ(t), ξ(t)) is a curve on Tφ1 M, then Υ = (γ(t), φξ(t)) is also a curve on Tφ1 M.
(2) Υ is a geodesic on Tφ1 M if and only if Γ is a geodesic on Tφ1 M.

Proof. (1) We put µ(t) = φξ(t). Since Γ = (γ(t), ξ(t)) ∈ Tφ1 M, then 1(ξ, φξ) = 1. On the other hand,
1(µ, φµ) = 1(φξ,φ(φξ)) = 1(φξ, ξ) = 1, i.e.,

Υ(t) = (γ(t), µ(t)) ∈ Tφ1 M.

(2) In a similar manner as the proof of (8), and by considering µ′t = φξ
′

t and µ′′t = φξ
′′

t , we have

∇̂Υ′t
Υ′t = H

(
γ′′t + R(µ, µ′t)γ

′

t

)
+ Tµ′′t

= H
(
γ′′t + R(φξ,φξ′t)γ

′

t

)
+ T(φξ′′t ).

As the Riemannian curvature tensor is pure, we can express it as follows

∇̂Υ′t
Υ′t =

H
(
γ′′t + R(ξ, ξ′t)γ

′

t

)
+ T(φξ′′t ),

which leads to

∇̂Υ′t
Υ′t = 0 ⇔

{
γ′′t = −R(ξ, ξ′t)γ

′

t
φξ′′t = 0

⇔

{
γ′′t = R(ξ′t, ξ)γ

′

t
ξ′′t = 0 ⇔ ∇̂Γ′t

Γ′t = 0.

From Theorem 4.11 and Lemma 4.12, we have the following theorem.

Theorem 4.13. Suppose we have a locally symmetric anti-paraKähler manifold (M2m, φ, 1) and its φ-unit tangent
bundle Tφ1 M equipped with the vertical generalized Berger-type deformed Sasaki metric. Let Γ = (γ(t), ξ(t)) be a
non-vertical geodesic on Tφ1 M. Then, all the Frenet curvatures of the projected curve π ◦ Υ, where Υ = (γ(t), φξ(t)),
are constants.

Now, we will investigate geodesics on the φ-unit tangent bundle equipped with the vertical generalized
Berger-type deformed Sasaki metric over an anti-paraKähler manifold with constant sectional curvature.
According to Theorem 4.9, we can give the following result.

Corollary 4.14. Suppose we have an anti-paraKähler manifold (M2m, φ, 1) with constant sectional curvature c , 0,
and let Tφ1 M be the φ-unit tangent bundle equipped with the vertical generalized Berger-type deformed Sasaki metric.
Consider a curve Γ = (γ(t), ξ(t)) on Tφ1 M. We can establish that Γ is a geodesic on Tφ1 M if and only if the following
conditions hold{

γ′′t = c1(ξ, γ′t)ξ
′

t − c1(ξ′t, γ
′

t)ξ,
ξ′′t = 0.

Theorem 4.15. In the anti-paraKähler real Euclidean space (R2m, φ, <, >), with Tφ1R
2m being its φ-unit tangent

bundle equipped with the vertical generalized Berger-type deformed Sasaki metric, any oblique geodesic Γ = (γ(t), ξ(t))
on Tφ1R

2m has the following parametric form{
γi(t) = ait + bi,
ξ j(t) = c jt + d j,

where γ(t) = (γi(t))i=1,2m, ξ(t) = (ξ j(t)) j=1,2m−1 and ai, bi, ci, di are real constants. This provides a concise representa-
tion of the oblique geodesics in the given space.
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The power of the curvature operator Rp(X,Y) is defined recursively as

Rp(X,Y)Z = Rp−1(X,Y)R(X,Y)Z,

for any vector fields X and Y, where p ≥ 2.

Lemma 4.16. [25] Let (M, 1) be a Riemannian manifold of constant sectional curvature c, then we have

Rp(X,Y) =
{

(−b2c2)h−1R(X,Y), for p = 2h − 1
(−b2c2)h−1R2(X,Y), for p = 2h

for any vector fields X and Y on M, where h ≥ 2 and b2 = |X|2|Y|2 − 1(X,Y)2.

Theorem 4.17. In the context of an anti-paraKähler manifold (M2m, φ, 1) with constant sectional curvature c , 0
and its φ-unit tangent bundle Tφ1 M equipped with the vertical generalized Berger-type deformed Sasaki metric, if Γ
is a non-vertical geodesic on Tφ1 M and k1, . . . , k2m−1 are the Frenet curvatures of the projected curve γ = π ◦ Γ, then
it follows that if k1 , 0 and k2 , 0 , then k3 = 0, but it cannot be confirmed that ki are equal to zero for i > 3.

Proof. From the proof of Theorem 4.11, we can establish a recurrence relation for the derivatives of γ(t) as
follows

γ′′t = R(ξ′t, ξ)γ
′

t

and

γ′′′t = R(ξ′t, ξ)γ
′′

t = R(ξ′t, ξ)R(ξ′t, ξ)γ
′

t = R2(ξ′t, ξ)γ
′

t.

Continuing this process, we find that for p ≥ 1

γ(p+1)
t = R(ξ′t, ξ)γ

(p)
t = Rp(ξ′t, ξ)γ

′

t. (14)

Using (13) we have

γ(4)
t = −(1 − κ2)2k1(k2

1 + k2
2)ν2 + (1 − κ2)2k1k2k3ν4. (15)

On the other hand, from Lemma 4.16, (12) and (14) we have

γ(4)
t = R3(ξ′t, ξ)γ

′

t (16)

= −b2c2R(ξ′t, ξ)γ
′

t

= −b2c2γ′′t
= −b2c2(1 − κ2)k1ν2.

If k1 , 0 and k2 , 0, and from (15) and (16) we get

(b2c2
− (1 − κ2)(k2

1 + k2
2))ν2 + (1 − κ2)k2k3ν4 = 0.

Therefore, we have k3 = 0, and b2c2 = (1 − κ2)(k2
1 + k2

2), i.e., b2 = const. Continuing the process, it becomes
evident that we cannot confirm that ki are equal to zero for i > 3.
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5. F-geodesics

In the context of a Riemannian manifold (M, 1) and a (1, 1)-tensor field F on this manifold, a curve γ in
M is considered F-planar if its velocity vector, when parallel transported along γ, remains within the span
of the vectors γ′t and Fγ′t along the curve γ. Mathematically, this concept can be described by the condition

γ′′t = ϱ1(t)γ′t + ϱ2Fγ′t,

where ϱ1 and ϱ2 are some functions of the parameter t [11, 17]. It is worth noting that F-planar curves
encompass and extend the concept of magnetic curves, and they also include geodesics.

An F-geodesic is a specific type of F-planar curve that satisfies the condition

γ′′t = Fγ′t.

In this context, it is important to recognize that while every F-geodesic is also an F-planar curve, not all
F-planar curves qualify as F-geodesics [3].

5.1. F-geodesics on the tangent bundle with the vertical generalized Berger-type deformed Sasaki metric

In this section, we will always remember that ∇̃ denotes the Levi-Civita connection of the vertical
generalized Berger-type deformed Sasaki metric on tangent bundle TM, given in the Theorem 3.2.

Theorem 5.1. In the context of an anti-paraKähler manifold (M2m, φ, 1), with its tangent bundle TM equipped
with the vertical generalized Berger-type deformed Sasaki metric, and given a (1, 1)-tensor field F on M2m, a curve
Γ = (γ(t), ξ(t)) on TM is considered to be an HF-planar curve with respect to ∇̃ if and only if

γ′′t = R(ξ′t, ξ)γ
′

t +
1
2
1(ξ′t, φξ)

2 1rad f + ϱ1γ′t + ϱ2Fγ′t,

ξ′′t = −
1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ + ϱ1ξ′t + ϱ2Fξ′t,

where ϱ1 and ϱ2 are some functions of the parameter t.

Proof. From the proof of Theorem 4.1, we find

∇̃Γ′t
Γ′t = H

(
γ′′t + R(ξ, ξ′t)γ

′

t −
1
2
1(ξ′t, φξ)

2 1rad f
)

(17)

+V
(
ξ′′t +

1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ

)
.

On the other hand, we compute

∇̃Γ′t
Γ′t = ϱ1Γ

′

t + ϱ2
HFΓ′t (18)

= ϱ1(Hγ′t +
Vξ′t) + ϱ2

HF(Hγ′t +
Vξ′t)

= ϱ1
Hγ′t + ϱ2

HFHγ′t + ϱ1
Vξ′t + ϱ2

HFVξ′t
= H(ϱ1γ

′

t + ϱ2Fγ′t) +
V(ϱ1ξ

′

t + ϱ2Fξ′t).

From (17) and (18), the result immediately follows.

Corollary 5.2. In the context of an anti-paraKähler manifold (M2m, φ, 1), with its tangent bundle TM equipped with
the vertical generalized Berger-type deformed Sasaki metric. A curve Γ = (γ(t), ξ(t)) on TM is considered to be an
Hφ-planar curve with respect to ∇̃ if and only if

γ′′t = R(ξ′t, ξ)γ
′

t +
1
2
1(ξ′t, φξ)

2 1rad f + ϱ1γ′t + ϱ2φγ′t,

ξ′′t = −
1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ + ϱ1ξ′t + ϱ2φξ′t.
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In the particular case when ϱ1 = 0 and ϱ2 = 1 in the Theorem 5.1, we obtain the following result.

Theorem 5.3. In the context of an anti-paraKähler manifold (M2m, φ, 1), with its tangent bundle TM equipped
with the vertical generalized Berger-type deformed Sasaki metric, and given a (1, 1)-tensor field F on M2m, a curve
Γ = (γ(t), ξ(t)) on TM is considered to be an HF-geodesic with respect to ∇̃ if and only if

γ′′t = R(ξ′t, ξ)γ
′

t +
1
2
1(ξ′t, φξ)

2 1rad f + Fγ′t,

ξ′′t = −
1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ + Fξ′t.

Corollary 5.4. In the context of an anti-paraKähler manifold (M2m, φ, 1), with its tangent bundle TM equipped with
the vertical generalized Berger-type deformed Sasaki metric. A curve Γ = (γ(t), ξ(t)) on TM is considered to be an
Hφ-geodesic with respect to ∇̃ if and only if

γ′′t = R(ξ′t, ξ)γ
′

t +
1
2
1(ξ′t, φξ)

2 1rad f + φγ′t,

ξ′′t = −
1
λ

(
1(γ′t, 1rad f )1(ξ′t, φξ) + f 1(ξ′t, φξ

′

t)
)
φξ + φξ′t.

Theorem 5.5. If Γ = (γ(t), ξ(t)) represents the horizontal lift of a curve γ on the tangent bundle TM equipped with
the vertical generalized Berger-type deformed Sasaki metric over an anti-paraKähler manifold, then Γ is an HF-planar
curve (or HF-geodesic) if and only if γ is an F-planar curve (or F-geodesic).

Proof. Let γ be a curve in a manifold M2m that is an F-planar curve with respect to the connection∇, meaning
it satisfies the differential equation

γ′′t = ϱ1γ
′

t + ϱ2Fγ′t,

where ϱ1 and ϱ2 are some functions of the parameter t. Now, suppose we have the horizontal lift Γ =
(γ(t), ξ(t)) of a curve γ, where ξ′t = 0. From equation (1), we have Γ′t =

Hγ′t. Using equation (17), we can
write

∇̃Γ′t
Γ′t = Hγ′′t

= H(ϱ1γ
′

t + ϱ2Fγ′t)
= ϱ1

Hγ′t + ϱ2
HFHγ′t

= ϱ1Γ
′

t + ϱ2
HFΓ′t.

This expression implies that Γ is an HF-planar curve with respect to the connection ∇̃. In the special case
where ϱ1 = 0 and ϱ2 = 1, we obtain that Γ is an HF-geodesic if and only if γ is an F-geodesic.

Corollary 5.6. Consider a manifold (M2m, φ, 1) equipped with an anti-paraKähler structure represented by φ and
1. Let TM denote its tangent bundle, which is equipped with the vertical generalized Berger-type deformed Sasaki
metric. If we have a curve Γ = (γ(t), ξ(t)) that is a horizontal lift of a curve γ, then Γ is an Hφ-planar curve (or
Hφ-geodesic) if and only if the curve γ is a φ-planar curve (or φ-geodesic).

Example 5.7. Let (R2, φ, 1) be an anti-paraKähler manifold such that

1 = dx2 + dy2, φ =

(
1 0
0 −1

)
.

Let Γ = (γ(t), ξ(t)) such that γ(t) = (x(t), y(t)) and ξ(t) = (u(t),−u(t)).
By a direct calculation, we find 1(ξ′t, φξ) = 1(ξ

′

t, φξ
′

t) = 0.
1) Using Corollary 5.4, Γ is an Hφ-geodesic if and only if

{
γ′′t = φγ

′

t,
ξ′′t = φξ

′

t,
⇔


x′′ = x′,
y′′ = −y′,
u′′ = u′,
u′′ = −u′,

⇔


x(t) = k1et + k2,
y(t) = k3e−t + k4,
u(t) = k5,
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then Γ = (k1et + k2, k3e−t + k4, k5,−k5) is an Hφ-geodesic on TR2, where ki are real constants.
2) Using Corollary 5.2, Γ is an Hφ-planar curve if and only if

{
γ′′t = ϱ1γ′t + ϱ2φγ′t,
ξ′′t = ϱ1ξ′t + ϱ2φξ′t,

⇔


x′′ = (ϱ1 + ϱ2)x′,
y′′ = (ϱ1 − ϱ2)y′,
u′′ = (ϱ1 + ϱ2)u′,
u′′ = (ϱ1 − ϱ2)u′,

⇔


x′′ = (ϱ1 + ϱ2)x′,
y′′ = (ϱ1 − ϱ2)y′,
ϱ2u′ = 0.

If ϱ2 = 0, then


x(t) = ε1

∫
(e

∫
ϱ1dt)dt,

y(t) = ε2

∫
(e

∫
ϱ1dt)dt,

u(t) = ε3

∫
(e

∫
ϱ1dt)dt,

If ϱ2 , 0, then


x(t) = ε1

∫
(e

∫
(ϱ1+ϱ2)dt)dt,

y(t) = ε2

∫
(e

∫
(ϱ1−ϱ2)dt)dt,

u(t) = k = const.,
where εi = ±1 .

For example: If ϱ1(t) =
1

t + 1
and ϱ2(t) = 0, we find

x(t) = a1t2 + 2a1t + a2,
y(t) = a3t2 + 2a3t + a4,
u(t) = a5t2 + 2a5t + a6,

then Γ = (a1t2 + 2a1t + a2, a3t2 + 2a3t + a4, a5t2 + 2a5t + a6,−a5t2
− 2a5t − a6) is an Hφ-planar curve on TR2, where

ai are real constants.

If ϱ1(t) =
1

t + 1
and ϱ2(t) =

1
t − 1

, we find
x(t) = b1t3

− 3b1t + b2,
y(t) = b3 ln(t + 1)2 + b3t + b4,
u(t) = b5,

then Γ = (b1t3
− 3b1t+ b2, b3 ln(t+ 1)2 + b3t+ b4, b5,−b5) is an Hφ-planar curve on TR2, where bi are real constants.

Example 5.8. Let (R2, φ, 1) be an anti-paraKähler manifold such that

1 = x2dx2 + y2dy2, φ =

 0
y
xx

y
0

 and F =
(

a 0
0 b

)
, a, b ∈ R∗.

The non-null Christoffel symbols of the Riemannian connection are

Γ1
11 =

1
x
, Γ2

22 =
1
y
.

Let Γ = (γ(t), ξ(t)) be the horizontal lift of a curve γ, such that γ(t) = (x(t), y(t)) and ξ(t) = (u(t), v(t)) then ξ′t = 0,
from (4) we have

dξh

dt
+

2∑
i, j=1

dγ j

dt
ξiΓh

ij = 0⇔


u′ +

x′

x
u = 0,

v′ +
y′

y
v = 0,

⇔


u(t) =

k1

x(t)
,

v(t) =
k2

y(t)
,

where k1, k2 are real constants.
(i) γ is an F-geodesic if and only if γ′′t = Fγ′t, from (3) we have

x′′ +
(x′)2

x
= ax′,

y′′ +
(y′)2

y
= by′,

⇔

{
x(t) = ±

√
c1eat + c2,

y(t) = ±
√

c3ebt + c4.
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Using Theorem 5.3, the horizontal lift

Γ = (±
√

c1eat + c2,±
√

c3ebt + c4,
c5

√
c1eat + c2

,
c6√

c3ebt + c4

)

is an HF-geodesic on TR2, where ci are real constants.
(ii) γ is an F-planar curve if and only if γ′′t = ϱ1γ′t + ϱ2Fγ′t, where ϱ1 and ϱ2 are some functions of the parameter t,
hence, we have

x′′ +
(x′)2

x
= (ϱ1 + aϱ2)x′,

y′′ +
(y′)2

x
= (ϱ1 + bϱ2)y′,

⇔

 x(t) = ±
√

2
∫

(e
∫

(ϱ1+aϱ2)dt)dt,

y(t) = ±
√

2
∫

(e
∫

(ϱ1+bϱ2)dt)dt.

For example: If ϱ1(t) =
1

t + 1
and ϱ2(t) =

1
t

, we find

x(t) = ±
√
α1

a + 2
ta+2 +

α1

a + 1
ta+1 + α2,

y(t) = ±

√
β1

b + 2
tb+2 +

β1

b + 1
tb+1 + β2,

u(t) =
λ1√

α1

a + 2
ta+2 +

α1

a + 1
ta+1 + α2

,

v(t) =
λ2√

β1

b + 2
tb+2 +

β1

b + 1
tb+1 + β2

,

then Γ = (x(t), y(t),u(t), v(t)) is an Hφ-planar on TR2, where αi, βi, λi are real constants.

5.2. F-geodesics on the φ-unit tangent bundle with the vertical generalized Berger-type deformed Sasaki metric

In this section ∇̂ represents the Levi-Civita connection of the vertical generalized Berger-type deformed
Sasaki metric on φ-unit tangent bundle Tφ1 M, given in the Theorem 3.3.

Theorem 5.9. A curve Γ = (γ(t), ξ(t)) on theφ-unit tangent bundle Tφ1 M of an anti-paraKähler manifold (M2m, φ, 1)
equipped with the vertical generalized Berger-type deformed Sasaki metric is an HF-planar curve with respect to ∇̂ if
and only if{

γ′′t = R(ξ′t, ξ)γ
′

t + ϱ1γ′t + ϱ2Fγ′t,
ξ′′t = ϱ1ξ′t + ϱ2Fξ′t,

where ϱ1 and ϱ2 are some functions of the parameter t.

Proof. With help of the proof of Theorem 4.9, we find

∇̂Γ′t
Γ′t =

H
(
γ′′t − R(ξ′t, ξ)γ

′

t

)
+ Tξ′′t . (19)

On the other hand, by (5), we get

∇̂Γ′t
Γ′t = ϱ1Γ

′

t + ϱ2
HFΓ′t

= ϱ1(Hγ′t +
Tξ′t) + ϱ2

HF(Hγ′t +
Tξ′t).
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From (6), we have Tξ′t =
Vξ′t, which leads to

∇̂Γ′t
Γ′t = ϱ1

Hγ′t + ϱ2
HFHγ′t (20)

+ϱ1
Vξ′t + ϱ2

HFVξ′t
= H(ϱ1γ

′

t + ϱ2Fγ′t) +
V(ϱ1ξ

′

t + ϱ2Fξ′t)
= H(ϱ1γ

′

t + ϱ2Fγ′t) +
T(ϱ1ξ

′

t + ϱ2Fξ′t).

From (19) and (20), the result immediately follows.

Corollary 5.10. In the context of an anti-paraKähler manifold (M2m, φ, 1), with its φ-unit tangent bundle Tφ1 M
equipped with the vertical generalized Berger-type deformed Sasaki metric, a curve Γ = (γ(t), ξ(t)) on Tφ1 M is an
Hφ-planar curve with respect to ∇̂ if and only if{

γ′′t = R(ξ′t, ξ)γ
′

t + ϱ1γ′t + ϱ2φγ′t,
ξ′′t = ϱ1ξ′t + ϱ2φξ′t.

When we set ϱ1 = 0 and ϱ2 = 1 in the Theorem 5.9, we derive the following result.

Theorem 5.11. Let (M2m, φ, 1) be an anti-paraKähler manifold, Tφ1 M its φ-unit tangent bundle equipped with the
vertical generalized Berger-type deformed Sasaki metric and F be a (1, 1)-tensor field on M2m. A curve Γ = (γ(t), ξ(t))
on Tφ1 M is an HF-geodesic with respect to ∇̂ if and only if{

γ′′t = R(ξ′t, ξ)γ
′

t + Fγ′t,
ξ′′t = Fξ′t.

Corollary 5.12. Let (M2m, φ, 1) be an anti-paraKähler manifold and Tφ1 M its φ-unit tangent bundle equipped with
the vertical generalized Berger-type deformed Sasaki metric. A curve Γ = (γ(t), ξ(t)) on Tφ1 M is an Hφ-geodesic with
respect to ∇̂ if and only if{

γ′′t = R(ξ′t, ξ)γ
′

t + φγ
′

t,
ξ′′t = φξ

′

t.

Theorem 5.13. Let (M2m, φ, 1) be an anti-paraKähler manifold and Tφ1 M its φ-unit tangent bundle equipped with
the vertical generalized Berger-type deformed Sasaki metric. A curve Γ = (γ(t), ξ(t)) on Tφ1 M is an H(R(ξ′t, ξ))-geodesic
with respect to ∇̂ if and only if{

γ′′t = 2R(ξ′t, ξ)γ
′

t,
ξ′′t = R(ξ′t, ξ)ξ

′

t.

Corollary 5.14. Let (M2m, φ, 1) be an anti-paraKähler manifold of constant sectional curvature c , 0 and Tφ1 M
its φ-unit tangent bundle equipped with the vertical generalized Berger-type deformed Sasaki metric. A curve
Γ = (γ(t), ξ(t)) on Tφ1 M is an H(R(ξ′t, ξ))-geodesic with respect to ∇̂ if and only if{

γ′′t = 2c(1(ξ, γ′t)ξ
′

t − 1(ξ
′

t, γ
′

t)ξ),
ξ′′t = c(1(ξ, ξ′t)ξ

′

t − 1(ξ
′

t, ξ
′

t)ξ).

Theorem 5.15. Consider an anti-paraKähler manifold (M2m, φ, 1) and its φ-unit tangent bundle Tφ1 M with the
vertical generalized Berger-type deformed Sasaki metric. Let F be a (1, 1)-tensor field on M2m. If we have a curve
Γ = (γ(t), ξ(t)) as the horizontal lift of a curve γ, and Γ belongs to Tφ1 M, then Γ is an HF-planar curve (or HF-geodesic)
if and only if γ is an F-planar curve (or F-geodesic).
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Proof. Let γ be a curve in a manifold M2m that is an F-planar curve with respect to the connection ∇, which
means γ satisfies the following equation

γ′′t = ϱ1γ
′

t + ϱ2Fγ′t,

where ϱ1 and ϱ2 are some functions of the parameter t. If Γ = (γ(t), ξ(t)) is the horizontal lift of the curve γ,
then ξ′t = 0. Using equation (5), we find that Γ′t =

Hγ′t. With equation (19), we can write

∇̂Γ′t
Γ′t = Hγ′′t =

H(ϱ1γ
′

t + ϱ2Fγ′t)

= ϱ1
Hγ′t + ϱ2

HFHγ′t = ϱ1Γ
′

t + ϱ2
HFΓ′t.

In other words, Γ is an HF-planar curve with respect to ∇̂. In the specific case where ϱ1 = 0 and ϱ2 = 1, we
conclude that Γ is an HF-geodesic if and only γ is an F-geodesic.
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