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Abstract. For a connected graph H, the first Zagreb index M1(H) is equal to the sum of squares of the
degrees of the vertices of H. The reciprocal degree distance of H, denoted by RDD(H), is defined as

RDD(H) =
∑
x,y

degH(x) + degH(y)
distH(x, y)

,

where degH(x) is the degree of the vertex x in H and distH(x, y) denotes the distance between two vertices x
and y in H. The forgotten topological index F(H) of H is the sum of cubes of all its vertex degrees. In this
paper, we give a best possible lower bound on M1(H), RDD(H) or F(H) to ensure that a bipartite graph H is
Hamiltonian.

1. Introduction

We study simple, undirected, connected and finite graphs throughout this paper. Let H be a graph with
vertex set V(H) = {v1, v2, . . . , vp}, i.e., p = |V(H)|. For a vertex vs ∈ V(H), the degree degH(vs) (= ds) of vs is the
number of edges incident with vs in H. Let distH(vs, vt) be the length of any shortest path in H connecting
vs and vt. Denote by (d1, d2, . . . , dp) the degree sequence of H with d1 ≤ d2 ≤ · · · ≤ dp. We delete the footnote H
from the symbols in the following context if there is no ambiguity.

A cycle of length |V(H)| is called a Hamiltonian cycle of H. If H contains a Hamiltonian cycle, then H is
Hamiltonian. We refer the reader to [8] for undefined notation and terminologies.

The first (M1) and second (M2) Zagreb indices of a graph H, which introduced by Gutman and Trinajstić
in [14], are defined respectively as:

M1(H) =
∑

x∈V(H)

deg(x)2 and M2(H) =
∑

xy∈E(H)

deg(x) deg(y).

The reciprocal degree distance RDD(H) of H, which was first independently introduced in [2, 16], is defined
as

RDD(H) =
∑
x,y

deg(x) + deg(y)
distH(x, y)

.
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Denote D̂H(vi) = Σv j∈V(H)\{vi}
1

distH(v j,vi)
. Then one can transform RDD(H) into

RDD(H) =
∑

vi∈V(H)

deg(vi)D̂H(vi).

According to the definition of D̂H(vi), for a bipartite graph H of order 2p with p ≥ 2 vertices in each part,
we get

D̂H(vi) ≤ deg(vi) +
1
2

(
p − 1

)
+

1
3

(
p − deg(vi)

)
. (1)

The forgotten topological index, which denoted by F(H) and first introduced in [12], is defined as:

F(H) =
∑

x∈V(H)

deg(x)3.

For historical background and mathematical properties of M1(H), M2(H),RDD(H) and F(H), one can refer
to [1, 9, 13, 17, 24–26].

A popular research topic in graph theory is the study of whether a given graph has some important
property (such as Hamiltonicity or traceability). It shows that [18] determining whether a graph has a
Hamiltonian cycle is NP-complete. Although there are some literatures [7, 11, 15, 19–23, 27] using the
bounds of topological indices or spectral conditions to determine the structure of graphs, there are still
few results related to them. Recently, based on the first Zagreb index or reciprocal degree distance, the
κ-connectivity, β-deficiency [4, 6], Hamiltonian-connectedness [3] and ℏ-Hamiltonicity, ℏ-path-coverability
and ℏ-edge-Hamiltonicity [5] of graphs have been discussed. By employing the Wiener index, some
vulnerability parameters (such as integrity, toughness, tenacity and binding number) of graphs have been
studied [28]. However, It is not clear whether a bipartite graph is Hamiltonian by using the above topological
indices.

In this paper, we have partially solved the problems above, that is to say, we provide a best possible
lower bound on M1(H), RDD(H) or F(H) to ensure that a bipartite graph H is Hamiltonian.

In Section 2, we give a necessary lemma. The results and their proofs will be presented in the last section.

2. Preliminaries

In this section, a useful lemma will be given. Firstly, we define the graph H∗k as follows: a graph whose
set of vertices is X∪Y∪Z∪W with X,Y,Z,W pairwise disjoint such that |X| = |Z| = k, and |Y| = |W| = p− k,
and whose edges join each vertex u ∈ X ∪ Y to each vertex v ∈ Z ∪W except when u ∈ X and v ∈W.

Especially, when k = p − 1, we denote the graph H∗k by H∗.

Lemma 2.1. [10] Let H be a bipartite graph with vertices u1,u2, . . . ,up and v1, v2, . . . , vp such that p ≥ 2, d(u1) ≤
d(u2) ≤ · · · ≤ d(up), d(v1) ≤ d(v2) ≤ · · · ≤ d(vp) and

d(uk) ≤ k < p⇒ d(vp−k) ≥ p − k + 1.

Then H is either Hamiltonian or H � H∗k.

3. Results

Now, we present a best possible lower bound on M1(H), RDD(H) or F(H) to ensure that a bipartite graph
H is Hamiltonian.
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Theorem 3.1. Let H be a bipartite graph of order 2p with p ≥ 2 vertices in each part and δ(H) ≥ k ≥ 1. If

M1(H) ≥ 2p3
− 3p2 + 3p,

then H is Hamiltonian if and only if H � H∗.

Proof. Sufficiency. Suppose that H is not Hamiltonian, and without loss of generality, let V(H) = {u1,u2, . . . ,up;
v1, v2, . . . , vp}. Then by Lemma 2.1, and note that H cannot be isomorphic to H∗i and H∗j at the same time if
i , j, there exists an integer t with t < p such that d(ut) ≤ t and d(vp−t) ≤ p − t. Thus we have

M1(H) =

p∑
j=1

d2
j

≤ tt2 + (p − t)p2 + (p − t)(p − t)2 + tp2

= 3pt2
− 3p2t + 2p3.

Define

f (x) = 3px2
− 3p2x = 3px(x − p)

with 1 ≤ k ≤ x ≤ p − 1. Then we get

f ′(x) = 6px − 3p2, and f ′′(x) = 6p > 0, as p ≥ 2.

Hence f (x) is strictly convex up for k ≤ x ≤ p−1. Note that f (1) = f (p−1). Since k ≥ 1, we have f (x) ≤ f (p−1)
for k ≤ x ≤ p − 1. By direct calculation, we obtain

f (p − 1) = −3p2 + 3p.

Thus

M1(H) ≤ 2p3
− 3p2 + 3p.

In combination with the conditions of the theorem, the above inequality is true if and only if we take an
equal sign, i.e.,

M1(H) = 2p3
− 3p2 + 3p.

This implies that H � H∗, contrary to the assumption. Hence H is Hamiltonian.
Conversely, suppose that H � H∗. Then one can check that H is not Hamiltonian.

Theorem 3.2. Let H be a bipartite graph of order 2p with p ≥ 2 vertices in each part and δ(H) ≥ k ≥ 1. If

RDD(H) ≥ 3p3
−

14
3

p2 +
14
3

p − 1,

then H is Hamiltonian if and only if H � H∗.

Proof. Sufficiency. Suppose that H is not Hamiltonian, and lets say V(H) = {u1,u2, . . . ,up; v1, v2, . . . , vp}.
Therefore according to Lemma 2.1, and notice that H cannot be isomorphic to H∗i and H∗j at the same time
if i , j, there exists an integer t with t < p such that d(ut) ≤ t and d(vp−t) ≤ p − t. Therefore by the definition
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of RDD and inequality (1), we have

RDD(H) =
∑

v j∈V(H)

deg(v j)D̂H(v j)

≤

∑
v j∈V(H)

deg(v j)
(
deg(v j) +

1
2

(
p − 1

)
+

1
3

(
p − deg(v j)

))
=

1
6

(
(5p − 3)

∑
v j∈V(H)

deg(v j) + 4
∑

v j∈V(H)

deg(v j)2

)
≤

1
6

(5p − 3)
(
tt + (p − t)p + (p − t)(p − t) + tp

)
+

4
6

(
tt2 + (p − t)p2 + (p − t)(p − t)2 + tp2

)
=

1
3

(
(11p − 3)t2

− (11p2
− 3p)t

)
+ 3p3

− p2.

We define

1(x) = (11p − 3)x2
− (11p2

− 3p)x = (11p − 3)x(x − p)

with 1 ≤ k ≤ x ≤ p − 1. Then we get

1′(x) = 2(11p − 3)x − 11p2 + 3p, and 1′′(x) = 2(11p − 3) > 0, as p ≥ 2,

which implies that 1(x) is convex up on k ≤ x ≤ p − 1. One can see that 1(1) = 1(p − 1). Since k ≥ 1, we have
1(x) ≤ 1(p − 1). Note that

1(p − 1) = −11p2 + 14p − 3.

Hence

RDD(H) ≤
1
3

(
− 11p2 + 14p − 3

)
+ 3p3

− p2 = 3p3
−

14
3

p2 +
14
3

p − 1.

In combination with the conditions of the theorem, the above inequality holds if and only if the equation
holds, i.e.,

RDD(H) =
1
3

(
− 11p2 + 14p − 3

)
+ 3p3

− p2 = 3p3
−

14
3

p2 +
14
3

p − 1.

This implies that H � H∗, contrary to the assumption. Hence H is Hamiltonian.
Conversely, suppose that H � H∗. Then one can check that H is not Hamiltonian.

Theorem 3.3. Let H be a bipartite graph of order 2p with p ≥ 2 vertices in each part and δ(H) ≥ k ≥ 1. If

F(H) ≥ 2(p4
− 2p3 + 3p2

− 2p + 1),

then H is Hamiltonian if and only if H � H∗.

Proof. Sufficiency. Suppose that H is not Hamiltonian, and denote V(H) = {u1,u2, . . . ,up; v1, v2, . . . , vp}. So
by using Lemma 2.1, and paying attention to a fact that H cannot be isomorphic to H∗i and H∗j at the same
time if i , j, there exists an integer t with t < p such that d(ut) ≤ t and d(vp−t) ≤ p − t. So by the definition of
the forgotten topological index, we get

F(H) =

p∑
j=1

d3
j

≤ tt3 + (p − t)p3 + (p − t)(p − t)3 + tp3

= 2
(
t4
− 2pt3 + 3p2t2

− 2p3t
)
+ 2p4.
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Considering the following function

h(x) = x4
− 2px3 + 3p2x2

− 2p3x = x(x − p)(x2
− px + 2p2)

with 1 ≤ k ≤ x ≤ p − 1. Note that x2
− px + 2p2 > 0 for any x ∈ [k, p − 1].

Claim 1 : h(x) is convex up for k ≤ x ≤ p − 1.

Proof. By taking the first and second derivatives of h(x), we have

h′(x) = 4x3
− 6px2 + 6p2x − 2p3, and h′′(x) = 6(2x2

− 2px + p2).

Then the discriminant of the equation h′′(x) = 0 is γ(p) = −4p2 < 0. So h′′(x) > 0, and Claim 1 is proven.

By Claim 1, and notice that x is an integer, one can see that the maximum value of h(x) can only be h(k)
or h(p − 1). Since h(1) = h(p − 1), and k ≥ 1, we have h(x) ≤ h(p − 1) for k ≤ x ≤ p − 1. Thus

F(H) ≤ 2(p4
− 2p3 + 3p2

− 2p + 1).

In combination with the conditions of the theorem, the above inequality is true if and only if we take an
equal sign, i.e.,

F(H) = 2(p4
− 2p3 + 3p2

− 2p + 1).

This implies that H � H∗, contrary to the assumption. Hence H is Hamiltonian.
Conversely, suppose that H � H∗. Then one can check that H is not Hamiltonian.
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